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Abstract

Background: Identification of novel gene-gene relations is a crucial issue to understand system-level biological
phenomena. To this end, many methods based on a correlation analysis of gene expressions or structural analysis
of molecular interaction networks have been proposed. They have a limitation in identifying more complicated
gene-gene dynamical relations, though.

Results: To overcome this limitation, we proposed a measure to quantify a gene-gene dynamical influence (GDI)
using a Boolean network model and constructed a GDI network to indicate existence of a dynamical influence for
every ordered pair of genes. It represents how much a state trajectory of a target gene is changed by a knockout
mutation subject to a source gene in a gene-gene molecular interaction (GMI) network. Through a topological
comparison between GDI and GMI networks, we observed that the former network is denser than the latter
network, which implies that there exist many gene pairs of dynamically influencing but molecularly non-interacting
relations. In addition, a larger number of hub genes were generated in the GDI network. On the other hand, there
was a correlation between these networks such that the degree value of a node was positively correlated to each
other. We further investigated the relationships of the GDI value with structural properties and found that there are
negative and positive correlations with the length of a shortest path and the number of paths, respectively. In addition,
a GDI network could predict a set of genes whose steady-state expression is affected in E. coli gene-knockout
experiments. More interestingly, we found that the drug-targets with side-effects have a larger number of outgoing
links than the other genes in the GDI network, which implies that they are more likely to influence the dynamics of
other genes. Finally, we found biological evidences showing that the gene pairs which are not molecularly interacting
but dynamically influential can be considered for novel gene-gene relationships.

Conclusion: Taken together, construction and analysis of the GDI network can be a useful approach to identify novel
gene-gene relationships in terms of the dynamical influence.
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Background

Gene-gene relationships have been investigated for a
long time in many previous studies [1-5]. In particular,
most attention was focused on the functional properties
of protein-protein interaction networks [6—8] or an epis-
tasis which means that masking a particular allele pre-
vents effects of another gene at a different locus [9, 10],
and many methods based on statistical correlation
analysis over gene expression datasets were developed to
reveal a new epistasis [11-16]. However, they have a
limitation in identifying more complicated gene-gene re-
lationships because a state of a gene can be affected by
many other genes along various signaling pathways [10].
In this regard, network-based approaches have been pro-
posed [2, 11, 17, 18] and found more complicated forms
of gene-gene relationships such as feedback and feed-
forward loops. These approaches often inferred false gene-
gene relationships, though, because they were based on
only the analysis of a network structure without consider-
ing network dynamics [19]. Accordingly, an investigation
of novel gene-gene relationships in terms of the network
dynamics was necessarily needed.

To this end, we proposed a method to quantify gene-
gene dynamics influence (GDI) in this study. We com-
puted how much a state trajectory of a gene is changed
by a knockout mutation subject to another gene in a
gene-gene molecular interaction (GMI) network using a
Boolean network model [20-24]. By examining the GDI
values of every ordered pair of genes, we can construct a
GDI network where each directed edge indicates a posi-
tive dynamical influence from the source gene to the tar-
get gene of the edge. This notion can be regarded as an
extension of previous studies about effects of genetic
mutations on network dynamics. For example, it was
shown that a single gene mutation can change a com-
munication pattern between genes [25], which can lead
to human diseases in gene regulatory networks [26, 27]
or dysfunctional mechanism in T-cell survival signaling
network [28, 29]. In our study, we analyzed properties of
the GDI networks induced from real GMI networks.
Through a comparison of the topologies between the
GMI and the GDI networks, we found that the latter
network was denser than the former, which implies that
there exist a lot of gene pairs with a dynamically influen-
cing but molecularly non-interacting relation. We further
analyzed the degree distributions of large-scale GMI and
GDI networks. We found that they are considerably differ-
ent from each other because a lot of hub genes were gener-
ated in the latter network. Despite this difference with
respect to connectivity, it was interesting to observe that
the degree of a node in the GDI network is positively corre-
lated to that in the GMI network. To deepen our under-
stating about the structure of the GDI networks, we
examined the relations of well-known structural properties
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to the GDI value and found that the length of a shortest
path and the number of paths of a gene pair have negative
and positive correlations, respectively, to the GDI value
whereas the number of feedback loop showed no signifi-
cant relation. In addition, we observed that a GDI network
can predict a high proportion of genes of which the steady-
state expression was changed in E. coli gene-knockout
experiments. More interestingly, we observed that the
drug-targets with side-effects in the GDI network have a
larger number of outgoing links and a smaller number in-
coming links than the rest of genes. This implies that the
drug-targets with side-effects are more likely to influence
the dynamics of other genes, but unlikely to be influenced
by other genes. Finally, we found biological evidences sup-
porting that the gene pairs which are not molecularly inter-
acting but dynamically influential can be considered for
novel gene-gene relationships which were not identified by
traditional approaches yet. Taken together, construction of
a GDI network can be a useful approach to explain various
dynamical behavior induced by complex gene-gene rela-
tions in large-scale GMI networks.

