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Background. Usually the training set of online brain-computer interface (BCI) experiment is small. For the small training set, it lacks
enough information to deeply train the classifier, resulting in the poor classification performance during online testing.Methods.
In this paper, on the basis of Z-LDA, we further calculate the classification probability of Z-LDA and then use it to select the reliable
samples from the testing set to enlarge the training set, aiming to mine the additional information from testing set to adjust the
biased classification boundary obtained from the small training set. The proposed approach is an extension of previous Z-LDA
and is named enhanced Z-LDA (EZ-LDA). Results. We evaluated the classification performance of LDA, Z-LDA, and EZ-LDA on
simulation and real BCI datasets with different sizes of training samples, and classification results showed EZ-LDA achieved the best
classification performance. Conclusions. EZ-LDA is promising to deal with the small sample size training problem usually existing
in online BCI system.

1. Introduction

Brain-computer interface (BCI) could translate brain inten-
tion into computer commands, and it has been widely used
for cursor control [1], word spelling [2], neurological reha-
bilitation [3], and so forth. Generally, BCI system consists of
stimulus presentation, signal acquisition, feature extraction,
and translation modules [4]; among them feature extraction
and translation algorithms play important roles for the final
BCI performance. Three factors, including heteroscedastic
class distribution, small sample size training, and nonstation-
ary physiological signals, should be taken into consideration
when selecting the translation algorithms for BCI system.
Regarding the translation module, linear discriminant analy-
sis (LDA) is one of the most popular classification algorithms
for BCI application due to its simplicity, and it has been
widely used in motor imagery-based BCI [5], P300 speller
[6], and motion-onset visual evoked potential-based BCI
(mVEP-BCI) [7]. Besides, the use of linear discriminant

analysis (LDA) for functional near-infrared spectroscopy-
(fNIRS-) based BCIs is worth mentioning. LDA has been
shown to work effectively for the binary [8] andmulticlass [9]
classifications of motor imagery signals for the development
of fNIRS-based BCIs.

However, LDA is established on the homoscedastic class
distribution assumption, which is usually not held for prac-
tical BCI application. In order to handle this problem, we
proposed an improved method named 𝑧-score LDA (Z-
LDA) [10]. Z-LDA defines the decision boundary through
𝑧-score utilizing both mean and standard deviation infor-
mation of the projected data, and evaluation results showed
better classification performance could be obtained under
the heteroscedastic distribution situation. But Z-LDA does
not take into account the small sample size training problem
that usually existed in actual online BCI system [11]. When
the number of the training samples is small, the estimated
classifier tends to be overfitted, resulting in the poor general-
ization during online testing. Various approaches have been
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proposed to address this issue [12]. Li et al. designed a self-
training semisupervised SVM algorithm to train the classifier
with small training data [11]. Xu et al. proposed a strategy
which enlarges training set by adding test samples with
high probability to improve the classification performance
of Bayesian LDA under small sample training situation [13,
14]. The strategy hypothesizes that unlabeled samples with
high probability provide valuable information for refining the
classification boundary.

In essence, Z-LDA defines the confidence of samples in
terms of its position in the estimated distribution, which
could be used to update the classifier for the online BCI
system. In the current study, we will extend Z-LDA to deal
with the small size training problem.

2. Materials and Methods

2.1. Probability Output of Z-LDA. In LDA [15], the weight
sum 𝑦(𝑋) of the unlabeled sample 𝑋 is calculated based on
the project vector𝑊which is estimated from the training set,
and the corresponding prediction label is then determined
by the shortest distance between 𝑦(𝑋) and the labels of each
class. For Z-LDA [10], we assume that𝑦(𝑋) of samples in each
class follow normal distribution and normalize it through 𝑧-
score as

𝑧𝑘 =

𝑦 (𝑋) − 𝜇𝑘

𝜎𝑘

, (1)

where 𝜇𝑘, 𝜎𝑘 are the corresponding mean and standard
deviation of the weight sum 𝑦(𝑋) for training set 𝐶𝑘. Thus,
𝑧𝑘 follows standard normal distribution; Z-LDA make the
prediction based on the distance between 𝑧𝑘 and mean of
the standard normal distribution (i.e., 0). Suppose 𝑧∗ is the
closest one near to 0; then the unlabeled sample will be
classified to training set 𝐶∗. In the binary classification, the
decision boundary of Z-LDA is defined as [10]

