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Abstract: Activated hepatic stellate cells (aHSCs) are the main orchestrators of the fibrotic cascade in
inflamed livers, with transforming growth factor-beta (TGF-β) being the most potent pro-fibrotic
cytokine. Hence, aHSCs serve as interesting therapeutic targets. However, drug delivery to aHSCs is
hindered by excessive collagen deposition in the extracellular matrix (ECM) and capillarization of liver
sinusoids. Chitosan-nanoparticles (CS-NPs) show intrinsic affinity for collagen, holding potential
for drug delivery to fibrotic livers. Here, we employed CS-NPs for anti-TGF-β siRNA delivery,
promoting delivery into aHSCs via modification with platelet-derived growth factor receptor-beta
binding peptides. In-vitro experiments using aHSCs demonstrated the association of unmodified
CS-NPs to the collagen-rich ECM, with reduced intracellular accumulation. Peptide-modified
CS-NPs showed a higher propensity to localize intracellularly; however, this was only the case upon
ECM-collagen reduction via collagenase treatment. Peptide-modified CS-NPs were more potent than
unmodified CS-NPs in reducing TGF-β expression, implying that while collagen binding promotes
liver accumulation, it hinders cell-specific siRNA delivery. In-vivo, CS-NPs successfully accumulated
in fibrotic livers via collagen binding. Similar to in-vitro findings, when mice were pretreated with
collagenase-loaded CS-NPs, the accumulation of peptide-modified NPs increased. Our findings
demonstrate the usefulness of NPs modification with targeting ligands and collagenase treatment
for aHSCs targeting and highlight the importance of chitosan–collagen binding in drug delivery to
fibrotic diseases.

Keywords: liver fibrosis; TGF-β; collagen; chitosan nanoparticles; active targeting; siRNA delivery;
activated hepatic stellate cells; collagenase

1. Introduction

Liver fibrosis results from chronic hepatic injury by various insults. During hepatic fibrosis, the
continuous accumulation of collagen rich extracellular matrix (ECM) leads to scar deposition. If left
untreated, such scarring could convert into cirrhosis and eventually progress to liver failure with
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an increased risk of the development of hepatocellular carcinoma (HCC) [1,2]. Hepatic stellate cells
(HSCs) are the main orchestrators of the fibrotic cascade [3]. HSCs are located between the sinusoidal
endothelium and hepatocytes in the space of Disse and, under normal conditions, exist in a quiescent
state [1,2]. However, in response to liver injury, they become activated. Activated hepatic stellate cells
(aHSCs) show an increased expression of α-smooth muscle actin, enhancing their contractility, which
contributes to vascular distortion and increased vascular resistance promoting portal hypertension
in fibrotic livers [3]. Moreover, aHSCs secrete almost 80% of total fibrillar collagen I that deposits in
the fibrotic liver [3–5]. Therefore, this cell type presents an interesting target for the treatment of liver
fibrosis [6].

HSC activation is regulated by several mediators in a paracrine and autocrine manner [3,7].
Among them, transforming growth factor beta (TGF-β1) is the most potent cytokine responsible for
the regulation of the HSC phenotype and the most potent stimulus for collagen I production [3,7].
In fact, TGF-β1 is believed to maintain the activated cell population by reducing aHSC apoptosis,
enhancing aHSC activation and at the same time increasing ECM deposition, as well as by increasing
the expression of matrix proteins and reducing the levels of ECM degrading enzymes [7]. It can
therefore be concluded that inhibiting the expression of this cytokine would result in a reduction of the
activated phenotype and potentially in the reversal of fibrosis. However, given its wide expression and
involvement in several cellular processes and cascades [8–10], its unspecific inhibition would not be
free of side effects. Therefore, a targeted delivery system, capable of reducing TGF-β1 production by
the aHSCs in the fibrotic liver, might serve as a potential approach for the treatment of liver fibrosis.

Drug targeting using nanoparticles (NPs) provides a means to improve pharmacological
interventions that bear therapeutic potential but suffer from inappropriate biodistribution. The
success of pharmacotherapies is often hampered by insufficient supply to the pathological site and/or
by accumulation in off-target tissues, resulting in undesirable adverse effects [2,11]. For drug targeting
to aHSCs, NPs should initially encapsulate the active molecule without compromising its therapeutic
activity. This is of particular importance when sensitive macromolecular compounds, such as siRNA
or proteins, are to be delivered [12,13]. Following in-vivo administration, NPs should then localize
in the space of the Disse, where the aHSCs reside. Once targeted to the space of Disse, the NPs
should show gradual accumulation in target cells. In healthy livers, the liver sinusoidal endothelial
cells (LSECs) fenestrae offer a permeation window enabling nanoparticulate matter to localize into
the space the Disse [14]. During fibrosis, dramatic changes in the LSEC phenotype are observed, of
which “capillarization” constitutes an important barrier hindering NPs’ access to the aHSCs. The loss
of fenestrae, accompanied by the abnormal deposition of a basement membrane matrix, limits the
access of the NPs to their target cells [14]. Consequently, smaller NPs would have a larger chance of
translocating into the liver, in areas where fenestrae are still accessible [2]. Once in the space of Disse,
the NPs could then show enhanced accumulation in the aHSCs if they are targeted to one of the surface
receptors (over-) expressed by aHSCs. Several receptors are present on the aHSCs surface and ligands
have been identified that can be used to improve the delivery of various antifibrotic agents [6]. As a
key example, the platelet-derived growth factor receptor beta (PDGFR-β) is highly over-expressed on
aHSCs and shows much lower expression levels on other cells in the liver [15,16]. Accordingly, several
PDGFR-β-binding peptides have been reported [17,18] and have served as interesting molecular targets
through which enhanced NP–aHSC interactions can be achieved.