Methods

Datasets

To investigate the GDI networks, we used three datasets
about the GMI networks such as an Arabidopsis morpho-
genesis regulatory network (AMRN) with 10 nodes and 20
interactions [30], a guard cell abscisic acid signaling net-
work (ABAN) with 44 nodes and 78 interactions [31], and
a human signaling network (HSN) with 1609 nodes and
5063 interactions [32, 33] after removing self-loop interac-
tions from the original datasets (see Additional file 1:
Tables S1-S3). Moreover, we classified all genes in HSN
into non-drug targets, and drug targets with and without
side effects by using a drug target database of DrugBank
[34] and a side-effect information database of SIDER
[35, 36] (see Additional file 1: Table S4).

A Boolean network model

In this work, we employed a Boolean network model to
compute the GDI value. A Boolean network is one of
the simplest computational models to describe network
dynamics [37, 38], and has been generally used to investi-
gate complicated behaviors of GMI networks [31, 39-41],
which is represented by a directed graph G = (V, A) where
V={v1, Vs, ...,va} is a set of nodes and A is a set of ordered
pairs of the nodes called directed links (|V] and |A| denote
the number of nodes and links, respectively). A directed
link (v; v;) € A represents a positive (activating) or a nega-
tive (inhibiting) regulation from v; to v;. Every v;€ V has a
state value with 1 (on) or 0 (off). The state of v; at time ¢
+1 denoted by v{¢+1) is established by the values of k;
other nodes v;,, v;,, ..., v; with a link to v; at time ¢ by a
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Boolean function f; : {0,1}*—{0,1} and the states of all
nodes are synchronously updated. Here, we implemented
a nested canalyzing function (NCF) model [20, 42] to de-
scribe an update rule as follows:

Oy if vil(t) = I

O, if vi, (t)=1, and v;,(t) = I

O if vi,(t)=I1 and v;,(t)=I5 and v;,(t) = I
F0a00(0, () =4 % T a0 ad @ =1

O, if viy(6)2Iy and---and v, (t)#Ix1 and v, (t) = I,
Oy otherwise

where all 7, and O, (m =1,2, -+, k;) denote the canalyzing
and canalyzed Boolean values, respectively, and O is set
to 1-Oy, in general. In this paper, each NCF is randomized
by specifying every I,,, and O,, between 0 and 1 uniformly
at random. We note that many molecular interactions
were successfully represented by NCFs [43—45].

A network state at time t can be denoted by an or-
dered list of state values of all nodes, v(t) = [v1(£), vo(2),
o] €0, 1IN Every network state transits to another
network state through a set of Boolean update functions
F={f1,f> -.../n}- Hence, a network state trajectory starting
from an initial network state eventually converges to either
a fixed-point or a limit-cycle attractor. We define the at-
tractor more rigorously as follows.

Definition

Let v(0), v(1), ---,be a network state trajectory starting at
v(0). The attractor is defined as an ordered list of network
states (G, Ev(0)) =[v(7),v(r+1),...,v(r +p-1)] where
7 is the smallest time step such that v(t) =v(t+ p) for
Vtzr with v(i)zv(j) for Vizje{r,z+1,...,T1+p-1}
(herein, p is called a length of the attractor). In addition, the
state sequences of v;in (G, Ev(0)) is denoted by (G,F
v(0)) ;= [v{D),vi(t+1),..,vi(t+p-1)].

