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Cutaneous melanoma can be a most challenging neoplasm of high lethality, in part due to
its extreme heterogeneity and characteristic aggressive and invasive nature. Indeed, its
moniker ‘the great masquerader’ reflects that not all melanomas are created equal in
terms of their originating cellular contexts, but also that melanoma cells in the malignant
tumor can adopt a wide range of different cell states and variable organotropism. In this
review, we focus on the early phases of melanomagenesis by discussing how the
originating pigment cell of the melanocyte lineage can be influenced to embark on a
wide range of tumor fates with distinctive microanatomical pathways. In particular, we
assess how cells of the melanocyte lineage can differ by maturation status (stem cell;
melanoblast; transiently amplifying cell; differentiated; post-mitotic; terminally-
differentiated) as well as by micro-environmental niche (in the stratum basale of the
epidermis; within skin appendages like hair follicle, eccrine gland, etc). We discuss how
the above variable contexts may influence the susceptibility of the epidermal-melanin unit
(EMU) to become unstable, which may presage cutaneous melanoma development. We
also assess how unique features of follicular-melanin unit(s) (FMUs) can, by contrast,
protect melanocytes from melanomagenesis. Lastly, we postulate how variable
melanocyte fates in vitiligo, albinism, psoriasis, and alopecia areata may provide new
insights into immune-/non immune-mediated outcomes for melanocytes in cutaneous
melanin units.

Keywords: melanogenesis, cutaneous melanoma, hair follicle, epidermal melanocytes, follicular melanocytes,
vitiligo, hair follicle melanin unit, melanocyte-keratinocyte interaction
1 INTRODUCTION

Skin cancer is the most common cancer in humans, with more cases diagnosed than for all other
cancers combined (1). Although melanoma comprises less than 5% of all skin cancers,
approximately 300,000 new cases are diagnosed globally/year. Melanoma remains a leading cause
of cancer-related death (1, 2). The last 20 years have seen a tripling of melanoma diagnoses in the
US, and now men less than 50 years of age have a higher chance of developing melanoma than any
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other cancer (1). If detected early, melanoma can be treated
effectively by surgery, but as a metastatic disease, it can become
highly resistant to conventional therapies. Until recently,
treatment options for patients with advanced disease were very
limited, but recent advances in both immuno- and targeted
therapy have improved outcomes considerably by leveraging
the patient’s own immune system against the tumor or
targeting specific mutations (3). Still, melanoma is a
malignancy with a poor prognosis, and improvements in
overall patient survival have so far been limited; recent
immunotherapy comes at a very high monetary cost (4). As a
result, the current 5-year survival expectancy for patients with
metastatic melanoma is approximately 23% (1, 5), with
metastasis the leading cause of melanoma-associated deaths.

Cutaneous melanoma is a remarkably heterogeneous
neoplasm, and clearly, not all melanomas are created equal.
With its origin among melanocytes residing in the stratum basale
of human epidermis, most cases of melanoma (>70%) appear to
arise de novo without association with a pre-existing lesion (6, 7)
e.g., a nevus. Invasive cutaneous melanomas are typically
classified based on their clinico-histopathologic features into
four main subtypes of decreasing incidence: superficial
spreading melanoma (SSM), nodular melanoma (NM), lentigo
maligna melanoma (LMM), and acral lentiginous melanoma
(ALM) (8). Induction of a sustained proliferative potential in
normally post-mitotic adult epidermis melanocytes results from
mutations in genes predominantly of the MAPK pathway.
Moreover, mutation signatures are different between
melanoma subtypes (8, 9), and are often mutually exclusive.
Melanoma mutations are common in BRAF (50%), NRAS
(13.25%), MEK1 (6%), and less commonly KIT (2.6%),
CTNNB1 (2%–3%), GNA11 (2%), or GNAQ (1%), highlighting
the importance of controlled MAPK signaling for melanocyte
homeostasis (9). Sini et al., recently contributed an interesting
review concerning the genetic background responsible for
melanomagenesis in human skin (10), reminding us that the
main markers of melanoma are not necessarily responsible for
the induction of the tumor. For example, BRAF, although is,
indeed present (the mutated form) in 50% of melanomas, this
BRAF mutation is also expressed in benign pigmented
lesions (11).