Chitosan is a biodegradable polymer that has been widely employed in the development of NPs
for drug delivery, in particular for protein and nucleic acid delivery. This is mainly attributed to the
NPs’ hydrophilicity as well as to the fact that their formulation by ionotropic gelation is devoid of
organic solvents and the use of heat [2,12,19–23]. Additionally, and highly important in the context
of fibrotic diseases, chitosan has been reported to bind and interact with collagen [24]. We recently
demonstrated the ability of small (100 nm) chitosan NPs to accumulate in fibrotic livers following
intravenous administration as a function of their collagen binding properties [25].
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Taking the above notions into account, we reasoned that the development of small TGF-β1 siRNA
chitosan NPs might offer an interesting approach for aHSC deactivation and the treatment of liver
fibrosis. Accordingly, in the present study, we developed small TGF-β-siRNA-loaded chitosan NPs and
we modified them with different densities of PDGFR-β-binding peptides, given the effect of targeting
ligand density on the efficacy of NPs active targeting [2,20]. These resulting NPs were tested for
their ability to accumulate in aHSCs and to reduce the expression of TGF-β1 in-vitro, as a function of
targeting peptide density and collagen density in the ECM. In addition, the ability of NPs to accumulate
in fibrotic livers was assessed in-vivo. To study the effect of ECM collagen content on NP accumulation
in-vivo, the liver localization of the developed chitosan NPs was determined when administered on
their own and in combination with collagenase-containing NPs (Figure 1).
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Figure 1. Schematic representation of the experimental workflow.

2. Materials and Methods

2.1. Nanoparticle Preparation and Characterization

Chitosan NPs (CS-NPs) were formulated by the ionotropic gelation method as detailed in earlier
work [20]. Briefly, in a ratio of 1:1, 0.125% (w/v) sodium tripolyphosphate (TPP; Mistral Chemicals
UK) was added to 0.4% (w/v) chitosan solution (low molecular weight, Sigma Aldrich, Taufkirchen,
Germany) dissolved in 1% acetic acid, pH 4.0 and stirred for 30 min at 1000 rpm. NPs average
hydrodynamic diameter (HD) and zeta potential (ZP) were determined using a Malvern Zetasizer Nano
ZS90 (Malvern Instruments Ltd., Malvern, UK), from three independently prepared batches of NPs
each analyzed in triplicates at 25 ◦C. The results were expressed as the mean ± standard deviation (SD).
For morphological analysis, a drop of the NP suspension was placed on carbon film and stained with
uranyl acetate (1% w/v) before investigation by transmission electron microscopy (TEM) (JEOL, Japan).
Additionally, CS-NP suspension was spread on glass slides and examined by field-emission scanning
electron microscopy (SEM) using a LEO SUPRA 55 microscope (Carl Zeiss, Reutlingen, Germany).

2.2. In-Vitro CS-NPs Cytotoxicity Studies

A continuous murine cell line termed GRX with aHSC phenotype [26] and human embryonic
kidney cell line HEK293 [27] were selected as the HSC cell line of choice and a control cell line,
respectively, following the quantification of PDGFR-β and TGF-β1 basal gene expression levels
(Supplementary Materials). Cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM)
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supplemented with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin, 1% sodium pyruvate
and 2 mM L-glutamine at 37 ◦C in a humidified atmosphere containing 5% CO2. Cells were seeded in
96-well plates at a density of 30,000 cells/well and incubated for 24 h. The cells were then treated with
increasing concentrations (0.1, 0.5, 1, 1.5, 2, 3 and 4 mg/mL) of CS-NPs and incubated for an additional
24-h period. Thereafter, the cell viability was determined by the MTT assay essentially as described
before [28]. Untreated cells were used as a reference for cell viability determination. The experiment
was conducted in triplicates and results were expressed as the mean ± SD, for n = 4.