Examination of attractors is required to compute the
gene-gene dynamics influence in a network. To imple-
ment this, we specified a set of initial states (S) and com-
puted a state trajectory starting at every v(0) € S until an
attractor is found. In the case of AMRN with a small
number of nodes (|N|=10), we could consider all 2V
possible states for S. Unfortunately, this exhaustive
examination is not feasible to analyze a huge network.
Therefore, we generated 2000 and 4000 random initial
states to construct S in the case of ABAN (|N| =44) and
HSN (|N| = 1609), respectively.

Construction of a GDI network

In this study, the dynamics influence of v; on v; for an
ordered pair of genes (v;v;) represents how much the
states sequence of v; is changed by a mutation subject
to v; in a Boolean network model. Specifically, we
considered a knockout mutation [31, 46, 47] which de-
scribes a condition that the state of the mutated gene is

Page 103 of 174

frozen to O (off) state. This mutation can be implemented
by changing F into F which is defined as follows:

F = oo fins 0 fin s fnt S VEST

F N> T

where T is a parameter to denote the mutation duration
time. In other words, the knockout mutation lasts for
only V£< T, and the update-rule of v; is restored to f;
right after time step 7. It was also shown that the muta-
tion duration parameter can significantly affect the mu-
tation process in complex GMI networks [48—50]. In the
following, we explain how to compute the dynamics in-
fluence value from v; to v; denoted by yu(v;, v;) in detail.

(1)Generate a set of random initial states S. For each
initial state v(0) € S, obtain two attractors (G, F,
v(0)) and (G, F,v(0)) in the wild-type and the
v-mutant networks, respectively. For convenience,
let (G,Ev(0)) =[v(z),v(r+1),...,v(r+p-1)]
and (G,F,v(0)) =[v@),v(r +1),..,v( +p -1)].

(2)Compute a distance between (G,Ev(0)) ;and (G,
F,v(0)) ;defined as follows

-1
l;) I(V/(r+l+m)zv/‘ (r'+l))

d(v(0),v;,v;) = min
mel0.d-1] Cc

where ¢ and d are the least common multiple and the
greatest common divisor, respectively, of p and p,, and
I(condition) is a function which outputs 1 if condition is
true, and 0 otherwise. As a result, d(v(0), v;, v)) represents
the minimum ratio of a bitwise difference between the
states sequence of v; in the wild-type and the v;-mutant
attractors over the least common period (c) of the two
attractors.

(3)Lastly, compute the dynamics influence of v; on v;
denoted by y(v;, v;) by averaging out d(v(0), v; v))
over all initial states in S as follows:

> d(v(0),vi,v))

//[(Vl‘,Vj) — v(0)eS |S|

Figure 1 shows an illustrative example to compute the
GDI value in a network where node v5 out of four nodes
is subject to the knockout mutation. The set of update
rules F is modified into F~ where state value of vs is fro-
zen to O (Fig. 1a) during a mutation duration time 7, and
we can obtain the wild-type and vs-mutant attractors
(Fig. 1b). To compute the dynamical influence on node
v1, we compute the minimum bitwise difference between
the state sequence of v; in two attractors considering all
possible alignments of the sequences (Fig. 1c), and
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a GV, A)

F (wild-type)

F' for t < T (v3-mutant)

vi(t+1) = fi(v2 (), w5 (1))
va(t+1) = (1 (D)
v3(t+1) = f3(v,(t))
vy(t+1) = f(v2 (1), v3 (1))

vi(t+1) = f1(’72 ®),v3 (t))
v (t+ 1) = (w1 (5)
va(t+1)=0

vy(t+1) = fi (v, (1), v5(1))

Knockout mutation

b Wild-type: 0000 - 1001 - 0001 - 1111

1 J _
() (G,F,v(0)) = [0001,1111] p=2
! t
Mutant: 0000 - 0001 - 0111 - 0101 > 1101 lem(p,p’) = 4
1 | !
!
. pi=4
(G,F’,v(0)) = [0001,0111,0101,1101]
C m=0: Bitwise difference between [0101] and [0001]= 1 1
} dv(0),vs,v,) = 7
m=1 Bitwise difference between [1010] and [0001]= 3
d Target gene G'(V,4)
: i s ok (o —=(=)
=
8| m - 0.425 0.425 0.425 y
::_:) Uy 0.35 - 0.35 0.375
3| vs 035 035 - 0.375
Uy 0 0 0 - @