While exposure to ultraviolet radiation (UVR) constitutes the
major risk factor for cutaneous melanoma, and sun-protected
melanocytes exhibit fewer mutations than sun-exposed ones,
pigment cells from chronically sun-exposed skin (e.g., face) carry
a lower mutational burden than melanocytes from intermittently-
exposed skin (e.g., back). Thus, tumor progression is facilitated by a
combination of genetic and epigenetic modifications, and people
with pale skin, freckles, and red (pheomelanin-rich) hair exhibit the
highest risk of melanocyte malignant transformation (12, 13). In
addition to (epi)genetic characteristics, factors in the melanocyte
microenvironment also modulate the oncogenic process e.g.,
extracellular matrix (ECM), microvasculature, intercellular
communication (melanocyte-keratinocyte-fibroblast), as well as
alterations in growth factors, cytokines, and nutrients. The
formation of melanoma, therefore, shares essential characteristics
Frontiers in Oncology | www.frontiersin.org 2
with the variable stages in the life-history of melanocytes ranging
from their development to maturation within human epidermis
and hair follicle melanin units.

In this review, we restrict our focus to a discussion of our
knowledge of the epidermal-melanin-unit (EMU) status in the
skin and how alterations in melanocyte phenotype can disrupt
their communication with their keratinocyte partners. Such
disruption may lower the melanomagenesis threshold of these
pigment cells.
2 EPIDERMAL AND FOLLICULAR
MELANIN UNITS OF NORMAL SKIN

2.1 Development of Cutaneous
Melanin Units
Skin and hair pigmentation is the product of a remarkably complex
communication between two histologically-distinct cell types;
the pigment-producing melanocytes of neural crest origin and
the pigment-accepting keratinocytes of epithelial origin. The
interaction of one melanocyte with a highly stable number of
keratinocytes generates a range of functional pigment or melanin
units with unique features, which contribute to the homeodynamic
balance of the epidermis and hair follicle. Melanocytes constitute a
minor cell population (~3%) in the adult human interfollicular
FIGURE 1 | Histology of adult human skin. The epidermal layers of the skin
are composed mostly of keratinocytes (90%) and melanocytes (3%).
Melanocytes sit at the dermal epidermal junction, surrounded by proliferating
keratinocytes of stratum basale, which differentiate as they reach the upper
layers of epidermis. Black asterisk denotes a pendulous melanocyte localized
at the basal layer of the human epidermis. Staining Toluidine blue (1%) in
Borax solution (1%). Scale bar 5 mm.
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epidermis (see Figure 1). Their most apparent trait is the
production of a light-absorbing indole biopolymer called
melanin, via a phylogenetically-ancient biochemical pathway
called ‘melanogenesis’ (14, 15). Apart from this primary role,
melanocytes play important regulatory functions in skin, as
potential contributors to skin immune response, stress sensors or
as neuroendocrine cells, through the production of neuropeptides,
neurohormones and neurotransmitters (16–18). For example, as a
near-permanent cell in our epidermis, melanocytes act as ‘sentinel’
cells, through stress sensing and immune response modulation,
especially in the context of UVR. While cutaneous melanocytes of
the interfollicular epidermis are essentially post-mitotic cells, even
with (UVR) stimulation, their cousins in the cycling hair follicle
(see below) exhibit considerable plasticity, including in their
proliferative capacity.

Melanin synthesis is a product of a series of enzymatic
reactions, commencing with the hydroxylation of phenylalanine
followed by the rate-limiting conversion of tyrosine by tyrosinase
to form brown-black eumelanin and in the presence of cysteine or
glutathione, the yellow-red pheomelanin, in the unique organelle
of melanocytes - the melanosome (14, 15). In brief, melanogenesis
involves a series of signals beginning with the rate-limiting
oxidation of L-tyrosine to L-dihydroxyphenylalanine (L-DOPA),
catalysed by tyrosinase (19, 20). Besides their positive regulatory
role of melanogenesis, L-tyrosine and L-DOPA can act also as
hormone-like regulators of other cellular functions. Upon
stimulation by alpha-melanocyte-stimulating hormone (a-MSH)
or adrenocorticotropic hormone (ACTH), melanocortin-1
receptor (MC1R) signaling can increase intracellular cyclic
adenosine monophosphate (cAMP). The cAMP activates the
response element-binding protein (CREB)-signaling pathway in
melanocytes, to transcriptionally activate a variety of downstream
targets, including microphthalmia-associated transcription factor
(MITF). This crucial transcription factor activates essential
melanin-forming genes such as the tyrosinase enzyme family
and the melanosome matrix protein PMEL (14). Once
melanogenesis is completed, eu-melanosomes assume an
ellipsoidal form, while pheo-melanosomes retain their spherical
shape with much lower structural organization (21). Mature
melanosomes are transported (via multiple different modes)
along dendrites and filopodia on their way to neighboring
keratinocytes (22–25). This process represents an extremely rare
example of organelle ‘donation’ from the cell type that makes it
(i.e., melanocyte) to a wholly different histologic cell type
(keratinocyte) that receives it. In the epidermis, melanin
granules tend to aggregate as supranuclear caps within (often)
proliferative keratinocytes, where it can protect their nuclear DNA
from UVR-induced damage (26).