2.3. Nanoparticle Modification with PDGFR-β Binding Peptide

CS-NPs were modified with different densities of the PDGFR-β-binding peptide
CIPLPPPSRPFFK [18] (Biomatik, USA) using the short-chain amine-thiol crosslinker succinimidyl
3-(2-pyridyldithio)propionate) (SPDP) (ThermoFisher Scientific, Schwerte, Germany), via a stepwise
approach that was optimized in earlier work from our group [20,25]. Briefly, SPDP was dissolved in
dimethyl sulfoxide (DMSO ) and added to CS-NPs at a final concentration of 0.9 mM. Successful SPDP
tagging to CS-NPs was confirmed using the pyridine-2-thione assay as described before [20,25].
The SPDP-modified NPs were incubated with increasing concentrations of fluorescein labeled
CIPLPPPSRPFFK (Biomatik, Wilmington, DE, USA)—with a final concentration of 0.1, 0.15, 0.3
and 0.5 mM peptide—and allowed to react overnight. Following overnight incubation, the NPs were
centrifuged at 14,000 rpm at room temperature for 30 min and the extent of peptide tagging on the
NPs’ surface was determined by fluorometry at λex 490 nm; λem 525 nm for n = 3. From the results
obtained, two concentrations of tagged peptide were selected for further experiments carrying a low
(LP-NP) and a high (HP-NP) peptide density on the NPs’ surface. The number of peptides per NP was
calculated as detailed in [20] using Equations (1)–(4).

Equation (1): The volume of polymer used in NP formulation = the mass of polymer used in NP
formulation/the density of polymer.

Equation (2): The volume of NPs = 4/3π r3, where r is the NP radius.
Equation (3): The number of NPs = the volume of polymer used in NP formulation/the volume of

one NP.
Equation (4): The number of peptides per NP = (concentration of peptide tagged (M) * Avogadro’s

number)/the number of NPs.

2.4. Nanoparticle Loading and Determination of Encapsulation Efficiency

A fluorescein-labeled model oligonucleotide (MO) (TCA CAA TTG CCA GTT AAC GTC T, Bio
Basic Inc., Canada) was initially used to assess the ability of CS-NPs in encapsulating nucleic acid
therapeutics and for ease of quantification. MO was initially added to the chitosan solution followed by
the addition of TPP, as detailed above. MO was added in two final concentrations (0.05 and 0.15 µM).
In both cases, CS-NPs were centrifuged at 14,000 rpm for 30 min at room temperature to remove free
MO, while the encapsulated concentration of MO and encapsulation efficiency (EE%) were determined
by fluorometry at λex 490 nm; λem 525 nm. EE% was calculated as follows: EE% = [encapsulated
concentration of MO in NP/total concentration of MO] × 100% and the results were expressed as %w/w,
for n = 3.

2.5. In-Vitro CS-NPs Association in GRX and HEK293 Cells

To determine the effect of peptide density on the extent of NP association in the immortalized
hepatic stellate cell line GRX and HEK293 cells, NPs were loaded with MO and modified with a low
and high density of peptide as detailed earlier. GRX and HEK293 cells were seeded at a density of
30,000 cells/well. MO-loaded CS-NPs, LP-NPs and HP-NPs were added to the cells at a concentration
of 0.5, 1, 1.5 and 2 mg/mL. NP formulations were incubated for 24 h. Thereafter, the cells were washed
with phosphate-buffered saline (PBS) and the extent of NP association was determined by fluorometry
λex: 490nm and λem: 520 using NP curves. The experiment was conducted in triplicates and the
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results were expressed as the mean ± SD. In order to evaluate the role of collagen in NP association, the
experiment was repeated using cells pre-incubated with 0.2 mg/mL collagenase for 1 h. The collagenase
concentration used was predetermined based on a collagenase cell cytotoxicity study (Supplementary
Materials). After 1 h, the collagenase-containing cell culture media were aspirated and MO-loaded
CS-NPs, LP-NPs and HP-NPs were added to the cells at a concentration of 1.5 mg/mL and incubated
for 24 h. The concentration of NPs associated with the cells was determined by fluorometry using the
NP calibration curves. The experiment was conducted in triplicates and the results were expressed as
the mean ± SD. GRX and HEK293 cells were seeded on cover slips in 24-well plates at a density of
110,000 cell per well. After 24 h, MO-loaded CS-NPs were added to the cells and incubated for 24 h.
After 24 h, NPs containing media was aspirated, and cells were washed with PBS. Nuclei were fixed,
stained with 4′,6-diamidino-2-phenylindole (DAPI) and imaged under fluorescence in a Nikon eclipse
80i microscope (Tokyo, Japan).

