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Abstract: Collagenases are essential enzymes capable of digesting triple-helical collagen under
physiological conditions. These enzymes play a key role in diverse physiological and pathophysi-
ological processes. Collagenases are used for diverse biotechnological applications, and it is thus
of major interest to identify new enzyme variants with improved characteristics such as expression
yield, stability, or activity. The engineering of new enzyme variants often relies on either rational
protein design or directed enzyme evolution. The latter includes screening of a large randomized
or semirational genetic library, both of which require an assay that enables the identification of
improved variants. Moreover, the assay should be tailored for microplates to allow the screening
of hundreds or thousands of clones. Herein, we repurposed the previously reported fluorogenic
assay using 3,4-dihydroxyphenylacetic acid for the quantitation of collagen, and applied it in the
detection of bacterial collagenase activity in bacterial lysates. This enabled the screening of hundreds
of E. coli colonies expressing an error-prone library of collagenase G from C. histolyticum, in 96-well
deep-well plates, by measuring activity directly in lysates with collagen. As a proof-of-concept, a
single variant exhibiting higher activity than the starting-point enzyme was expressed, purified,
and characterized biochemically and computationally. This showed the feasibility of this method to
support medium-high throughput screening based on direct evaluation of collagenase activity.

Keywords: collagenase; enzymatic assay; molecular dynamics; protein expression; bacterial lysate
screening; directed enzyme evolution

1. Introduction

Collagenases are essential components of the matrix metalloproteinases family of
proteins [1]; their main function is the breaking of the triple-helix collagen. The latter is
the major structural protein in many extracellular elements, including skin, bone, and
dentin, and is the major connectivity protein within the extracellular matrix (ECM) in
vertebrates [2]. Owing to its high abundance, the degradation of collagen and remodeling
of the ECM are essential cellular processes. In addition to having important functions in
vertebrates, collagenases also are found in various bacteria [3]. The bacterial enzymes
are efficient in cleaving collagen at multiple sites, breaking it down to short peptide frag-
ments [4]. Due to their ability to digest collagen in the ECM, bacterial collagenases are
considered as important virulence factors, together with additional degrading enzymes
such as elastase [5,6]. These enzymes assist in destroying extracellular structures, enabling
efficient host colonization and penetration into anaerobic sites and promoting spread of
infection. The realization of the important role of bacterial collagenases has promoted
further research into the biochemical and structural properties of this family [4,7–9]. More-
over, bacterial collagenases have been explored as promising targets for inhibiting bacterial

Int. J. Mol. Sci. 2021, 22, 8552. https://doi.org/10.3390/ijms22168552 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-8010-8921
https://orcid.org/0000-0003-3668-8647
https://doi.org/10.3390/ijms22168552
https://doi.org/10.3390/ijms22168552
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22168552
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22168552?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 8552 2 of 12

invasion without affecting viability of the bacteria [10–13]. Whereas the above calls for
collagenase inhibition, many applications may benefit from optimized collagenase variants
that harbor higher activity and stability. These include therapeutic applications, such as
for Dupuytren’s and Peyronie’s diseases, and for treatment of burns and wounds [14–20].
Moreover, additional applications of collagenases are used in the agriculture and food
industries, such as for controlling plant pathogens and for meat tenderness [21,22].

The range of research questions and applications that stem from various functional as-
pects of collagenases requires an efficient activity assay. Such a setup must be cost-effective,
robust, and amenable to further adaptation to automated high throughput screening plat-
forms. However, the majority of currently available assays for monitoring enzymatic
activity of collagenases are based on a fluorescently labeled peptide mimicking a single
collagen unit, or on the detection of hydroxyproline [23–28]. Antibodies have also been
used to detect specific collagen fragments [29]. Additional methods consist of picrosirius
red staining [30,31] or by labeling of newly form N-termini based on fluorescamine [32].
These techniques are relatively costly, may not rely on native collagen, may not fit high
throughput screening, and often require harsh hydrolysis protocols for collagen.

Herein, we adapted a method developed for fluorescence-based detection of peptides
containing an N-terminus Gly [33]. Based on these principles, the activity of collagenase can
be monitored within a bacterial lysate following its expression and lysis. This setup enabled
evaluating collagenase activity in a 96-well deep-well-plate format, and the screening of
optimized protein variants from a genetic library. The repurposed assay was highly
selective and enabled detection of collagenase activity with collagen in the lysates, and was
thus suitable for the identification of improved variants. Figure 1A illustrates the general
experimental scheme.

