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Circulating metabolites
associated with tumor hypoxia
and early response to treatment
in bevacizumab-refractory
glioblastoma after combined
bevacizumab and evofosfamide
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Glioblastomas (GBM) are the most common and aggressive form of primary

malignant brain tumor in the adult population, and, despite modern therapies,

patients often develop recurrent disease, and the disease remains incurable

with median survival below 2 years. Resistance to bevacizumab is driven by

hypoxia in the tumor and evofosfamide is a hypoxia-activated prodrug, which

we tested in a phase 2, dual center (University of Texas Health Science Center in

San Antonio and Dana Farber Cancer Institute) clinical trial after bevacizumab

failure. Tumor hypoxic volume was quantified by 18F-misonidazole PET. To

identify circulating metabolic biomarkers of tumor hypoxia in patients, we used

a high-resolution liquid chromatography-mass spectrometry-based approach

to profile blood metabolites and their specific enantiomeric forms using

untargeted approaches. Moreover, to evaluate early response to treatment,

we characterized changes in circulating metabolite levels during treatment

with combined bevacizumab and evofosfamide in recurrent GBM after

bevacizumab failure. Gamma aminobutyric acid, and glutamic acid as well as

its enantiomeric form D-glutamic acid all inversely correlated with tumor

hypoxia. Intermediates of the serine synthesis pathway, which is known to be

modulated by hypoxia, also correlated with tumor hypoxia (phosphoserine and

serine). Moreover, following treatment, lactic acid was modulated by

treatment, likely in response to a hypoxia mediated modulation of oxidative
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vs glycolytic metabolism. In summary, although our results require further

validation in larger patients’ cohorts, we have identified candidate metabolic

biomarkers that could evaluate the extent of tumor hypoxia and predict the

benefit of combined bevacizumab and evofosfamide treatment in GBM

following bevacizumab failure.
KEYWORDS

glioblastoma (GBM), bevacizumab (BEV), evofosfamide (TH-302), metabolomics
(OMICS), circulating metabolites, enantiomers, D-glutamic acid (D-Glu)
Introduction

Glioblastoma (GBM) is the most common and aggressive

form of primary malignant brain tumor in the adult population,

with approximately 12,000 new cases diagnosed every year in the

United States, and, despite modern therapies, it remains

incurable (1). FDA-approved first line therapy options include

temozolomide, radiation and tumor treatment fields (2).

Recurrent disease uniformly develops, and salvage treatment

usually includes the monoclonal antibody bevacizumab (Bev).

Bev depletes vascular endothelial growth factor, a hypoxia

induced factor (HIF)-driven gene which promotes tumoral

angiogenesis and neovascularization. Yet, while bevacizumab

typically results in radiographic responses, it has not

significantly improved overall survival. Resistance to Bev has

been shown to be driven by tumor hypoxia (3). Evofosfamide

(Evo or TH302) is a hypoxia-activated nitroimidazole prodrug,

which, when exposed to hypoxia, is reduced by intracellular

reductases and releases the alkylating agent bromo-

isophosphoramide mustard (Br-IPM). Br-IPM, a cytotoxin,

can then crosslink cellular DNA (4–8). Our phase 2, dual

center (University of Texas Health Science Center in San

Antonio and Dana Farber Cancer Institute) clinical trial

investigated the outcome of combined Bev/Evo in 33 Bev

refractory GBM patients (5). The combined Bev/Evo treatment

resulted in a statistically significant improvement over previous

therapies, with a 31% progression free survival at 4 months

(PFS-4). Moreover, hypoxia volume (HV) was calculated and

both progression free survival and overall survival were

negatively associated with hypoxia volume values (9).

Modulation of cell metabolism is a well-established feature

that cancer cells use to thrive and is reflected intracellularly, in

the tumor microenvironment, and in the levels of circulating

metabolites. Metabolic profiling studies are typically performed

using platforms based on mass spectrometry or magnetic

resonance spectroscopy to characterize an ever-increasing

number of metabolites in biosamples including cells, tissues

and biofluids (10–18). Circulating metabolites are increasingly
02
being investigated as potential biomarkers for disease detection

(11, 19) and progression (20), survival prediction (21) and

response to treatment (22). In addition, metabolite

stereospecificity recognition is key in the identification of

specific metabolic biomarkers in health and disease (23–33).