nine positive dynamics influence relations

Fig. 1 An illustrative example of computing the gene-gene dynamics influence value. a An example GMI network. Given a network G(V, A) with a
set of update rules F, let v5 a node subjected to the knockout mutation for t < T. The knockout mutation changes F into F where the state value of v;
is frozen to O for t < T. b Identification of wild-type and mutant attractors. Let [0000] € S be an initial state considered in this example. By examining
two state trajectories along with £ and F, respectively, we obtain two corresponding attractors, (G, F,v(0)) and (G, F,v(0)) of which the least
common multiple of the lengths is four. ¢ Computation of a distance between wild-type and mutant attractors. Since the greatest common divisor of
the lengths of two attractors is two, we examine two different alignments of the state sequences of v; in those attractors. The number of different bits
between [0101] and [0001] is 1 in case 1 (m = 0), whereas that between [1010] and [0001] is 3 in case 2 (m = 1). Accordingly, the minimum bitwise
difference is 1, and hence d(v(0),vs,vy) = %. We can compute u(vs, v4) by averaging out d(v(0), vs, v;) over the set of initial states. d The resultant GDI
network. The left matrix shows the dynamics influence value for every ordered pair of genes, and the right graph shows the resultant GDI network with

eventually obtain the distance between (G, Fv(0)) ; and

(G,F,v(0)) ;. Then u(vs,vp) is the average distance over
the set of different initial states. Based on this measure, we
can construct a GDI network G (V,A) from a GMI net-
work G(V; A) by calculating p(v;, v;) for every ordered gene
pair (v;v;). More specifically, a GDI network is a directed
graph where (v;,v;) €A if and only if u(v;v;) > 0. In other
words, a directed edge in a GDI network means that the
state sequences of the target node are changed by the
knockout mutation subject to the source node of the edge.
Figure 1d shows a matrix of u(v;v;) values for every or-
dered gene pair (v;,v;) and a resultant GDI network with
nine positive influence relations.

Structural characteristics of networks

In real GMI networks, some structural characteristics of
genes and interactions have been shown to be relevant to
sustainability of network dynamics [51-53]. In this regard,

we employed the following well-known structural proper-
ties to investigate their relationships with the GDI value.

e The length of a shortest path for an ordered
gene pair (v;, vj), denoted by I(v; v;), means the
number of edges included in a shortest path
from v; to v; [23, 40].

e The number of paths for an ordered gene pair
(vi» v)), denoted by n(v; v;), means the number of
different paths from v; to v; [40, 54].

e The number of feedback loops for an ordered gene
pair (v; v;), denoted by f{v; v;), means the number of
feedback loops involving both v; and v; [22, 26]. A
feedback loop is a circular chain of nodes where any
node is not revisited except both end nodes.
Specifically, u; — 1y — ... — uy is a feedback loop of
length L(>1) if there exists a link from u; to u; ,
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16 € {1, ...,L-1}) such that u; = u; and u; = uy for
Vizk€ {1,..,L—1}.

Construction of random networks

To verify that the results found in the real GMI net-
works hold in randomly structured networks, we gener-
ated random networks by using two models, the
Barabdsi Albert (BA) model [55] and the shuffling model
[41] (see Additional file 1: Figures S1 and S2, respectively,
for the pseudo-codes), and analyzed their corresponding
GDI networks. The BA model generates a random net-
work using a preferential attachment scheme which is a
network growth model. On the other hand, the shuffling
model creates a random network by rewiring the links of
a GMI network in a way that both in- and out-degrees of
every node are preserved. Accordingly, the latter can gen-
erate a random network whose structure is more similar
with the GMI network than the former.

Results

We generated the GDI networks from each of three real
GMI networks, AMRN, ABAN, and HSN (see Methods).
For convenience, we denote a GMI network and a
corresponding GDI network by G(V, A) and G (V,A),
respectively.