𝑐
∗
=

(𝜎1𝜇2 + 𝜎2𝜇1)

(𝜎1 + 𝜎2)

. (2)

Generally, the cumulative distribution function of the
standard normal distribution is denoted as
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For the transformed 𝑧-score 𝑧∗ of Z-LDA, the area represents
the cumulative probability Φ(𝑧∗) that is shown in Figure 1.
Based on this, we define the prediction probability of Z-LDA
as
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The area which represents 𝑃(𝑧∗) is also marked on Figure 1.
It is easy to know that 𝑃(𝑧∗) decreases with the increased
distance between 𝑧∗ and the mean of the standard normal
distribution, and the range of 𝑃(𝑧∗) is [0, 1]. Obviously, the
larger 𝑃(𝑧∗) denotes the higher confidence that the sample
belongs to class 𝐶∗; thus the above definition is reasonable.
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Figure 1:The prediction probability of EZ-LDA and the cumulative
probability.
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Figure 2: The flow chart of the training set enlarging strategy.

2.2. Training Set Enlarging Strategy. A small training set may
not provide enough information for estimating the distribu-
tion parameters of the samples; thus the biased classification
boundary could be obtained when training the classifier.
In this case, the classification accuracy will be decreased
during online test. We propose to add a kind of training set
enlarging strategy to alleviate the small sample size training
effect in this work, and the detailed procedures are illustrated
in Figure 2. After classifier model is estimated based on the
small training set and the prediction results of unlabeled test
samples are obtained, the strategy assumes that unlabeled
test samples with high classification probability represent
correct prediction, and these correctly predicted samples
could be screened out and then used to enlarge the training
set. Thus, more accurate sample distribution estimation and
the improved classifier with the refined classification bound-
ary would be obtained [13]. In this strategy, classification
probability information exported from Z-LDA classifier is
regarded as a confident evaluation criterion to select the high
probability test samples, which are then labeled according
to the prediction results of Z-LDA. Next we need to set a
threshold; the predicted label of a test sample is believed to
be correct if the corresponding classification probability is
higher than the threshold. Finally this test sample could be
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considered as a training sample because its label has been
correctly predicted, and it could be added to the training
set for classifier calibration. The above procedures could be
repeated several times; thus more samples could be selected,
the training set could be enlarged, and the more accurate
classification boundary could be found. The above training
set enlarging strategy incorporated with Z-LDA is named as
enhanced Z-LDA (EZ-LDA) in current study.

2.3. Simulations. We constructed a simulation dataset in
order to quantitatively investigate the classification perfor-
mance of EZ-LDA when dealing with the small sample size
training problem. The simulation was established by using
the fundamental two 2-dimensional Gaussian distributions,
where the samples in the first class follow a Gaussian distri-
bution with mean (−5, 1) and standard deviation (1, 1), and
the samples in the second class follow a Gaussian distribution
with mean (5, −1) and standard deviation (5, 5). 5% outlier
samples were added into both the training and testing sets,
where the outliers follow a Gaussian distribution with mean
(25, −15) and standard deviation (1, 1).Therewere 50 samples
in the training set with 25 samples in each class, and the
testing set consisted of 200 samples with 100 samples in each
class.

During classifier training, 20, 30, 40, and 50 samples from
the training set were selected, respectively. The prediction
results of LDA and Z-LDA were also calculated for compar-
ison. Regarding EZ-LDA, the test set was divided into 20
parts, with 10 samples in each part.Thenwe used the classifier
estimated from original training set to predict the labels of
the first part (10 samples) of the test set and obtained the
predicted label and classification probability of each sample.
Next we set a probability threshold; the predicted label of
a test sample is believed to be correct if the corresponding
classification probability is higher than the threshold. Finally
this kind of test sample could be considered as a training
sample because its label has been correctly predicted, and
it could be added to the training set. Once the first part
(10) samples have been processed, we retrain the classifier
based on the extended training set; then using the updated
classifier to process the next 10 test samples, the repetitions
will be stopped until all the test samples are predicted. The
probability thresholds ranged from 10% to 90% with a step
10% being considered. The above procedures were repeated
100 times in order to reduce the random effect, and all the
samples of the training and testing set were generated at the
beginning of each iteration. Finally, the average classification
accuracies were obtained for the three classifiers, respectively.