The predominance of a specific amino or hydroxy acid

stereoisomer form has been recognized in cancer as well as in

other metabolic diseases. For instance, the relative levels of D-

and L-2-hydroxyglutaric acid in cancer have been shown to

depend on the mutation status of isocitrate dehydrogenase 1 and

2, and cellular hypoxia (34–38). To improve the detection of

stereoisomers in biosamples, we have recently developed an

untargeted, LC-MS-based method for the simultaneous

detection of different classes of metabolites, including hydroxy

and amino acids, in a single analytical run (39).

Here, we investigated the profiles of the circulating

metabolites in patients with recurrent glioblastoma following

Bev failure to evaluate candidate metabolic biomarkers

associated with hypoxia in the tumor. In addition, on a very

small number of patients, we also evaluated the association

between patient specific metabolic changes observed early and

at later stages of treatment to identify potential biomarkers of

response to treatment.
Materials and methods

Patients and clinical trial design

All information about the patient characteristics, the criteria for

admission in the clinical trial and the clinical trial design are included

in (5). Briefly, 33 patients, ages 19 to 76 years (median age: 47 years)

with progressive or recurrent glioblastoma following Bev were

considered in the study. MGMT status was methylated in 26%,

unmethylated in 32%, and unknown in 42%. IDH mutations were

identified in 29%, not seen in 46%, and unknown in 25%. The clinical

trial (phase 2, open label, single arm) evaluated Bev (10 mg/kg) in

combinationwithEvo(670mg/m2), followingBev failure.Allpatients
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had previously received radiation therapy and temozolomide

chemotherapy, as well as Bev. Overall survival was defined as the

interval from the start of Bev/Evo treatment until death. For all

patients, serumwas collected shortlyprior to receiving thefirst dose of

the combined Bev/Evo and with each cycle of therapy. The protocol

was approved by the institutional review board at the University of

Texas Health Science Center at San Antonio (UT) and at the Dana

Farber Cancer Institute (DF). All patients provided written informed

consent. All methods were carried out in accordance with Good

Clinical Practice and in accordance with local guidelines and

regulations. This trial was registered with www.clinicaltrials.gov

(NCT02342379) on 19 Jan 2015.
Calculation of tumor
hypoxia by FMISO-PET

In all cases, patientswere injected intravenouslywith3.7MBq/kg

of 18F-FMISO. A 20-minute static 18F-FMISOPET emission image

wasacquiredatabout120minutesafter injectionof18F-FMISO.PET

scans were performed on two devices, both of whichwere calibrated.

On a CTI EXACT HR+ scanner and a Siemens Biograph40 mCT

scanner as previously described (8). The tumor ROIs on the 18F-

FMISO PET images included all regions where there was FMISO

uptake, and two 2 cm diameter ROIs on both sides of the cerebellar

cortex were used as the image derived blood surrogate to determine

the surrogate of tissue to blood ratio (TB ratio). HVwas determined

by the number of pixels with TB ratio above 1.2.
Sample preparation for
metabolic analysis

Serum samples were initially collected between June 2015 and

August 2017 and stored in liquid nitrogen until analysis. Thirty

serum samples were analyzed for the cycle 1 timepoint (prior to first

dose of treatment). 10 serum samples were analyzed for the cycle 2

and end of treatment (EOT or cycle 5) timepoints. Additional

sample details are included in Supplementary Data Table.