Figure 1. Illustration of activity assay and Coomassie-stained SDS–PAGE gels. (A) For screening
of the genetic library of collagenase variants, single colonies were cultured in a 2 mL 96-well plate.
Following lysis and separation of soluble fraction, activity was evaluated based on the 3,4-DHPAA
assay. (B) The expression of ColG in E. coli BL21 cells before and following induction by IPTG. The
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band originated from the expression of ColG is marked by a red square. M—Marker, 1—noninduced
bacterial cells, 2-bacterial cells induced with 1 mM IPTG for 4 h, 3-bacterial cells induced with 1 mM
IPTG for 16 h. (C) Expression and purification of ColG onto a nickel column. M-Marker; 1-load;
2-sample flow through column; 4–6-wash with increased imidazole concentrations of 10, 20, and
40 mM; 7-Elution with 300 mM imidazole, [33].

2. Results

Human collagenases have relatively high specificity and often cleave collagen at a single
site. In contrast, bacterial collagenases were shown to have broad substrate specificity and are
capable of digesting collagen at multiple sites. Among these bacterial enzymes, collagenases
from Clostridium histolyticum such as collagenase G, H and T were highly characterized both
structurally and biochemically [7,8,34,35]. Considering the broad range of biotechnological
applications, we embarked on evaluating the activity and tested the screening of collagenase
G (ColG, EC 3.4.24.3) in bacteria lysate. For this purpose, we tested the expression of ColG
in E. coli BL21 (DE3). Following transformation of the plasmid containing the ColG gene, the
bacterial culture was grown at 37 ◦C. At OD = 0.8, induction was executed by the addition
of 1 mM IPTG. Figure 1B shows the SDS gel of the bacterial lysate before (Lane 1), 4 h after
(Lane 2), and 16 h after (Lane 3) induction of protein expression by IPTG. A high level of protein
expression was observed in the bacterial lysate only upon the addition of IPTG (as Lane 1 was
empty), and soluble expression increased with time since induction. Therefore, this validated
the inducible protein expression of ColG and indicated the potential applicability of the lysate-
based screening assay. To set a benchmark for the activity of the enzyme in its purified form,
we further purified the His-tagged enzyme on a nickel column. Figure 1C shows the SDS gel
of the purified protein.

After setting an established expression and purification protocol for ColG, and consid-
ering the need for an activity assay within the bacterial lysate, we tested activity using the
fluorogenic reagent 3,4-dihydroxyphenylacetic acid (DHPAA) assay [33] at a range of colla-
gen concentrations (0–400 µg/mL). A Michaelis–Menten analysis enabled the evaluating
the KM value of ColG towards collagen in its purified form and in the lysate (Figure 2A).
In addition to verifying the activity in the lysate, this step was important for determin-
ing the optimized collagen’s concentration to be used in the screening assays. To this
end, 40 µg/mL of ColG was mixed with variable concentrations of collagen in a total
volume of 200 µL in each well and incubated for 1 h at 25 ◦C. Aliquots of 50 µL were
then mixed with 50 µL of 0.75 mM 3,4-DHPAA, 50 µL of 125 mM sodium borate (pH 8.0),
and 50 µL of 1.25 mM NaIO4 for 30 min, and incubated at 37 ◦C to yield the fluorescent
complex of N-terminus Gly peptides resulting from collagen degradation by the collage-
nase [33]. Figure 2A shows the curves that resulted from plotting the fluorescence intensity
against collagen concentration after the DHPAA reaction reached completion. The KM
values for the purified and lysate-based reactions were 7.1 and 23.7 µg/µL, respectively.
In addition, the Vmax value of the purified enzyme was~18% higher than in the lysate,
as Vmax (pure) = 1.19 × Vmax (lysate). Enzymatic reaction was performed at 25 ◦C as
collagen type I is thermally instable above 30 ◦C [36].

We then investigated if the activity and readout were indeed specific to the degradation
of collagen by ColG. To this end, we cultured 500 µL E. coli BL21 cells expressing ColG
in 2 mL-deep 96-well plates. Following bacterial lysis and centrifugation, 16 µL aliquots
were transferred into a new 96-well plate and incubated with 1 mg/mL collagen for 1 h at
25 ◦C with shaking, followed by the addition of the reaction reagents. Figure 2B shows the
fluorescence intensity that resulted from the reaction at various tested conditions aimed
to verify the specificity of the reaction towards collagen degradation by ColG. Significant
fluorescence readouts were not observed in wells containing lysates of bacteria harboring
ColG plasmid without collagen (2nd bar from left) or without DHPAA (3rd bar from left).
In addition, no readout was observed in wells with lysate of E. coli BL21 that was not
transformed with ColG plasmid (4th bar from left). On the other hand, activity of purified
ColG with collagen and 3,4-DHPAA resulted in a similar intensity to that of lysates of
bacteria harboring ColG plasmid. This showed that the florescence signal observed in the
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assay was the result of collagen’s degradation by the inducible, recombinant expressed
ColG in the bacterial lysate.