2.4. Real BCI Dataset

2.4.1. Dataset Description. The evaluation dataset comes
from motion-onset visual evoked potential-based BCI
(mVEP-BCI) experiment. mVEP could be evoked by brief
motion of object, and it is time locked to the onset of the
motion. We can achieve the brief motion stimuli by screen
virtual button; thus BCI system based on mVEP could be
developed [7, 16].

Eight subjects (2 females, aged 23.3 ± 1.3 years) par-
ticipated in the current study. They were with normal or
corrected to normal vision. The experimental protocol was
approved by the Institution Research Ethics Board of the
University of Electronic Science andTechnology ofChina. All
participants were asked to read and sign an informed consent
form before participating in the study. After the experiment,
all participants received monetary compensation for their
time and effort.

The experimental paradigm is similar as we described in
[17]; six virtual buttons were presented on the 14-inch LCD
screen, and, in each virtual button, a red vertical line appeared
in the right side of the button and moved leftward until it
reached the left side of the button, which generated a brief
motion-onset stimulus. The entire move took 140ms, with
a 60ms interval between the consecutive two moves. The
motion-onset stimulus in each of the six buttons appeared in
a random order, and a trial was defined as a complete series of
motion-onset stimulus of all six virtual buttons successively.
The interval between two trials was 300ms; thus each trial
lasted 1.5 s. Five trials comprised a block, which costs 7.5 s.
The subject needs to focus on the button which is indicated in
the center of the graphical user interface, and the instructed
number randomly appeared. To increase their attention, the
subject was further asked to count in silence the times of
moving stimulus appearing in the target button. A total of 144
blocks, including 720 trials, were collected for each subject
in four equal separate sessions, with a 2-minute rest period
between sessions.

Ten Ag/AgCl electrodes (CP1, CP2, CP3, CP4, P3, P4, Pz,
O3, O4, and Oz) from extended 10–20 system were placed
for EEG recordings by using a Symtop amplifier (Symtop
Instrument, Beijing, China). All electrode impedance was
kept below 5 kΩ, and AFz electrode was adopted as reference.
The EEG signals were sampled at 1000Hz and band-pass
filtered between 0.5 and 45Hz.

2.4.2. Preprocessing and Feature Extraction. Since the scalp
recorded EEG signals are usually contaminated with noise,
those trials with absolute amplitude above 50 𝜇v threshold
were removed from the following analysis. The remaining
EEG data were band-pass filtered between 0.5Hz and 10Hz,
because the mVEP is usually distributed in the low frequency
band [18]. Then the EEG epochs of 5 trials in each block
were averaged by stimulus. Similar to P300-based study, the
instructed stimulus was defined as target, and the others were
defined as nontarget. Two-sample 𝑡-test was applied between
the target and nontarget epochs to find the channels and time
windows which exhibit significant difference. Finally, three
significant channels were selected for each subject, and the
time windows ranged from 140ms to 350ms, which varied
between subjects. The selected epochs were further down-
sampled to 20Hz, and a 9-dimensional or 12-dimensional
feature vector was generated for each stimulus in the block
at the end.

2.4.3. Small Sample Size Classification. The aim of themVEP-
BCI was to distinguish the target and nontarget stimuli, that
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Table 1: The classification accuracies of LDA, Z-LDA, and EZ-LDA
on simulation dataset.