Plasma samples were thawed on ice. For each plasma

sample, a volume of 200 µL was transferred to washed

Nanosep 3K Omega centrifugal filters (Pall Corporation, Port

Washington, NY, USA) and centrifuged for 24 hours at 8,000

rpm and at 4°C (16, 17, 40). The plasma filtrate (polar fraction)

was recovered and split into two parts for the untargeted

analyses of the polar metabolites and metabolite enantiomeric

forms (chiral metabolomics).
Reagents

LC-MS grade water, methanol, acetonitrile, formic acid,

ammonium acetate, ammonium formate, 2,6-di-tert-butyl-4-
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methylphenol (BHT) were used for the analysis (Thermo

Fisher Scientific, Waltham, MA, USA). Commercial calibration

solutions for the mass spectrometer were also purchased from

Thermo Fisher Scientific (Waltham, MA, USA).
Untargeted polar metabolomics

For the untargeted polar metabolite profiling, the plasma

filtrate was diluted in water (1:500 ratio) and transferred to LC-

MS vials for analysis as previously described (16, 18). Pooled

quality control samples were injected every 6-th sample. The

metabolic profiling analysis was conducted on the Accela 1253

UPLC system with a quaternary pump in tandem with a Hybrid

Quadrupole Orbitrap mass spectrometer (Q Exactive, Thermo

Scientific, Bremen, Germany) equipped with electrospray

ionization (ESI) operating in negative/positive ion switching

mode (Thermo Fisher Scientific, San Jose, CA, USA). The

chromatographic separation of metabolites was achieved via a

Synergi 4 µm Hydro-RP 80 Å, 150 × 2 mm HPLC column

(Phenomenex, Torrance, CA, USA). Mobile phases (A) HPLC

water and (B) methanol were run at 99/1 for 2 minutes, then

increased linearly from 70/30 to 20/80 in 8 minutes, with a wash

of 2/98 for 5 minutes and a column equilibration time of 15

minutes. The total run time was 30 minutes with 5 µL injection

volume and 250 µL/min flow rate, as previously described (18).

Detection was completed in full MS mode with the following

settings: spray voltage, 3.5 kV; capillary temperature, 320°C;

sheath gas, 45 (arbitrary units); auxiliary gas, 10 (arbitrary units);

m/z range, 70‐1000 (HILIC), 50 to 750 (RP); data acquisition,

centroid mode; microscans, 10; AGC target, 1e6; maximum

injection time, 200 ms; mass
Chiral metabolomics analysis

Chiral metabolomics was conducted on the Vanquish Flex

UHPLC (Fisher Scientific, San Jose, CA, USA) equipped with an

ACQUITYBEHC18150×2.1mm(1.7mm,130Å) column (Waters,

Milford, MA) in tandem with the Q Exactive Hybrid Quadrupole

Orbitrap mass spectrometer (Thermo Scientific, Bremen, Germany)

equipped with electrospray ionization (ESI) operating in negative/

positive ionswitchingmode.Mobilephases (A)0.06%formicacidand

10mM ammonium formate, (B) 0.1% formic acid in acetonitrile, (C)

0.1%formicacid inmethanolwere runata ratioof98/1/1 to90/5/5 for

14minutes, 90/5/5 to95/5/0 from14-14.5, 95/5/0 to92/8/0 from14.5-

31 minutes, 92/8/0 to 67/33/0 from 31-62 minutes, 67/33/0 to 98/1/1

from 62-63 minutes with an equilibration time of 12 minutes. Total

run timewas 75minutes. Quality control samples weremade prior to

undergoing derivatization by (+)-diacetyl-L-tartaric anhydride and

(-)-diacetyl-D-tartaric anhydride as previously described (39).

Detection was completed in full MS mode in positive ionization

mode with the following settings: spray voltage, 4.0 kV; capillary
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temperature, 320°C; sheath gas, 45 (arbitrary units); auxiliary gas, 10