Melanocytes and keratinocytes exist in the human epidermis
within a truly extraordinary and remarkably-stable unit of one
post-mitotic melanocyte to approximately 36 viable
keratinocytes - the so-called ‘epidermal melanin unit’ or
‘EMU,’ as first proposed by Breathnach and Fitzpatrick in 1963
(27). This unit is crucial for maintaining the integrity of the
human epidermis and especially for its protective skin
pigmentation (see Figure 2). Given that all human skin
Frontiers in Oncology | www.frontiersin.org 3
phototypes, from black to white, have the same melanocyte
number per unit area of epidermis, much of the qualitative
variation in human skin color is due to differences in a) the
number of melanin granules per melanocyte; b) melanin type
(i.e., eu-/pheo-melanin), and c) pattern of melanin granule
distribution throughout various strata of the human epidermis
(27). Within the EMU, the keratinocyte partner tightly controls
several aspects of melanocyte behavior, including via a regulated
balance of paracrine growth factors and cell-cell adhesion
molecules. Distinct subpopulations of melanocytes seem to be
differentially positioned within the basal layer of the human
epidermis, generating at least two EMUs (28, 29) (see below).

Beyond the epidermis, the skin’s main appendage, the human
hair follicle, contains a remarkable diversity of melanocyte
subpopulations, the most apparent of which form a
melanogenicially-active “follicular melanin unit” or “M-FMU”
(30). These melanocytes, which engage principally with
keratinocytes of the hair follicle pre-cortex, are located in the
non-immunocompetent proximal anagen (growing phase) hair
bulb and attach their cell bodies to the basal lamina separating
the hair bulb epithelium from the mesenchymal (hair growth-
inductive) follicular papilla (see Figure 3). Pre-cortical
keratinocytes receive melanin from these M-FMU melanocytes
to pigment the hair shaft (21, 30, 31). There also exist several
other FMUs in anagen terminal (coarse) hair follicles, like those
of the human scalp, operationally categorized on the basis of
their melanogenic activity (see below). These include a)
FIGURE 2 | Schematic representation of EMUs. Distinct subpopulations of
melanocytes are represented by different levels of differentiation, dendricity,
melanin production, and cell receptor expression. Magnified images with
differential melanocyte localization within the basal layer of human epidermis
exhibited with gp100 (pre-melanosome antigens as detected by NKI/beteb
antibody, #AB34165) immunostaining (A) or with c-KIT (in green; #orb178436)
by IHC (B). Nuclear staining is indicated by DAPI, in blue. Scale bar 20 mm.
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elanocyte localization within six FMUs, exhibited with gp100 (pre-
elanogenically-active follicular melanin unit; Sb-FMU, sebaceous gland
cell niche follicular melanin unit; MA – melanogenically-active
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FIGURE 3 | Schematic representation of an anagen VI hair follicle, showing the FMUs within the distinct compartments. Magnified images of m
melanosome antigens as detected by NKI/beteb antibody, #AB34165) immunostaining. In-FMU, infundibulum follicular melanin unit; M-FMU, m
follicular melanin unit; O-FMU, outer root sheath follicular melanin unit; PP-FMU, peripheral proximal bulb follicular melanin unit; Stem-FMU, stem
melanocytes: MI – melanogenically-inactive melanocytes; dp – dermal papilla.
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melanogenically-active melanocytes in the hair follicle
infundibulum (In-FMU) and Sebaceous gland (Sb-FMU), and
b) melanogenicially-inactive melanocytes located in the Stem cell
niche of the hair bulge (Stem-FMU), Outer root sheath (O-
FMU), and most Peripheral-Proximal hair bulb (PP-FMU)
(See Figure 3).