Topological comparison between GMI and GDI networks

To investigate a topological difference between the GMI
and the corresponding GDI networks, we first visualized
them (Fig. 2 for the result of AMRN; see Additional file 1:
Figures S3-S4 for the results of ABAN and HSN). For a
further analysis, we classified every ordered pair of genes
(v;»v)) into three groups as follows: a group of molecularly
interacting and dynamically influential (MIDI) gene pairs
(le, (vpv)€A and (v, vj)eA'), a group of molecularly
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non-interacting but dynamically influential (MNDI) gene
pairs (i.e., (v,v) ¢ A and (v, V) €A), and a group of mo-
lecularly interacting but dynamically non-influential
(MIDN) gene pairs (i.e., (v;v;) € A and (v; V) ¢A). Table 1
shows the numbers of gene pairs belonging to MIDI,
MNDI, and MIDN groups. We observed that the number
of links of the GDI network was larger than that of the
GMI network, which is because MNDI gene pairs are
more frequently found than MIDN gene pairs (for ex-
ample, we found 18 MNDI but no MIDN gene pairs in
the case of AMRN). It is also interesting to observe a con-
siderably large number of MIDN gene pairs in ABAN and
HSN, because this implies that a molecularly interacting
gene pair does not always induce a dynamically influen-
cing relation. We note that the number of MIDN gene
pairs in HSN was even larger than twice that of MIDI
gene pairs.

We further compared the GMI and the GDI networks
with respect to the degree distributions. Considering the
network size, we investigated the case of HSN only
(Fig. 3). We found that the degree of the GMI network
considerably follows a power-law distribution whereas
that of the GDI network does not (Fig. 3a). In particular,
the hub nodes with a relatively high degree were more
abundant in the GDI network than in the GMI network.
Through additional comparisons with respect to the in-
degree and the out-degree distributions (Fig. 3b and c,
respectively), we found that the difference of the out-
degree distribution was larger than that of in-degree
distribution. All these results indicate that the overall
topology of the GDI network is considerably different
from that of the GMI network. We further wondered
if a degree of a node in the GDI network is related
or not to that in the GMI network. To answer this
question, we compared the correlation coefficients

a @

@

(%)

5

Fig. 2 Visualization of the GMI and the corresponding GDI networks in the case of AMRN. a The GMI network with [V| =10 and |A] = 20. Arrow-
headed and bar-headed lines indicate activating (positive) and inhibitory (negative) interactions, respectively. b The corresponding GDI network
with [V|=10 and \A'\ = 38. The gene pairs belonging to MIDI and MNDI groups are represented by black and red colored links, respectively. There
was no gene pair belonging to MIDN group
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Table 1 The number of gene pairs in groups classified by
comparing the GMI and the GDI networks

AMRN ABAN HSN
The number of MIDI gene pairs (A) 20 63 1311
The number of MIDN gene pairs (B) 0 15 3752
The number of MNDI gene pairs (C) 18 603 19,910
The number of links in the molecular 20 78 5063
interaction network (A + B)
The number of links in the GDI 38 666 21,221

network (A + C)

between degree/in-degree/out-degree values of a node in
the GMI and the GDI networks (Fig. 3d). As shown in the
figure, each of them showed a significant positive correl-
ation, irrespective of the mutation duration time. This
means that the degree/in-degree/out-degree of a node in
the GDI network is likely to be larger as that in the GMI
network gets larger. Taken together, the topology of a
GMI network can be partially helpful in predicting the
topology of a GDI network although the latter is denser
than the former.

Relation of dynamics influence values with structural
characteristics in GDI networks