(arbitrary units); S-lens RF-level, 50; micro scans, 1; AGC target, 1e6;

maximum injection time, 200 ms; mass resolution, 70,000/35,000

fwhm; m/z range, 70–1000. Pooled quality control samples were

injected every 6-th sample.
Data processing and statistical analysis

SIEVE 2.2.0 SP2 software (Thermo Scientific, San Jose, CA,

USA) was used to conduct peak picking and spectral alignment

on raw data. Peak identities were assigned by matching the

mass-to-charge ratio and retention time values to an in-house

library of compounds. Peaks with a coefficient of variation (CV)

greater than 25% in the pooled quality control repeat injections

were excluded from the analysis. The Pearson and Spearman

correlation coefficients and their significance were calculated to

study the association between metabolite levels and survival data

using Matlab. A False Discovery Rate correction was applied to

p-values obtained from the correlation analysis and q-values

<0.05 were considered significant. We conducted 100,000

sample permutation statistical tests to sample all patients.
Results

Peripheral blood metabolites
as markers of tumor hypoxia

We investigated whether specific metabolites in the

peripheral circulation were associated with the extent of tumor

hypoxia evaluated in GBM patients via imaging techniques prior

to the first dose of combined Bev/Evo. Blood plasma samples

were profiled using untargeted, high resolution mass

spectrometry (aimed at detecting a large number of

metabolites) combined with a newly developed approach to

differentiate the specific enantiomeric forms of amino and

hydroxy acids, also in an untargeted fashion. 130 unique

metabolites and 60 enantiomeric forms (30 enantiomeric

pairs) were identified based on matching mass-to-charge ratio

and retention time values to an in-house library of compounds.

We correlated the blood metabolite levels and patients’ HV

to investigate any association between specific circulating

metabolites and the extent of tumor hypoxia. The results

below include metabolites that demonstrate significant Pearson

and Spearman correlations with patients’ hypoxia in the tumor

(hypoxia volume, HV) or survival. Blood samples from 30

patients (16 and 14 collected at UT and DF, respectively) with

matched HV levels were available for this analysis. Our

correlation of blood resulted in several circulating metabolites

with significant associations. Serum levels of phosphoserine

(Pearson r=-0.63, q-value=0.007; Spearman r=-0.72, q-

value=0.002), glutamic acid (Pearson r=-0.50, q-value=0.008;
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Spearman r=-0.58, q-value=0.01) and gamma-aminobutyric acid

(Pearson r=-0.47, q-value=0.007; Spearman r=-0.46, q-

value=0.01) all resulted in significant correlations with HV

(Figure 1A–C and Supplementary Figure 1A–C). Interestingly,

the blood level of serine, a metabolite very closely related to

phosphoserine, also resulted in a significant correlation with

patient’s survival data (Figure 1D and Supplementary Figure 1D;

Pearson r=0.48, q-value=0.043; Spearman r=0.47, q-

value=0.031). Phosphoserine, glutamic acid and gamma-

aminobutyric acid, while significantly correlated to HV, were

not correlated to OS (data in Supplementary Data Table 1).

Other detected metabolites in the glycolysis and serine pathways

did not correlate to either HV or OS (data in Supplementary

Data Table 2). Blood samples from 26 patients (14 and 12

collected at UT and DF, respectively) with matched OS data were

available for this analysis (Supplementary Data Tables; for some

patients with available HV levels, OS data were unknown),.

Moreover, the analysis of the correlation between the HV

data and the levels of the specific enantiomeric forms of amino

and hydroxy acids resulted in a significant correlation coefficient

for D-glutamic acid (Pearson r=-0.50, q-value=0.004; Spearman

r=-0.54, q-value=0.002; Figure 1E and Supplementary

Figure 1E), but not L-glutamic acid (not shown; both forms

trended similarly vs HV and did not correlate with OS).
Peripheral blood metabolites
as markers of response

Patients’ blood samples were collected immediately prior to

treatment and at several times points during treatment. To

identify blood metabolites that might offer insight into the

patient’s response to treatment, we investigated whether the

extent of the metabolite level changes during treatment in

matched patient samples (compared to prior to the start of

treatment) correlated with HV and/or survival. More

specifically, for each patient, the ratio of the metabolite levels

at a given time during treatment (either cycle 2 or cycle 5 of

treatment) and the metabolite level prior to treatment was

calculated, and correlations with HV or survival were

evaluated. These analyses were limited by the small number of

samples available, specifically 10 samples for both the cycle 2

timepoint (7 from DF and 3 from UT), and end of treatment

(cycle 5; 2 from DF and 8 from UT).