2.6. Quantitative Real-Time PCR Analysis

Four TGF-β1 siRNA sequences were purchased from Qiagen (Hilden, Germany), (Table S3).
TGF-β1 siRNA were encapsulated into CS-NPs in a similar manner to MO, also using a 0.15 µM final
concentration of siRNA per preparation. TGF-β1 siRNA-loaded CS-NPs were either used as such
in their unmodified form, or modified with a low and high density of PDGFR-β as detailed earlier.
GRX cells were seeded at a density of 400,000 cells/well and treated with the four siRNA targeting
TGF-β1 in five different forms: (i) in naked form without transfection reagent, (ii) pre-complexed with
Lipofectamine 2000 (ThermoFisher Scientific), (iii) encapsulated in unmodified NPs, (iv) in LP-NPs,
and (v) in HP-NPs. In all cases, the cells were treated with a final concentration of 1 µM per well in
serum-free Opti-MEM (Gibco™, ThermoFisher Scientific) and left to incubate for 24 h at 37 ◦C in a
humidified atmosphere containing 5% CO2. Untreated cells were used as controls. After incubation,
the cells were harvested and RNA extracted for RT-qPCR (as detailed in Supplementary Materials).
The values of target genes were normalized to the housekeeping gene GAPDH, using the 2-∆∆CT
method and results were represented as mean relative TGF-β mRNA expression ± SD for n = 3. The
same experiment was repeated for siRNA sequences 1 and 4 in an identical manner. However, in this
cell culture experiment, the culture media was supplemented with 10% FBS.

2.7. In-Vivo Nanoparticle Biodistribution

Male Swiss albino mice (8 weeks old, weighing 25–30 g), were purchased from Theodor Bilharz
Research Institute (TBRI) Cairo, Egypt. The mice were initially divided into two groups (healthy controls
and fibrotic mice). Chronic liver damage was induced by intra-peritoneal (IP) injection of 10% CCl4 in
olive oil (2.5µL/g body weight) twice a week for one month [29]. The second group served as the healthy
controls and received the same volume of olive oil through IP injections. To confirm the establishment
of fibrosis after 4 weeks of CCl4 injections, one mouse was sacrificed by cervical dislocation and liver
tissue samples were obtained, for histopathological investigations. Briefly, livers were washed in tap
water and then in serial dilutions of methyl, ethyl and absolute ethyl alcohol to achieve dehydration of
the tissue. Specimens were cleared in xylene and embedded in paraffin at 56 ◦C in a hot air oven for 24
h. Paraffin tissue blocks were prepared for sectioning at 4-µm thicknesses by sledge microtome. The
obtained tissue sections were collected on glass slides, de-paraffinized, stained with hematoxylin and
eosin (H&E) for examination under the light microscope [30]. To determine whether chitosan collagen
binding affects the NP in-vivo biodistribution and whether the excess deposition of collagen in fibrotic
livers would facilitate NP accumulation in fibrotic livers Collagenase-loaded chitosan nanoparticles
were prepared as detailed in earlier work from our group [25]. The healthy and fibrotic groups were
divided each into two groups; the first group received collagenase-NPs intravenously (IV) for one
week followed by fluorescent CS-NPs, LP-NPs and HP-NPs, while the second group received PBS
instead of collagenase-NPs followed by fluorescent CS-NPs, LP-NPs and HP-NPs. A total of 0.8 mg
NPs per mouse was administered intravenously through the tail vein. The total NPs amount was
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divided over 3 doses given at 2-h intervals [2]. One hour after the last dose, the mice were sacrificed by
cervical dislocation and liver tissue samples were harvested. Livers were homogenized in PBS to yield
a homogenate with a final concentration of 0.25 g/mL [2]. The concentration of NPs in the livers was
then determined by fluorometry using CS-NPs, LP-NPs and HP-NPs calibration curves constructed in
liver homogenates. Additionally, to determine whether CS-NPs distribution to other organs changed
as a function of fibrosis and excessive collagen deposition, healthy and fibrotic animals were divided
into two groups. The first group received intravenous fluorescent CS-NPs (0.8 mg over 3 doses),
whereas the second group received the same volume of PBS. One hour after the last dose, the mice
were sacrificed by cervical dislocation, and livers, spleens, kidneys, brains and lungs were harvested
and homogenized in PBS to yield a homogenate with a final tissue concentration of 0.25 g/mL. The
fluorescent intensities of organ homogenates obtained from CS-NP-receiving mice were normalized to
fluorescent intensities of organ homogenates form PBS-receiving mice. Figure S1 provides a schematic
representation of the in-vivo study Animal care and all experimental procedures were conducted
according to the ethical guidelines of the Research Ethics Committee of Faculty of Pharmacy, German
University in Cairo (GUC), Project ID: 2019-03-TC-SMH-MK (approved on 16 February 2019).

2.8. Statistical Analysis

Statistical analysis was performed by GraphPad InStat software (GraphPad Software, La Jolla,
CA, USA) using one-way analysis of variance test (ANOVA). p-values <0.05 were considered
statistically significant.