Figure 2. Enzymatic activity and specificity of ColG in bacterial lysate. (A) KM determination for
the purified and bacterial expressed ColG in the lysate. Triplicates of variable concentrations of
the substrate collagen were incubated with each of the enzymes. Fluorescence intensity was read
after the reaction reached equilibrium and normalized. (B) A single concentration of collagen was
incubated with ColG, and assay specificity was validated via the depletion of the substrate or enzyme
from the reaction. The left- and rightmost bars show the full reaction in the presence of collagen
in the lysate and purified collagen, respectively. The three middle bars show the negative control
reaction in which one substance of the reaction was depleted in each experiment.

Since we aimed to establish a bacterial-based assay that was amenable to screening
and that could be exploited for the discovery of optimized variants of collagenases with
improved rates of kinetics, identifying the optimal lysate volume and sampling time that
would enable us to follow the initial velocity rate in its linear phase was important. This
would ensure that optimized enzymes showed higher fluorescence intensity, which is
correlated with higher activity. Thus, in our next step, we characterized the reaction
kinetics in the 96-well-plate format.

Figure 3 shows several time points during the initial phase of the reaction for the
purified and lysate-based enzyme. As is evident, the reaction was nearly completed after
only a few minutes. This suggests that a screening assay for the discovery of optimized
variants should be set such that the reaction is read during the first time points, which
correspond to two to four minutes from initiation of the reaction. On the other hand, if the
read will be executed towards the end of the wild-type reaction, the fluorescence intensity
of an optimized variant will not show substantial difference from the reading of the wild-
type, as both reactions will have reached saturation. A complementary approach could
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be the sampling of lower volume lysate containing the enzyme. Still, the reading of the
reaction that progresses within the initial first minutes will thus enable the widest possible
dynamic range of collagenase activity. Of note, relatively low nonspecific background of the
reaction without collagen was observed in the lysate. This could be due to the nonspecific
interaction of ColG with lysate proteins or nonspecific conversion to fluorescent signal
within the course of the chemical reaction.

Figure 3. Reaction kinetics. Time-dependent evaluation of the collagen degradation by ColG.
Aliquots from the reaction were analyzed based on the aforementioned assay at the designated time
points. Concentration of the purified enzyme was set to 1 µg/µL, and collagen concentration was
80 µg/mL in both the purified and lysate-based assays.

2.1. Screening, Sequencing and Modeling of a ColG Variant

Once we established a robust protocol to detect collagenase activity in the bacterial
lysate as a result of inducing ColG recombinant expression, we constructed a focused
genetic library of ColG. This aimed at simultaneous screening of hundreds of variants
for identifying improved collagenase activity. Considering the high theoretical diversity
of such a library and the currently limited capacity to screen it, the mutation rate was
calibrated to incorporate about eight nonsynonymous mutations per ColG gene. The library
was generated via the application of an error-prone PCR, thus resulting in random and
noncontrollable mutational positions. Transformation of the library into E. coli BL21 cells
resulted in distinct colonies that represented the genetic library, each harboring specific
mutations of the variant ColG. Following transformation and plating, selected colonies
from the agar plate were cultured, lysed, and tested for ColG activity in the 96-well plate.