Interestingly, and although the number of patient samples

available for this analysis was very limited, changes lactic acids

serum levels after cycle 2 of treatment (as compared to the levels

before treatment) significantly correlated with HV (Pearson

r=0.79, q-value=0.01; Spearman r=0.76, q-value=0.048;

Figure 2 and Supplementary Figure 1F).

No significant correlations were identified between HV

before treatment and changes in serum metabolite levels at the

end of treatment (cycle 5 compared to before treatment).
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Peripheral blood metabolites do not
reflect MGMT or IDH status

We investigated the presence of associations between

circulating metabolite levels and MGMT or IDH status in our
Frontiers in Oncology 05
GBM patient cohort. MGMT status was methylated in 26%,

unmethylated in 32%, and unknown in 42% of the patients. IDH

mutations were identified in 29%, not seen in 46%, and unknown in

25%. Metabolite levels in the peripheral circulation were found not

to reflect either MGMT or IDH status.
B

C

D

E

A

FIGURE 1

The levels of circulating metabolites in Bevacizumab-refractory GBM patients prior to treatment with Bev/Evo correlate with tumor hypoxia and OS.
Phosphoserine, and gamma aminobutyric, glutamic and D-glutamic acids circulating levels result in significant correlation with HV (A–C, E). Serine levels
significantly correlated with OS (D). In all panels, the Pearson correlation linear regression is shown with the black dashed line. Datapoints for each
patient are shown in orange for patients enrolled at the University of Texas Health Science Center in San Antonio (UTHSCSA; 16 and 14 patient samples
for HV and OS correlations, respectively) and in blue for patients enrolled at Dana-Farber Cancer Institute (CI; 14 and 12 patient samples for HV and OS
correlations, respectively). Evaluation of significance included corrections for repeated measurements and sample permutation (100,000 permutations)
statistical tests (included in Supplementary Figure 1).
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Discussion

The combination of Evo and Bev was evaluated in recurrent

glioblastoma patients following Bev failure in a dual center,

phase 2 trial (5). As previously reported, the Bev/Evo

combination resulted in improved outcomes in patient’s PFS.

A number of brain imaging readings (such as hypoxic volume,

perfusion and anatomic radiographic features) were evaluated to

determine if any of these could provide a non-invasive mean to

predict the benefits of the combined Bev/Evo treatment (9).

Based on those measurements, the hypoxic volume in the tumor

was determined to be negatively associated with PFS and OS (9).

Even though the imaging parameters provide a direct reflection

of the localized status near the tumor area, the multivariate nature

of the metabolic profiling in the peripheral circulation has the

potential to provide complementary information to identify

patients that could benefit from this regimen following Bev failure.

The metabolic profiling was performed using untargeted,

high-resolution LC-MS-based metabolomics approaches to

profile total pool metabolite levels as well as the relative levels of

the enantiomeric forms of amino and hydroxy acid compounds.

These include, for example, the D- form of amino acids (e.g., D-

serine). While the D- amino acids have been deemed “unnatural”

in the past and are still generally not receiving much attention in

human studies, we and others have shown that these metabolites

are present not only in human biofluids (possibly deriving from
Frontiers in Oncology 06
the microbiome) but also in human cell lines (in some cases at

levels comparable to the “natural” L- enantiomeric form) and are

important in the search of metabolic biomarkers to evaluate

aspects including disease development and progression, and

response to treatment (23–25, 27–32, 37–39).

Here,we investigated (i)whether theblood level ofmetabolites in

the peripheral circulation could reflect the severity of hypoxia in the

tumor and offer an alternative or additional way to assess hypoxia

levels in the tumor and (ii) whether the changes in circulating

metabolites during treatment could provide early response

information to evaluate treatment efficacy. Given the limited

number of patients involved in this study, the candidate metabolic

biomarkers we report here will need to be further validated.

Among several other circulating metabolites, phosphoserine

serum levels prior to treatment significantly correlated with HV. In

addition, serine levels before treatment were positively correlated

with OS. In the serine synthesis pathway, phosphoserine is formed

from 3-phosphoglycerate via phosphoglycerate dehydrogenase

(PHGDH) and phosphoserine aminotransferase 1 (PSAT1).