3. Results and Discussion

3.1. Nanoparticle Synthesis and Characterization

In the case of NP delivery to the space of Disse in fibrotic livers, excessive collagen deposition may
act both as a hurdle and as a mediator. The capillarization resulting from fibrosis reduces NPs entry
from the circulation into the space of Disse. At the same time, however, if the NPs have the ability
to interact with and bind to collagen, this would potentially lead to enhanced in-vivo accumulation.
In such cases, the NPs need to evade sequestration by the reticuloendothelial system (RES) and they
should therefore be formulated from relatively hydrophilic materials and possess relatively small
hydrodynamic diameters [31]. Chitosan is a hydrophilic polymer that has been demonstrated to be
able to interact with collagen [24]. We recently demonstrated that CS-NPs have the ability to bind to
collagen with relatively high affinity, making the use of collagen targeting peptides unnecessary [25].
Here, CS-NPs had an average hydrodynamic diameter of 110 ± 6 nm and a zeta potential (ZP) of
35 ± 1 mV. TEM (Figure 2A) and SEM (Figure 2B) analysis showed that the NPs appeared spherical in
shape and in an unaggregated state with a uniform particle size distribution, as indicated by the size
distribution charts obtained using Zetasizer (Figure 2C). In addition to the evasion of the RES, this
small size can increase the NP’s ability to access the space of Disse via the remaining fenestrae [32].

While utilizing the intrinsic ability of CS-NPs to bind to collagen is an interesting approach to
increase NP concentrations in fibrotic livers, these NPs may suffer from collagen sequestration when
it comes to interaction with their target cells. However, if such NPs hold the potential to bind to
collagen and at the same time interact specifically with target cells, a synergistic targeting benefit
could potentially be achieved. Therefore, to enhance their interaction with the aHSCs, CS-NPs were
modified with different densities of PDGFR-β-binding peptides. PDGFR-β is abundantly expressed
on the cell surface of aHSCs and could serve as a specific means for targeting [33]. In this work,
IPLPPPSRPFFK [18] was selected as the targeting peptide. It is obvious that, in addition to the correct
choice of targeting ligand, the success of active targeting also depends on ligand orientation and
ligand density [13,20,21,25]. Therefore, a stepwise peptide tagging approach, optimized in earlier
work [20,25], was adopted. To this end, a cysteine (Cys) residue was initially added to the N-terminus
of the targeting peptide. The thiol groups of the inserted Cys moieties enable linking to the amine
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group in the NPs, via the use of SPDP as an amine-thiol crosslinker. The presence of amine groups
on the NPs surface is evident from the overall positive ZP observed for CS-NPs. Given that only
one thiol group is present in the targeting peptide, controlling peptide orientation is a function of
the cross-linker used. For this reason, CS-NPs were initially allowed to react with SPDP, forming a
thiol-reactive intermediate whose formation was detected quantitatively by the pryridne-2-thione
assay [20,25,34]. We recently demonstrated that the density of SPDP on the surface of the NPs is
not a contributing factor to the density of peptide tagged [25]. Hence, we here only used one SPDP
concentration (0.9 mM) to obtain SPDP-NPs with an SPDP concentration corresponding to 42.2 ±
1.4 µM. The thiol-reactive NP intermediates were then reacted with increasing concentrations of the
thiol-bearing fluorescent targeting peptide. As the concentration of peptide added to SPDP-NPs
increased, the concentration of peptide tagged also increased, until a plateau was achieved, indicating
NP surface saturation (Figure S2). At saturation, the peptide density on the NP surface was termed
high-peptide density (HP; corresponding to ~2250 peptides per NP) and accordingly a low-peptide
density (LP; corresponding to ~892 peptides per NP) was selectedPharmaceutics 2020, 12, x FOR PEER REVIEW 7 of 16 
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Figure 2. (A) Transmission electron microscopy and (B) scanning electron microscopy images obtained
for chitosan nanoparticles (C) Hydrodynamic diameter distribution characterization by Dynamic Light
Scattering. (D) The effect of chitosan nanoparticles (CS-NPs) on GRX and HEK293 cell viability, as
determined by the MTT assay. The results are presented as the mean ± SD viability relative to untreated
cells (n = 4). Statistical analysis was performed by GraphPad InStat software using a one-way analysis
of variance test (ANOVA), where (***) p < 0.001.

3.2. In-Vitro Association of Chitosan Nanoparticles by HEK293 and GRX Cells

To evaluate the ability of NPs to interact with aHSCs as a function of collagen density in the
ECM and targeting peptide density on the surface of the NPs, two cell lines were used, GRX and
HEK293 cells. GRX cells are a continuous murine cell line with an aHSCs phenotype [26] and the
ability to secrete collagen in-vitro [35]. These cells were selected given the higher expression levels of
PDGFR-β and TGF-β1 in GRX cells and their much lower expression in the control cell line HEK293
cells (Figure S3). Figure 2D shows the viability obtained when the cells were treated with increasing
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concentrations of CS-NPs. In this set of experiments, both GRX and HEK293 cells showed minimal
loss in viability at NP concentrations up to 2 mg/mL. The IC50 value was 2.5 mg/mL for GRX cells
and 2.8 mg/mL for HEK293 cells. All subsequent experiments were consequently conducted at NP
concentrations that were below 2 mg/mL.