Despite their shared neural crest origin and transient co-
location in developing human epidermis [prior to the
commencement of hair follicle morphogenesis (32)], clinical
observations provide ample evidence for the relative
independence of the EMUs and FMUs, especially in terms of
how their respective melanogenesis is regulated. One can readily
appreciate this in the striking snow-white hair of aged Black-
Africans or the jet-black hair of alabaster, white-skinned youths
of northwest European ancestry. Furthermore, there is selective
and/or preferential EMU targeting in most cases of vitiligo, while
M-FMU melanocytes alone are damaged by an immune-
mediated pathology in acute alopecia areata (33). While some
of these differences likely reflect distinct relationships with UVR
(i.e., by virtue of their different locations in the skin), others are
likely to involve differences in their respective immunological
contexts and antigenic profiles in situ. The latter reflects, at least
in part, the fact that FMUs in the anagen outer root sheath and
hair bulb reside in a so-called ‘immune-privileged’ (MHC-I
negative) part of the hair follicle epithelium (34, 35),
contrasting with the immunocompetent MHC-I positive EMU.
Interestingly, several of these melanocyte subpopulation
differences can be retained in long-term culture (36, 37)

The mouse has been instrumental in providing significant
insights into the regulation of mammalian pigmentation and, by
extension, melanoma. However, readers should interpret these
data with some caution, at least in the context of understanding
how melanocyte-keratinocyte interactions in the epidermis are
organized. This is so because mouse melanocytes are not present
at the dermal-epidermal junction throughout most of their skin
(except for ear, tail, nose, and food-pad), and mice do not
develop melanoma without genetic manipulation. Moreover,
induced melanomas in mice originate in the dermis, and while
it is assumed that these tumors are derived from the proximal
hair follicle, dermal melanocytes may also be a source of
cutaneous melanoma in mice (38). Regardless, the very
different melanocyte microenvironments in these two
mammalian species will account for some of the many
differences in melanoma development and progression between
them. Furthermore, the heterogeneity of melanoma in outbred
humans cannot be recapitulated in inbred laboratory mice, nor
can the drivers for spontaneous melanoma development in
humans. Indeed, the focus of mouse cutaneous pigmentation
studies has been limited, in the main, to their hair follicle
melanin unit (38).

2.1.1 Epidermal Melanocyte-Keratinocyte
Communication - the EMU
In the human epidermis, melanocytes produce unique
subcellular lysosome-related organelles called melanosomes
that are responsible for melanogenesis (24, 25). After melanin
Frontiers in Oncology | www.frontiersin.org 5
synthesis, each melanocyte extends multiple dendrites (and still
finer filopodia) as cytoplasmic extensions (22) that ramify
between approximately 36 viable keratinocytes (i.e., those
located below the stratum granulosum), thereby forming the
EMU (Figure 2) (27). These cytoplasmic connections provide
conduits for the transfer of pigment granules (and likely other
melanocytic cellular material) to both basal and suprabasal
keratinocytes (22, 24, 25). In this way, melanocyte ‘donations’
to keratinocytes influences their physiology, not least by
protecting this critical proliferative cell population from UVR
damage (39). Epidermal homeostasis is maintained, therefore, by
proliferation and subsequent differentiation of these melanin-
containing keratinocytes as they migrate distally, retaining some
continued bi-directional communication with their EMU
partner melanocyte.