Phosphoserine phosphatase (PSPH) then converts phosphoserine

to serine.Hypoxia has been shown to induce expressionofPHGDH,

PSAT1 and PSPH in breast cancer cells (41) and PHGDHhas been

shown to be overexpressed in various cancer types, including

colorectal, non-small cell lung, cervical and breast cancers (42–

44). Taken together, the blood level of phosphoserine and serine

suggest the potential usefulness of these circulating metabolites in
FIGURE 2

Lactic acid levels in the peripheral circulation are modulated early during treatment with Bev/Evo to an extent that is associated with tumor hypoxia
levels prior to treatment. Changes in the levels of the blood metabolite after treatment (i.e. levels at cycle 2 normalized to the matched levels prior
to treatment) significantly correlate with HV. The Pearson correlation linear regression is shown with the black dashed line. Datapoints for each
patient are shown in orange for patients enrolled at the University of Texas Health Science Center in San Antonio (UTHSCSA; 3 patient samples) and
in blue for patients enrolled at Dana-Farber Cancer Institute (CI; 7 patient samples). Evaluation of significance included corrections for repeated
measurements and sample permutation (100,000 permutations) statistical tests (included in Supplementary Figure 1).
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accessing the extent of tumor hypoxia and the identifying patients

that could benefit from combined Bev/Evo following Bev failure.

In addition to phosphoserine, also glutamic and gamma

aminobutyric acid blood levels prior to treatment were both

negatively correlated with HV. In addition, the enantiomeric

analysis of the relative amounts of stereoisomer compounds,

revealed that D-glutamic acid, but not L-glutamic acid,

significantly negatively correlated with HV at diagnosis.

Glutamic acid and gamma aminobutyric acid are both key

metabolites/neurotransmitters in the normal brain (45, 46).

Active neurons have been shown to impact glioma growth and

progression (46, 47), therefore, while their function and

modulation in glioblastomas and hypoxia has not been

clarified, one could speculate that these neurotransmitter

metabolites might also have key roles in glioblastoma

progression and growth. Moreover, glioma cells and many

other cancer cell types, are highly dependent on glutamine

(from which glutamic acid is derived) for their heightened

biosynthetic and energetic needs (48, 49). Glutamic acid and

gamma aminobutyric acid are closely related to D-glutamic acid

which points to the potential of the enantiomeric form to further

improve the relevance of metabolic signatures of disease.

Interestingly, the magnitude of the changes in the blood levels

of lactic acid early on during treatment (compared to prior to

treatment) were positively associated with the pre-treatment

extent of hypoxia in the tumor. Hypoxia was shown to induce

transcription of glycolytic enzymes mediated by HIF-1, including

activation of pyruvate dehydrogenase kinase 1 (PDK1) and lactate

dehydrogenase A (LDHA) leading to a switch in cell metabolism

to glycolysis (50). The observed changes might therefore reflect

changes in tumor hypoxia following treatment and, if confirmed

in larger studies could serve as a means of non-invasively

following treatment response and efficacy.

Given the lack of effective circulating tumor markers for

glioblastoma and the known issues in radiographic assessment of

response including pseudo-response and pseudo-progression, the

potential of serum metabolites as ancillary markers of response is

clinically significant. Additional studies are needed that include a

larger number of patients to confirm the finding that the levels of

these circulating metabolites represent a reflection of tissue hypoxia,

possible hypoxia biomarkers and predictors of treatment efficacy.

In summary, as a general finding our study highlights the

importance to consider metabolic profiles in human biosamples

that include the specific enantiomeric forms of various metabolites

to further improve our ability to discover novel multivariate

metabolic signatures of disease and treatment response.

Specifically, as it relates to the Bev/Evo treatment being

considered here, the plasma levels of circulating intermediates

related to serine synthesis pathway and glycolysis prior to

treatment and their changes during treatment might provide

important indicators associated with tissue hypoxia and valuable

predictors of the efficacy of the combined Bev/Evo treatment.
Frontiers in Oncology 07
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