CS-NPs were loaded with a fluorescent model oligonucleotide (MO), to enable the quantification
of NPs association. An encapsulation efficiency of 84.8 ± 5.9% w/w and 101.8 ± 0.2% w/w were
observed when MO was added to CS-NPs at a final concentration of 0.05 and 0.15 µM, respectively.
While NP loading did not affect NP HD, a reduction in NPs ZP was observed (Figure S4), which
might indicate that a portion of MO is available at the particle surface. When both cell lines were
incubated with increasing concentrations of MO-containing NPs for 24 h, a concentration-dependent
association was observed (Figure 3A,B). Surprisingly, in GRX cells, despite higher expression levels
of PDGFR-β, unmodified CS-NPs showed higher association than peptide-modified NPs (for both
LP-NPs or HP-NPs). Somewhat surprisingly, the highest peptide density even resulted in the lowest
association. NP association refers to the association of the NPs with the cell membrane, the produced
ECM and/or their intracellular localization [36]. Given the ability of chitosan to associate with
collagen [24,25] and given the high collagen content of the ECM of GRX cells [35], it seems obvious that
high association observed for CS-NPs results from NPs binding to the collagen-rich ECM. The latter is
underpinned by the notion that peptide modification resulted in reduced NP association in a peptide
density-dependent manner, given the ability of the peptide to shield the collagen-binding capacity of
chitosan via steric hindrance. This is also obvious from the fluorescent microscopy images obtained
when GRX and HEK293 cells were treated with MO-loaded CS-NPs (Figure 3C). In HEK293 cells,
NPs appear to localize intracellularly in the cytoplasm, as opposed to the more diffuse appearance
observed when GRX cells where incubated, showing hardly any green fluorescence within the cells.
When the association experiment was repeated following cell pretreatment with collagenase, a different
trend was found (Figure 3D,E). Since collagenase is a collagen-degrading enzyme [37] and potently
reduces the collagen density in the ECM of GRX cells, the peptide-targeted CS-NPs now show higher
association than unmodified CS-NPs with GRX cells. In line with this, HP-NPs showed the highest
increase in uptake/association when comparing the experiments performed in the presence versus
in the absence of collagenase. This indicates that the degradation of collagen enabled the HP-NPs
to make their way to PDGFR-β on the cell surface and to achieve increased accumulation through
receptor-mediated endocytosis [38]. These findings and conclusions are bolstered by the notion that
NP association/uptake did not change in HEK293 cells upon collagenase pretreatment (Figure 3E).
However, repeating the association experiments in the presence of excess PDGFR-β-binding peptide
or with NPs modified with control off-target peptides would undoutfully offer further confirmation.

3.3. siRNA-Containing Chitosan Nanoparticles Reduce Profibrogenic Gene Expression

Four different anti-TGF-β1 siRNA were loaded into the NPs. Figure 4A shows TGF-β1 siRNA
gene silencing results when cells were treated with siRNA in serum-free cell culture medium. When
anti-TGF-β1-siRNA-loaded NPs were used in GRX cells, all three NP formulations (i.e., CS-NPs,
LP-NPs and HP-NPs) were able to successfully reduce TGF-β expression as compared to untreated
cells and to cells treated with naked siRNA. However, when cells were treated with anti-TGF-β1 siRNA
pre-complexed with Lipofectamine 2000, the chitosan NPs showed inferior performance in serum-free
medium conditions. However, experiments conducted in the absence of serum are not very realistic [39],
particularly when the intended route of administration is the intravenous route. We therefore also
performed experiments in cell culture medium supplemented with 10% FBS. Importantly, in this
situation, the NPs outperformed the transfection reagent (Figure 4B). This is because most standard
transfection reagents, such a Lipofectamine, are designed to function in the absence of serum, because
serum proteins interfere with the formation of nucleic acid-loaded transfection agents, and/or because
of increased susceptibility to degradation by nucleases [40,41]. A closer look at the NPs performance
under serum-containing conditions shows that peptide-modified NPs were more potent in reducing
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TGF-β1 expression than unmodified CS-NPs. This can be attributed to the enhanced ability of such
NPs to accumulate intracellularly, as opposed to localizing in the vicinity of the cell. In this case, the
therapeutic agent is a large macromolecular compound, which, when unassisted, is unable to cross
the cellular membrane and localize in the cytoplasm where its intended action is required [42]. This
is confirmed by the inability of naked siRNA to reduce TGF-β1 expression either in the presence or
absence of serum supplementation. CS-NPs show lower intracellular accumulation and higher ECM
association when compared to LP-NPs and HP-NPs. Hence, the amount of intracellular siRNA is lower
in the case of CS-NPs and higher with LP-NPs and HP-NPs, explaining their higher ability to reduce
TGF-β1 expression. These results complement the in-vitro NPs association results. It is noteworthy
that scrambled siRNA pre-complexed with Lipofectamine 2000 failed to reduce TGF-β expression as
compared to untreated cells (Figure S6), indicating that the results observed are specific to the TGF-β
siRNA used and not just to the treatment of cells with foreign genetic material.