Figure 4A shows screening data sorted by signal intensity relative to ColG wild-type
activity. Due to the relatively large number of mutations per gene, most variants showed
reduced activity compared to that of the wild-type enzyme. This was congruent with the
notion that the large number of mutations hampered the structure function of the enzyme.
However, few clones showed slightly increased activity, as indicated by their increased
signal intensity. As a validation step, we replated the colony of the most active of these
clones presenting the highest signal, grew three individual colonies of this clone, and tested
each using the same screening conditions to form a triplicate. This step helped to eliminate
the any false-positive signals associated with such a screening process. Figure 4B shows
the intensity of the variant relative to the wild-type ColG in lysates. This indicated that
the initial observation of the higher activity clone was reproducible, thus supporting the
robustness of the screening assay. In the next step, we studied the molecular origin of the
improved activity. Sequencing the clone revealed a unique Phe782 to Ser mutation. This
residue was located at the end of the C terminus of the collagenase domain (Y119-G790);
more specifically, at a polycystic kidney disease-like (PKD-like) domain [4]. Of note,
differences in activity within the course of the screening may have resulted from factors
such as variation in expression level, stability, and solubility of the different enzymes
within each well. Still, the assay ensured that the activity was collagen degradation, and
thus, although such factors cannot be quantitatively calibrated within the course of a
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screening, they were therefore analyzed in selected bacterial colonies, or further in the
purified enzymes. Nevertheless, these traits—expression level, stability, and solubility—are
highly valuable for biotechnological application. Figure 4C,D show the representative
colonies that were cultured and their cellular lysate evaluated for the content of His-
tagged ColG by SDS-PAGE gel and WB, respectively. It can be observed that the wild-type
(Lane 5), phe782ser (ColG F782S) (Lane 6), and the additional random colony that did not
show improved enzymatic activity (Lane 7) had similar expression levels. Furthermore,
another colony (Lane 8) may have exhibited a higher expression level, although it did show
improved activity in the enzymatic assay.

Figure 4. Screening of a genetic library of Col G. (A) The relative intensity following an enzymatic
reaction of selected colonies. (B) The colony showing high activity was replated and colonies were
grown and tested in triplicate, and activity is shown relative to the wild-type Col G. ** Calculated
p-value was 0.0016. (C) SDS-PAGE gel showing ColG content in colonies cultured in a 2 mL deep-well
plate for screening of ColG activity. M-Marker. Lanes 1–3–10 µg, 1 µg, and 0.1 µg of purified ColG,
respectively. Lane 4-noninduced cells. Lanes 5–8-colonies expressing wild-type, phe782ser, and two
randomly selected colonies, respectively. (D) Western blot analysis with Hisx6 antibody showing the
same bacterial lysate of Lanes 4–8 as in (C).

A question may arise if structural changes appear due to the mutation. Given the
assay specificity, size of the protein, and location of the mutation, we reasoned that no
extreme structural change occurred, and the overall fold was maintained, primarily as
activity was maintained. However, to explore a possible mechanism for the improved
activity of the ColG variant, we modeled this variant following 1ns MD. Figure 5A shows
the structure of the wild-type enzyme. The location of Phe782 is marked by a purple circle.
Figure 5B shows an inset of the exact structural orientation of Phe782. It was positioned
in a hydrophobic region, surrounded by residues such as L702, L720, L743, L747, A763,
and V780, such that the hydrophilic Ser mutations seemed at first glance to destabilize
the protein. However, examining the structure that resulted from molecular dynamics
(Figure 5C) showed the penetration of water molecules into the cavity. This initiated the
formation of a new hydrogen network, mediated by a water molecule, and connected the
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new Ser to Leu720 from the adjacent β sheet, as well as to Val780. The water molecule
formed the basis for another layer of the H-bond network between the beta-sheets. Most
importantly, the water molecule that led to the frame of the H bond layer was detected only
in the MD-based frames of the variant, and did not appear in the wild-type ColG dynamic.
Indeed, as Figure 5B,C indicate, it was evident that in the wild-type enzyme, the bulky F782
residue blocked such water-based interaction. Thus, despite the tight packing of this area,
the mutation of the hydrophobic Phe to the hydrophilic and smaller Ser enabled penetration
of the water molecule, thus contributing to the stability of the structure of the protein. To
further examine the energy change, we performed a computational point mutation, from
Ser back to Phe, on representative structures from the ColG-F782S dynamics. Some of
these mutations showed favorable stability, mainly due to gaining back the interactions
of the Phe with the hydrophobic pocket (Figure 5D, right; ∆G = −5.7 kcal/mol), while
others showed unfavorable stability upon mutation, supporting our hypothesis that the
H-bond network stabilized the mutant structure (Figure 5D, left; ∆G = 2.2 kcal/mol). This
suggested that mutation-derived stability is based on a dynamic interplay between the
hydrophobic core and the H-bond interactions.