Training size 20 30 40 50
LDA 78.7 80.4 81.9 83.4
Z-LDA 77.0 81.7 83.0 84.0

EZ-LDA
(different
thresholds)

10% 81.2∗ 83.6∗ 84.9∗ 85.8∗

20% 81.5∗ 83.8∗ 85.1∗ 86.0∗

30% 81.6∗ 83.9∗ 85.2∗ 86.3∗

40% 81.6∗ 84.0∗ 85.5∗ 86.4∗

50% 81.8∗ 84.1∗ 85.5∗ 86.4∗

60% 81.4∗ 83.9∗ 85.3∗ 86.2∗

70% 81.3∗ 83.6∗ 85.1∗ 86.2∗

80% 81.1∗ 83.2∗ 84.8∗ 85.8∗

90% 80.3∗ 82.8∗ 84.2∗ 85.2∗

The second column denotes the threshold used in EZ-LDA.
∗ denotes the classification accuracy of EZ-LDA is significantly higher than
that of Z-LDA (Mann-Whitney 𝑈 test, 𝑝 < 0.05).

is, recognizing the button which subject paid attention to;
thus it was a binary classification problem. The ratio of the
nontarget and target number in each trial was 5 : 1, and we
selected equal number of target and nontarget samples for
initially training in the following analysis in order to balance
the two classes. 20, 40, 60, 80, and 100 samples were used to
train the classifiers, respectively, and the remaining samples
were used for test. Similar to the strategies demonstrated
in Simulations, the higher probability test samples were
added into the training set to update the classifier for EZ-
LDA with the step also being 10 samples, and the threshold
was set as 50%, because the highest accuracy was achieved
at this threshold on the simulation dataset. Similarly, the
classification results of LDA and Z-LDA were also calculated
for comparison.

3. Results

Theclassification results of the simulation dataset were shown
in Table 1, where the accuracies of all the three classifiers
increased with the extending of the initial training sample
size. EZ-LDA achieved the highest average accuracies under
all the sample size conditions, and the accuracies obtained
by EZ-LDA under all thresholds were significantly higher
than Z-LDA (𝑝 < 0.05, Mann-Whitney 𝑈 test). When the
training sample size was bigger than 20, both Z-LDA and
EZ-LDA achieved higher accuracies than LDA. Regarding
the various thresholds in EZ-LDA, the best performance was
obtained for the threshold 50%. To further reveal the working
mechanism of EZ-LDA, an illustration of the training set
enlarging strategy was given in Figure 3. The initial training
sample size was 20; Z-LDA and EZ-LDA shared the same
classification boundary (Figure 3(a)). When the high prob-
ability samples in testing set were included in the training
set, the corresponding boundary lines of EZ-LDA could be
adaptively adjusted (Figures 3(b)–3(d)).

Figure 4 presented the performances on real mVEP-BCI
dataset for LDA, Z-LDA, and EZ-LDA. For all the three

kinds of classifiers, the mean accuracies increased when we
enlarged the training size, and this is consistent with the
simulation result. Moreover, the classification accuracies of
EZ-LDA consistently outperformed Z-LDA in all of the five
considered training sample sizes (𝑝 < 0.05, Mann-Whitney𝑈
test); comparedwith LDA, the significant improvement could
be also observed except the training size with 40 samples.

4. Discussion

Translation algorithms in BCI system could translate intent-
related features to computer commands, and generally we
need to collect a training set at first for training the classifier.
But due to the factors such as experiment time limit, electrode
conductivity decrease over time, and subject fatigue, usually
the training set is not big enough in BCI application. Besides,
as for the online BCI system, the subject’s mental state may
vary largely from the previous mental state during training.
Therefore, in order to track subject’s mental state change, it is
necessary to update the classifier by utilizing the information
from those new test samples, which is also useful for resolving
the small sample size training problem.