While the quantification of TGF-β by Western blot would have been complimentary to qPCR
result reports herein, the Western blot quantification of secreted TGF-β in NP-treated cells was not
conducted. Utilizing its cationic amino groups chitosan has been demonstrated to bind with anionic
TGF-β forming polyelectrolyte complexes [43]. Tsai et al., demonstrated that TGF-β was no longer
detectable by Western blot when cells were treated with chitosan [43]. The latter, however, would not
be problematic with qPCR experiments where intracellular mRNA were quantified as opposed to the
extracellular secreted protein. Notwithstanding the above, this might indicate an added benefit for the
use of chitosan in liver fibrosis. In addition to the ability to deliver functional TGF-β siRNA, chitosan
NPs might also be able to sequester TGF-β in the liver and hence make it less available for further
activation and propagation of the activated hepatic stellate cell population imparting synergistic benefit.
In such cases, the treatment of GRX cells with unloaded CS-NPs followed by a comparison of TGF-β
mRNA expression level by qPCR and TGF-β by Western blot would be insightful.Pharmaceutics 2020, 12, x FOR PEER REVIEW 9 of 16 
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Figure 3. CS-NP association in GRX and in HEK293 cells as a function of NP peptide density and
extracellular matrix (ECM )collagen density. CS-NP association in (A) GRX and (B) HEK293 cells
results expressed as the mean ± SD concentration of NPs associated by the cells (n = 3). (C) Fluorescent
microscopy studies of model oligo (MO)-loaded CS-NPs; when incubated for 24 h with GRX and
HEK 293 cells, nuclei appear blue due to DAPI staining, whereas CS-NPs appear green. CS-NP
association following pretreatment with collagenase in (D) GRX and (E) HEK293 cells; the results are
expressed as the mean ± SD fold change in association as result of collagenase pre-treatment (n = 3).
Statistical analysis was performed by GraphPad InStat software using a one-way analysis of variance
test (ANOVA), where (*) p < 0.05, (**) p < 0.01 and (***) p < 0.001.
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Figure 4. Transforming growth factor-beta (TGF-β1) gene silencing in GRX cells as determined by
RT-qPCR (n = 3). Cells were treated with different sequences of TGF-β siRNA in free form (siRNA),
transfected with Lipofectamine 2000 (lipofect.), encapsulated in unmodified NPs (NP), LP-NPs and
HP-NPs in (A) serum-free cell culture medium and (B) medium supplemented with 10% fetal bovine
serum (FBS). Statistical analysis was performed by GraphPad InStat software using a one-way analysis
of variance test (ANOVA), where (*) p < 0.05, (**) p < 0.01 and (***) p < 0.001.

3.4. In-Vivo Nanoparticle Biodistribution

Liver fibrosis was induced in mice using CCl4 to determine the ability of the NPs to accumulate at
pathological sites following intravenous administration. Figure 5A (i) shows the normal histological
morphology of the central vein and surrounding hepatocytes in the parenchyma of non-fibrotic livers
in healthy animals. Liver sections of mice receiving CCl4 for 1 month showed focal necrosis with the
aggregation of inflammatory cells in hepatic parenchyma, massive inflammatory cells surrounding
dilated and/or congested central veins and diffuse degenerative changes in the hepatocytes in the
parenchyma (Figure 5A, ii-iv), which are all hallmarks of liver fibrosis. Figure S5 shows the NP
calibration curves obtained for CS-NPs, LP-NPs and HP-NPs in liver homogenates. In healthy mice
that have received IV NPs, NPs were not detected in all healthy liver homogenates, at least not
in a quantifiable manner using the constructed calibration curves (Figure S5). However, CS-NPs,
LP-NPs and HP-NPs were all found to accumulate in fibrotic livers, indicating the ability of NPs
to accumulate in capillarized fibrotic livers, assumingly through binding to the collagen-rich ECM.
The lower liver accumulation observed for CS-NPs in non-fibrotic livers exemplifies the added value
of chitosan-mediated collagen binding for successful disease targeting. This is of particular interest
since most intravenously administered NPs tend to strongly accumulate in the liver where they
are sequestered by Kupffer cells [31,44,45]. The extent of Kupffer cell accumulation is, however,
a function of NPs’ physicochemical properties, with smaller and more hydrophilic NPs showing less
Kupffer cell accumulation than larger hydrophobic ones [31,45]. For this reason, small-sized and
relative hydrophilic CS-NPs showed low liver accumulation in healthy animals and significant liver
accumulation was only observed in the presence of a high collagen density in fibrotic livers.
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Figure 5. (A) Histopathological evaluation of liver sections obtained from healthy mice (i) and (ii-iv)
mice receiving CCl4 (magnification 40×) (i) Normal liver architecture and intact cells obtained from
healthy mice receiving olive oil. (ii) Focal necrosis with inflammatory cells aggregation in hepatic
parenchyma. (iii) Massive inflammatory cell infiltration surrounding the dilated, congested central
vein. (iv) Diffuse degenerated hepatocytes in the parenchyma. (B) NP accumulation in fibrotic livers
as a function of platelet-derived growth factor receptor-beta (PDGFR-β) binding peptide density and
collagenase-loaded NP pretreatment. (C) NP biodistribution in healthy and fibrotic animals. The results
are expressed as the mean fold increase in fluorescence relative to untreated controls. Statistical analysis
was performed by GraphPad InStat software using a one-way analysis of variance test (ANOVA),
where (*) p < 0.05 and (***) p < 0.001.