To discover a network-based principle about the GDI
value, we investigated some structural properties in the
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GDI networks. Here, we considered the relationships of
the GDI value of a directed edge (u(v;,v})) to three edge-
based structural properties, the length of a shortest path
from v; to v; (I(v;v;)), the number of paths from v; to v;
(n(v;v))), and the number of feedback-loops involving v;
and v; ({v;,v;)) in the GDI networks (see Methods for
the definitions). We considered these three structural
properties because they have been frequently used to
show structural characteristics of functionally important
genes or interactions in signaling networks [52, 53].
Figure 4 shows the correlation coefficients between
u(v;,v;) and I(v;v;) in the GDI networks, and they showed
significant negative relations, irrespective of the mutation
duration time. In other words, the dynamics influence of
v; on v; is likely to be higher as the length of a shortest
path from v; to v; is shorter. We infer that the information
flow from the source gene to the target gene in the pair is
less interfered by other genes when they are connected by
a path of a short length. We note that this result is rele-
vant to a previous study having shown that diseases whose
associated genes are connected by a relatively short path
tend to be comorbid [40]. In addition, the negative rela-
tion was more obvious as the duration time increases. To
clarify that this finding is a general principle, we examined
the correlation coefficients between p(v;,v)) and I(v;v;) in
two types of random networks generated by the shuffling
and BA models (see Methods), and could observe the
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Fig. 3 Degree distributions of the GMI and the corresponding GDI networks in HSN. a-c Results of degree, in-degree, and out-degree distributions,
respectively. The mutation duration time (7) was set to 20 in generating the GDI network. Y-axis represents a log-scaled frequency and blank triangle
points (A) mean zero value of a frequency. We observed that the proportions of a same bin in GMI and GDI networks are significantly different from
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‘0-4', and were less than 0.002 in (c) except for out-degree range ‘0-4". d Correlation coefficients between degree/in-degree/out-degree values of a
node in the GMI and the GDI networks. The mutation duration time was varied from 2 to 20. Each of degree, in-degree, and out-degree of a node in
the GDI network showed a significant positive relationship with that in the GMI network (All p-values <0.0001)
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Fig. 4 Relationship of the GDI value to the length of a shortest path in the GDI networks. a-c Results of AMRN, ABAN, and HSN, respectively.
Y-axis values mean the correlation coefficients between (v, v) and (v, v)) for all ordered pairs of genes. The mutation duration time was varied
from 1 to 10 in (a) and (b), and from 2 to 20 in (c)

consistent results (see Additional file 1: Figure S5). To find
another structural property, we examined the correlation
coefficients between y(v; v;) and n(v;, v;) (Fig. 5), and found
significant positive relations, irrespective of the mutation
duration time. This means that the dynamics influence of
v; on v; tends to be higher as a larger number of paths
connect from v; to v;. We infer that the information flow
from the source gene to the target gene in the pair is more
reinforced when they are connected by a larger number of
paths. In addition, we examined the correlation coeffi-
cients between u(v;,v;) and n(v;v;) in both the shuffled
and the BA random networks, and could observe the
consistent results (see Additional file 1: Figure S6). This
implies that the positive relation between the number of
paths and the dynamics influence can be a general prop-
erty in various structural networks. Finally, we examined
the relationship between u(v;v;) and the number of
feedback loops involving the gene pair flv,v,) (see
Additional file 1: Figure S7) and found no consist-
ently significant relationships in both real GMI net-
works and the random networks. Considering that the
feedback loop structure was successfully used to predict
functionally important genes or interactions [22, 26], our
finding implies that the structural characteristics in the

GDI networks can be different from those in the GMI
networks.

Comparison of GDI network with knockout experiments

To validate our approach, we investigated how much a
GDI network is consistent to real knockout experiments.
To this end, we used an E. coli microarray dataset
(E_coli_v4_Build_6 version) from the Many Microbe
Microarrays database (M3D) [56] which contains the
expression levels of 4297 genes from 446 samples. In
addition, we also employed the RegulonDB database [57]
which contains the information about the transcriptional
regulations of E. coli. We integrated these two databases
to identify the set of common genes, and then con-
structed a GMI network of E. coli with 1424 genes and
3114 edges. From the GMI network, we also generated
the corresponding GDI network of E. coli, and denoted a
set of out-going genes from a gene g by GDIp(g). To
compare the GDI network result with the real knockout
experiments, we identified 7 genes of which real knock-
out experimental results were included in both the GDI
network and M3D database (There were 21 knockouts
and 9 relevant wild-type experiments in M3D database).
We converted real-valued expression to Boolean-valued

-
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Fig. 5 Relationship of the GDI value to the number of paths in the GDI networks. a-¢ Results of AMRN, ABAN, and HSN, respectively. Y-axis values
mean the correlation coefficients between (v, v) and n(v; v)) for all ordered pairs of genes. The mutation duration time was varied from 1 to 10
in (@) and (b), and from 2 to 20 in (c)
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one by using a discretization method based on K-means
clustering algorithm [58]. It assigns 1 (the ‘on’ state) and
0 (the ‘off” state) if the expression value is larger and
lower, respectively, than the average expression of a
gene. For each mutant gene g, we denote by EXPp(g) a
set of genes of which Boolean expression values are
differently observed between the knockout and the wild-
type experiments. In other words, GDIp(g) and EXPo(g)
represent a set of genes of which dynamics are affected by
a knockout mutation at gene g through the GDI network
analysis and the real experiments, respectively. To assess
how much proportion of EXPy(g) is predicted by GDIy(g),
we examined a precision ratio defined as follows:

. |EXPo(g)nGDIo(g)|
ratiol8) = EX ol

As shown in Table 2, we found that the ratio ranges
from 0.35 to 0.63 except for two genes, cspA and appY.
This implies that the GDI network analysis can predict a
relatively high portion of genes of which the expression
was changed by the knockout experiment, although it
did not explain all the experiments. This partially sup-
ports the validation of the GDI network-based analysis.