The best way to reduce the bias effect is to include enough
samples to train the classifier, but it is unable to achieve in
actual BCI experiment. Alternatively, we could consider the
unlabeled test samples with high classification probability,
as the prediction of them could be trusted. Thus we may
enlarge the training set by adding those test sampleswith high
classification probability in testing set to refine the classifier.
Results from both simulation and real BCI datasets in current
study showed that the enlarging strategy for training set could
improve the classification performance of Z-LDAunder small
sample size situation. The classification boundary definition
of Z-LDA is based on the distribution of the training samples;
vividly it can be viewed as the intersection of the Gaussian
distribution curves [10]. If the training set is too small, we
may not get the accurate distribution information of the
samples, resulting in the biased classifier boundary. In this
case, the classification accuracy of Z-LDA may be decreased
as revealed in the results from both simulation and actual
BCI datasets. Specifically, in simulation dataset, the mean
accuracies of Z-LDA are lower than those of LDA when the
training size is 20; similarly in real BCI dataset when 20 or
40 samples are selected for training, the mean accuracies
of Z-LDA are lower than LDA. However, EZ-LDA achieved
better accuracies than LDA in both simulation and real BCI
datasets, but EZ-LDA still needs a number of training samples
for initial classifier training; based on the simulation and
real BCI datasets in current study, we think the minimum
number of training samples is 20 for EZ-LDA to performwell.
Adding the test samples with higher classification probability
to training set could enlarge the training size; thus more
accurate sample distribution information could be estimated
for Z-LDA, and the biased classification boundary could
be corrected too. As shown in Figure 3, the classification
boundaries are the same between EZ-LDA and Z-LDA for
the initial training set (Figure 3(a)). Then the boundary is
used to predict the labels of the test samples, and those
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Figure 3: The classification boundary adjustment processes of EZ-LDA. (a) The initial 20 training samples; (b) 20 training samples + 20 test
samples; (c) 20 training samples + 40 test samples; (d) 20 training samples + 60 test samples. Star: the samples in the first class; filled circle:
the samples in the second class; blue: the samples in the training set; red: the higher probability test samples for extending the training set;
grey: the lower probability test samples.

predicted test samples with high classification probability are
selected to extend the training set; finally the classification
boundary is refined (Figure 3(b)). The above procedures
could be repeated again to obtainmore accurate classification
boundary (Figures 3(c) and 3(d)). Noted that some of the
test samples may be wrongly classified during prediction,
usually these kinds of samples are far from the distribution
center and with lower classification probability, for example,
the grey filled circles in Figure 3. Since theymay influence the
estimated classifier model, we set a threshold to screen them
out.

The classification probability of Z-LDA is based on
the cumulative distribution function Φ(𝑥) of the standard
normal distribution. The cumulative probability is equal to
0, 50%, and 100% when 𝑥 are −∞, 0, and +∞, respectively.
Mathematically, Z-LDA measures similarity of how a sample
belongs to this distribution by the distance between the
distribution center 0 and the sample variable defined in (1).
Following (4), the closer to distribution center the sample
variable is, the higher probability the sample belongs to the
class with this distribution. To expand the training set, we
need to set a probability threshold to select the test samples
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with correctly predicted label. Obviously, more wrongly pre-
dicted samples may be added to the training set when a lower
threshold was set, whereas when the threshold was set higher,
fewer samples could be selected to add in the training set.The
biased classification boundary cannot be effectively corrected
under the two above conditions, as proved by Table 1 that the
relatively poor performance is achieved for EZ-LDA when
the threshold is set as 10% or 90%. However, the highest
mean accuracy is achieved when the threshold is set as 50%.
Therefore, the threshold should be set as a compensation
of the number of correctly and wrongly predicted samples
in the actual application. In the real BCI dataset, we only
considered the 50% threshold for illustration, because the
highest accuracies are achieved under this threshold on
simulation dataset. As shown in Figure 4, when the enlarging
strategy is combined with EZ-LDA, the performance of EZ-
LDA has statistical improvement compared with LDA and Z-
LDA, because the information in the testing set can be mined
to update the classifier.

SVM is an another popular classifier used for BCI
application [19, 20]; the advantages of LDA are simplicity and
low computational cost, while SVM has better generalization
capability. Theoretically, the optimal hyperplane of SVM
maximizes the distance between the support vectors (the
nearest training points); thus it is highly dependent on the
nearest training points which are found from the training
samples. However, when there are fewer samples in the
training set, the selected nearest training points may not be
representative; thus the obtained optimal hyperplane may be
biased too.Therefore, SVMcannot solve the small sample size
training problem.

5. Conclusions

In the current study, we proposed adding the test samples
with higher classification probability to the training set for
obtaining comprehensive distribution information; thus the
biased classification boundary estimated from the small
training set could be corrected. The effectiveness of EZ-
LDA in handling the small sample size training problem was
validated on both simulation and real BCI datasets. EZ-LDA
is an extension of Z-LDA, and it is easy to be implemented in
real-time BCI systems.
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