Figure 5. Modeling of the collagenase wild-type and ColG-F782S variant. (A) Structure of wild-type
ColG. The position of Phe782 is circled. (B) Inset showing the structural architecture of Phe782.
(C) Molecular-dynamics simulation showing the incorporation of a water molecule in the ColG-F782S
variant. (D) Two structures calculated based on the ColG-F782S model showing unfavorable and
favorable conformations of the Ser to Phe mutation.
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2.2. Validation of Activity in the Enzyme-Purified Form

In our next step, we evaluated the collagen-degradation kinetics of the wild-type and
ColG-F782S variant in their purified form. To this end, E. coli BL21 cells were transformed
with plasmid containing the mutated gene. Induction of protein expression and subsequent
purification were executed in a similar way to that of the wild-type enzyme. Figure 6A
shows the time-dependent activity assay executed in a similar approach to that described in
Figure 3. Purified wild-type and ColG-F782S in a concentration of 1 µg/µL were incubated
with 80 µg/mL collagen. Aliquots were taken at multiple time points. It can be observed
that, congruent to the results obtained in the lysate-based assay, the ColG-F782S variant
exhibited slightly higher activity in its purified form. As expected, following a single
round of screening, the difference in activity was not immensely high. To further explore
the mechanistic basis for the improvement in activity of ColG-F782S, we evaluated the
enzymes’ thermal stability. Figure 6B shows the remaining residual activity of the wild-type
and variant enzymes after heating of the enzymes to various temperatures for 1 h. The
enzymes were then cooled to room temperature and tested for their activity. It can be
observed that there was no difference between ColG and its variant. This showed that the
difference in enzymatic activity was not related to stability, but rather to activity.

Figure 6. Enzymatic activity and thermal stability of purified enzymes. (A) Time-dependent activity
of the wild-type and phe782ser variant. The inset shows the linear range of the activity. (B) Plot of
the residual activity after incubation of the enzymes for 1 h at each temperature.

3. Discussion

Degradation of the triple-helix collagen is an important step in the range of cellular
paths, as well as in biotechnology applications. The process is most-efficiently executed
by bacterial collagenases. Regardless of the degradation mechanism, a robust assay for
evaluating the rate of degradation is essential for identifying inhibitors and optimized
variants. To this end, and based on a previously reported assay [33], we generated a
cost-effective and robust screening protocol for testing the activity of collagenases in lysate
emendable in 96-well plates. The assay shown here was highly specific and sensitive, and
could be executed directly on recombinant collagenase that was expressed in E. coli within
the bacterial lysate, without the need for further purification. The latter is of immense
importance for screening genetic libraries, to identify optimized variants when each colony
harbors a different variant of the target enzyme. An additional important factor is the use
of bacteria as the host organism. The use of more advanced systems, such as yeast or even
mammalian cells, has several advantages in the field of protein-directed evolution [37].
However, E. coli is an attractive choice as a host organism due to its large selection of
cloning vectors and strains, as well as its rapid and well-regulated growth rate. A major
disadvantage of the proposed strategy is its relatively low throughput compared to other
display-based methods. However, computational predictions and the semirational design
of the mutational space can compensate the screening space by generating a focused library
based on in silico filtering, thus enabling an efficient screening strategy. The current work
employed the screening of 96-well plates, in which few colonies showed slight improved
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activity, but the activity of most of the samples was reduced. It is likely that the exact
number of mutations per gene should be calibrated for each collagenase enzyme, and that
the insertion of eight mutations per gene was too high. Indeed, the selected colony had
a single mutation in the amino acid level. Thus, thorough calibration of the mutational
number should be considered.

An additional factor to note is the molecular-level origin of the improved activity.
Given the relatively large molecular weight of the target protein, mutations could arise in
regions not directly related to the enzymatic activity. However, such mutations may lead
to enhanced stability or higher expression levels of the variant. In the current protocol,
all the mutations translated to a higher fluorescent readout. Thus, the structure-function
aspects must be further deciphered in order to integrate successful substitutions into a
potent protein variant.

4. Materials and Methods
4.1. ColG Expression and Purification

The plasmid expressing ColG was a gift from Hans Brandstetter [8]. The gene encodes
residues Tyr119-Lys1118 with an N-terminus 6xHIS tag, followed by a cleavable TEV site.
The plasmid was transformed to E. coli BL21 and cells; at OD = 0.8, protein expression
was induced by the addition of 1 mM IPTG. Following overnight culturing at 25 ◦C, the
cells were harvested. The harvested cells were resuspended in 40 mL of 50 mM Tris-HCl
(pH 8.0), 300 mM NaCl, and 30 mM imidazole. The suspended cells were then disrupted
by sonication, and the insoluble fraction was removed by centrifugation for 20 min at
15,000× g. The supernatant was applied to a 5 mL column of nickel beads. After washing
the resin, the protein was eluted with the addition of 300 mM imidazole. For the execution
of the enzymatic assay in the 96-well format, bacterial cells were disrupted by the addition
of ‘Bug-Buster’ reagent according to the manufacturer’s instructions, with the addition of
0.4 mg/mL of lysozyme and 250 units/10 mL benzonase.