Analysis of drug-target genes based on GDI networks

Some previous approaches investigated drug-target genes
through network structure analysis [59, 60]. For example,
it was found that drug-target genes are more centrally lo-
cated as well as more evolutionary than non-drug target
genes [61]. It was also shown that the connectivity of
drug-targets was significantly different from that of non-
drug targets [62, 63]. Inspired by these results, we exam-
ined the structural characteristics of drug-targets in the
GDI network. More specifically, we classified all genes in
HSN into three groups of non-drug targets, drug-targets
without side-effects, and drug-targets with side-effects
(see Methods). We examined the average in- and out-
degrees of three groups in the GDI network derived from
the GMI network of HSN (Fig. 6). As shown in the figure,
the average out-degree (in-degree) of the drug-targets with
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side-effects was larger (resp., smaller) than those of non-
drug targets and drug-targets without side-effects, almost
irrespective of the mutation duration time. In other words,
the drug-targets with side-effects are more likely to
influence other genes, whereas they are less likely to be
influenced by other genes. This result supports some ex-
perimental studies having shown that drug-targets with
side-effects have a relatively larger impact on other genes
than non-drug targets [60, 62, 63]. This case study sup-
ports the usefulness of GDI network analysis.

Biological evidence of novel gene-gene relations

To reveal novel gene-gene relations by means of the
GDI network analysis, we profiled the gene pairs which
are included in the GDI network but not included in the
GMI network (ie., gene pairs of MNDI group found in
Table 1, Fig. 2, and see Additional file 1: Figures S3-S4),
and some of them were listed in Table 3. Interestingly,
we could find some biological evidences relevant to the
gene pairs in the table. For example, the relation from
EMF1 to AG found in AMRN can explain that EMF1
played an important role in maintaining AG development
in A. thaliana [16, 64—66], and the relation from TFL1 to
AP1 can explain that the addition of the TFL1 mutation
induces the AP1 mutant which changes the phyllotaxy of
lateral flowers [67]. In addition, it was reported in ABAN
that ABA gene cooperates with S1P on slow anion channels
[24, 68] or induces NO productions abolished in either
NOS or NIA12 [31]. We also note previous studies having
shown the CSK mutant can affect a regulatory polymorph-
ism in B-cell signaling [69, 70] or the complement relation-
ship of GHR and IGF1R [71]. These evidences imply that
the GDI network-based analysis can reveal novel gene-gene
relations which are not well-known yet.

Results and discussion

Gene-gene relationships have been investigated in many
studies, most of which focused on epistasis and statis-
tical correlation analysis. However, they have a limitation
in identifying more complicated relationships and hence
some network-based approaches have been proposed to

Table 2 Comparison between two sets of knockout-affected genes identified through a GDI network and E-coli knockout

experiment, respectively

Knocked-out gene (g) The number of The number of The number of genes Ratio(g)
genes in EXPo(g) genes in GDIp(g) in EXPo(g) N GDIo(g)
CSPA 151 2 0 0.00
SOXS 199 524 70 0.35
oxyR 235 539 97 041
appY 250 9 5 0.02
arcA 31 453 111 0.35
crp 342 891 217 0.63
fnr 502 616 263 0.52
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overcome it. It is a still open problem because they did
not incorporate analysis about the dynamical relation-
ships. In this regard, we first proposed a measure to
quantify the gene-gene dynamics influence using a
Boolean network model and eventually constructed a
GDI network. To find characteristics of the GDI net-
work, we compared the topologies of the GMI and the
GDI networks and observed that the latter is denser
than the former. This was because a lot of hub nodes
were generated in the GDI network. In addition, the de-
gree distributions were also different between them.
Despite these topological differences, we found an inter-
esting similarity such that the degree value of a node
was positively correlated between the GMI and the GDI
networks. For further investigations about the structure
of the GDI networks, we examined the relations of three
structural properties to the GDI value, and found that
the length of a shortest path and the number of paths
have negative and positive correlations, respectively,
whereas the number of feedback loop showed no rela-
tion. In addition, we observed that a GDI network could