Figure 5B shows that, in fibrotic animals that did not receive collagenase-NPs to decrease collagen
in the ECM, there was no difference in the extent of liver accumulation for the three NP formulations.
Conversely, however, when animals were pre-treated with collagenase-NPs, the HP-NPs exhibited
significantly higher accumulation in fibrotic livers as compared to unmodified NPs and LP-NPs.
Interestingly, for both CS-NPs and LP-NPs, the extent of liver accumulation was reduced upon
collagenase-NP pretreatment (approx. 1.7- and 1.9-fold respectively); this indicates that the digestion of
ECM collagen reduces the NP accumulation, indicating that these NPs localize in the ECM as opposed to
the aHSCs or even the Kupffer cells. Conversely, HP-NP accumulation increased upon collagenase-NP
pretreatment, and, in cases such as those observed in the in-vitro association experiments, it could
be concluded that these NPs do not accumulate in the liver as function of ECM matrix interaction
or Kupffer cell sequestration but based on their interaction with the aHSCs. These conclusions are
underpinned by the results of the in-vitro experiments where CS-NPs and LP-NPs did not show
enhanced association in GRX cells upon collagenase pretreatment but HP-NPs showed a significant
increase in association/uptake. This is in addition to the higher ability of HP-NPs to reduce TGF-β1
expression in GRX cells in comparison to unmodified and LP-NPs (Figure 4A). This is also confirmed by
the results depicted in Figure 5C, which clearly indicate the change in CS-NPs biodistribution in fibrotic
animals relative to healthy ones. In healthy animals, CS-NPs surprisingly accumulate in the brain.
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This is observed by the increase in fluorescence intensities obtained from CS-NPs receiving animals
when compared to controls that have only received PBS. The accumulation of chitosan nanoparticles in
the brain following IV administration has been reported previously [46,47]. In animals receiving IP
CCl4, CS-NPs accumulate in kidneys and liver but not in the brain. Given that IP CCl4 injections have
been reported to also result in kidney fibrosis [48,49] which is also characterized by excessive collagen
deposition [50,51], it could therefore be implied that CS-NPs accumulate in organs of high collagen
content. More importantly, based on the low NP accumulation in the spleen, which is also a major
RES organ [52–54] and in the livers of healthy animals, the liver accumulation observed in fibrotic
animals could not be mainly attributed to RES sequestration. The latter is underpinned by reports
demonstrating that chitosan coating of NPs reduced their opsonization and phagocytosis [55,56]. Here,
CS-NPs are also believed to accumulate as a function of chitosan–collagen interaction, and this further
highlights the role of chitosan-collagen interaction in targeting of fibrotic diseases.

TGF-β1 is a pleiotropic polypeptide involved in the regulation of multiple processes, including
adult stem cell differentiation, embryonic development, immune regulation, and inflammation, among
others [57,58]. Accordingly, alterations in the TGF-β-signaling pathway contribute to a broad range of
pathologies and hence TGF-β1 has been the therapeutic target of several diseases [8,57]. Generally,
in addition to the use of siRNA, other means of reducing TGF-β levels have been reported. The
blocking of TGF-β1 by means of monoclonal antibodies is one possible approach, besides other
pharmacological strategies to inhibit the activation of TGF-β receptors, e.g., via the use of aptamers
to attenuate downstream signaling [11,59]. All of these strategies, however, can result in the general
(whole-body) inhibition of this factor, which may induce severe adverse effects [60,61]. Hence, drug
targeting to the pathological site is explored to reduce toxicity and improve efficacy. In the case of liver
fibrosis, one key strategy is delivery of therapeutic agents to the aHSCs, as performed in our study
using anti-PDGFR-β peptide-targeted chitosan NPs. Given the double-edged role of collagen in the
success of drug targeting by chitosan nanoparticles, combining anti-TGF-β1 siRNA-loaded HP-NPs
with collagenase-containing NPs appears to be providing a viable strategy for further evaluation.
The collagenase-NPs enable more efficient access to and delivery of siRNA into aHSCs, and at the
same time they can help to degrade the collagen-rich scar tissue and thereby potentially assist in the
resolution of fibrosis [25].

4. Conclusions

Collagen-binding chitosan nanoaprticles offer possible means for the targting of fibrotic livers.
However, collagen-bound particles show limited ability in the interaction with target cells, offering
limited intracellular delivery of therapeutic molecules, particlaury large macromolecules, such as
siRNA. The modifcation of chitosan nanoparticles with targeting ligands, coupled with collagenase
treatment, allows for increased NP uptake by target cells, with the intracellular delivery of therapeutics
possibly imporving therapeutic outcomes.
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