4.2. Enzymatic Assay

An enzymatic assay was repurposed based on a previously described protocol [33].
Purified enzyme or bacterial lysate was incubated with collagen-I, and aliquots were mixed
with 50 mM Tris buffer (pH 7.5), 5 mM CaCl2, and DDW, in a total volume of 200 µL
in each well, for 2–4 min incubation at 37 ◦C. Aliquots of 50 µL were then mixed with
50 µL of 0.75 mM 3,4-DHPAA, 50 µL of 125 mM sodium borate (pH 8.0), and 50 µL of
1.25 mM NaIO4, then incubated for 30 min at 37 ◦C. The fluorescence intensity of the
reaction mixture was measured with a spectrofluorometer. The excitation and emission
maxima were 375 nm and 465 nm, respectively.

4.3. Construction of a Genetic Library

A genetic library was constructed from the ColG gene with the GeneMorph II Random
Mutagenesis Kit (Agilent, Santa Clara, CA, USA), adjusted to produce an average of
6 nonsynonymous mutations per gene. Following mutagenesis PCR, libraries were cloned
back into the original vector. The cloned vectors were transformed into E. coli BL21 cells and
plated on an LB plate supplemented with 100 mg/mL ampicillin. Individual colonies were
randomly selected and grown overnight in 96-well deep-well plates containing 500 mL LB
supplemented with 100 mg/mL ampicillin at 37 ◦C, with shaking. The overnight culture
was used to inoculate (at 1:20 dilution) fresh 500 mL LB supplemented with 200 mg/mL
ampicillin in 96-well deep-well plates. The cells were grown at 30 ◦C, with shaking, for
about 4 h, to an OD600 = 0.8, and induced with 1 mM IPTG to induce expression of the ColG
variants. Following overnight incubation at 25 ◦C, the cells were pelleted and resuspended
in Bug-Buster lysis buffer for further enzymatic activity assay.
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4.4. Modeling and MD Simulation

All simulations were performed using the GROMACS software version 2020.1 [38,39]
and the Amber force field [40,41]. The coordinates of the protein were based on a unit of
collagenase G from Clostridium histolyticum pdb# 4ARE [8]. In this structure, the calcium
ion is missing, and is replaced by a water molecule. We used the homologue collagenase H
pdb# 4ARF to align and insert the calcium ion, together with its two water ligands, to the
feasible position in the protein. The structure was first prepared for simulation using the
maestro module of Schrodinger [42]. This comprised filling missing side chains, adding
hydrogens in correct ionization states, short optimization of the hydrogens, and finally a
short minimization to relax strained bond angles and clashes. The protein was embedded
in a cubic water box, with 1.2 nm of solvent on all sides of the protein. Water molecules
were described using the TIP3P model. Counter ions (Cl− and Na+) were inserted to
achieve a neutral simulation cell. Energy minimization was carried out using the steepest
descent algorithm, followed by the conjugate gradient algorithm. The system was then
equilibrated with a 100 ps MD simulation in the canonical (NVT) ensemble, using the
modified Berendsen thermostat [43] for fixing the temperature of the system at 310. This
was followed by a 100 ps MD simulation in the isothermal–isobaric (NPT) ensemble, using
the Parrinello–Rahman pressure-coupling method for maintaining the pressure at a fixed
1 bar. Position restraints on the bonds to hydrogen atoms were applied using the Lincs
algorithm [44]. These were in addition to distance restraints on the Ca-water ligands
bonds in the wild-type only. The following MD simulation, starting from the previous
NPT simulation, was equilibrated for another 1 ns with no position restraints. All images,
as well as alignments of structures and the initial structure for the F782S mutation, were
maintained using Pymol software [45].

4.5. Chemicals

The collagen-I at a concentration of 1 mg/mL (Cat#92695), 3,4-DHPAA, and boric acid
were purchased from Merck (Sigma), Darmstadt, Germany. The NaIO4 was purchased
from Thermo Fisher Scientific, Waltham, MA, USA. The Bug-Buster used for bacterial
lysis was purchased from Merck (Millipore). The lysozyme was purchased from Merck,
Darmstadt, Germany, and the benzonase was purchased from Santa Cruz, Dallas, TX, USA.
All other chemicals and reagents were purchased from Merck.
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