Table 3 Example of gene pairs which are molecularly non-
interacting but dynamically influential (MNDI)

Network Gene pairs Sub-graph uv; v) v v))
AMRN EMF1, AG EMF1— TFL14 AG 0.146 2
TFL1, AP1 TFL14 LFY— AP1 0.0125 2
ABAN ABA, STP ABA— SphK— S1P 0498 2
ABA, NIA12 ABA— RCN1— NIA12 0498 2
HSN CSK, BCR CSK4 LYN— BCR 0.503 2
GHR, IGF1R GHR— IGF1— IGF1R 0.382 2

Source and target genes are represented by orange- and green-colored nodes,
respectively. Sub-graph field means the shortest path with respect to the gene
pair in the GMI network. Arrow-headed (—) and bar-headed (-) lines indicate
activating (positive) and inhibitory (negative) interactions, respectively

predict a set of genes whose steady-state expression is af-
fected in E. coli gene-knockout experiments. It was more
intriguing to observe that the drug-targets with side-
effects are more likely to influence the dynamics of other
genes, but less likely to be influenced by other genes
through the GDI network-based analysis. We note that it
is possible to reveal novel gene-gene relationships by con-
sidering gene pairs which are not molecularly interacting
but dynamically influential. Taken together, the GDI net-
work can be a useful method to explain various dynamical
behavior caused by complex gene-gene relations in GMI
networks. A future study will include a more generalized
analysis considering various mutation types, an examin-
ation of novel structural characteristics in the GDI net-
work and an investigation on the dynamical influence
among three or more genes based on multiple mutations.

Additional file

Additional file 1: Figure S1. Pseudo-code for the Barabasi-Albert
model. It describes the algorithm to construct random network in
Barabdsi-Albert model which is a type of network growth model.

Figure S2. Pseudo-code for the shuffling model. It describes how to
construct random network using shuffling model which rewires the edges
of GMI network in a way that in-degree and out-degree of all nodes are
preserved. Figure S3. Visualization of the GMI and the corresponding

GDI networks in the case of ABAN. (@) The GMI network with |V | =44, |
A | =78. (b) The corresponding GDI network with V] = 44 and |A| = 666.
Figure S4. Visualization of the GMI and the corresponding GDI networks in
the case of HSN. (@) The GMI network with |V | =1609, | A | =5063. (b)
The corresponding GDI network with || = 1609 and |A| = 21221. Figure S5.
Relationship of the GDI value to the length of a shortest path in random
networks. (a-c) Results of the random networks shuffled from AMRN, ABAN,
and HSN, respectively. (d) Results of 250 BA random networks with |V | =
50, | A| =80. (e) Results of 250 BA random networks with |V | =50,

| A'] =100. Figure S6. Relationship of the GDI value to the number of
paths in random networks. (a-¢) Results of the random networks shuffled
from AMRN, ABAN, and HSN, respectively. (d) Results of 250 BA random
networks with |V'| =50, | A| =80. (e) Results of 250 BA random
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networks with || =50, | A | =100. Figure S7. Relationship of the GDI
value to the number of feedback loops involving the gene pair. Relationship
of the GDI value to the number of feedback loops involving the gene pair.
(a-c) Results of AMRN, ABAN, and HSN, respectively. (d-f) Results of the
random networks shuffled from AMRN, ABAN, and HSN, respectively.
Table S1. AMRN dataset consisting of 10 nodes and 20 interactions after
removing self-loops from the original dataset. It includes the information
about gene name as source and target, and interaction type. Table S2.
ABAN dataset consisting of 44 nodes and 78 interactions after removing
self-loops from the original dataset. It consists the information about gene
name as source and target, and interaction type. Table S3. HSN dataset
consisting of 1609 nodes and 5063 interactions after removing self-loops
from the original dataset. It consists the information about gene name

as source and target, and interaction type. Table S4. Information of
drug-targets and side-effects for genes in HSN. It includes information
about drug-targets and side-effects genes in HSN. (PDF 4490 kb)
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