At least two subpopulations of melanocytes can be detected in
the human epidermis, represented by different levels of
differentiation, dendricity, activity of melanogenesis-related
apparatus, and cell receptor expression (28, 29). These
melanocyte subpopulations appear to occupy different
anatomical locations within the epidermis, with c-KIT+ |
CD90+ melanocytes more commonly distributed around the
base of rete ridges (40) and more differentiated and dendritic
melanocytes located more superficially, including in the inter-
rete ridge epidermis (Figure 2). Whether melanocytes of these
two EMU are similarly susceptible to melanomagenesis awaits
further study (22). The stem cell factor (SCF)/c-KIT pathway is
particularly important in the organization of the EMU in adult
human skin, as it controls melanocyte proliferation and
differentiation (41). This signaling pair may also play a role in
melanogenesis, depending on whether the c-KIT ligand is
membrane-bound (m-KIT) or soluble KIT (s-KIT) (42, 43).
Interestingly, the binding of its ligand (SCF) to m-KIT is
reported to stimulate melanogenesis, while s-KIT suppresses
melanogenesis. Thus, UVR increases both SCF and m-KIT
while decreasing s-KIT expression, thereby upregulating
melanin synthesis (43).

This melanocyte duality within the epidermis may be more
evident in younger skin, where there is extensive rete ridge
plication. We postulate, therefore, that flattening of epidermis
rete ridges in aged skin will likely impact how these melanocyte
subpopulations are sustained. There is also likely to be a
significant difference in the impact of UVB on more
differentiated melanocytes located in the superficial inter-rete
ridge epidermis versus less differentiated rete ridge crypt
melanocytes, which can be located up to 200 µm deeper in the
skin (40).

Melanin distribution in the human epidermis affords localized
protection against DNA photodamage and, importantly, concurs
with differences in the incidence of skin cancer seen across the
range of human skin phototypes (37). For example, the observed
20- to 60-fold difference in keratinocyte cancers between white
and black populations is largely attributable to high levels of
epidermal melanin photoprotection in the latter. Most studies
suggest that melanin photoprotection against cyclobutane
pyrimidine dimers (CPD) (most mutagenic DNA photo-lesion)
April 2022 | Volume 12 | Article 878336
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is modest and so cannot on its own explain the considerable skin
color-based differences in skin cancer incidence. Melanin is most
concentrated in the basal layer of skin and explains, at least in part,
the considerable skin color differences in keratinocyte cancer
incidence. Melanin in black skin protects against CPD
formation by 59.0-, 16.5-, and 5.0-fold in the basal, middle, and
upper epidermis, respectively (37), and so is related to the
distribution of melanin. A greater appreciation of the regulation
of eumelanogenesis versus pheomelanogenesis (44), in addition to
precise melanin granule localization within strata of the human
epidermis, is needed to leverage more optimal control of
melanocyte/keratinocyte interactions in the EMU.

Despite melanin’s unambiguous optical properties at the skin
surface, for at least the more melanoma-prone Caucasian
populations, unstained melanin granules are only barely
detectable outside the basal/suprabasal layer of the human
epidermis. The apparent ‘absence/disappearance’ of melanin
from suprabasal layers of the human epidermis has been
interpreted, despite convincing evidence, as melanin
dissolution/degradation within stratifying keratinocytes i.e., in
the mid-to-upper epidermis. We have recently reassessed this
view and provided evidence for a preferred ‘asymmetric
inheritance’ of melanin granules by just one of the daughter
cells following mitosis of progenitor keratinocytes in the basal
layer (45, 46) i.e., the non-differentiating, self-renewable
daughter cell. In this way, most melanin is retained in UVR-
vulnerable and highly proliferative (i.e., progenitor) basal
keratinocytes. One further interesting implication of this
asymmetric mode of melanin inheritance by progenitor
keratinocytes is that much lower levels of redox-sensitive
melanogenesis may be needed than previously thought, as at
least some pre-made melanin may be available for reuse within
the basal layer of the epidermis. Interestingly, this baseline or
default asymmetric pattern of melanin distribution can switch to
a symmetric one under conditions of stress (i.e., wound-healing/
regeneration/high UVR incidence), whereby both keratinocyte
daughter cells now inherit similar levels of melanin cargo. In this
way, the melanin level within the EMU can be modulated to
respond to changing micro-environment and tissue demands.

2.1.2 Follicular Melanocyte-Keratinocyte
Communication – the FMU
Within the cutaneous family of pigment-producing cells, the
second most prominent subpopulation of melanocytes resides in
the hair follicle, especially during its growth (or anagen) phase of
the hair cycle (47). The lives of pigment cells in this uniquely
mammalian appendage are even more extraordinary and
bewildering than those in the overlying epidermis. In human
terminal hair follicles, follicular-melanin units “FMU”s are
formed when one melanocyte interacts with a limited number
of neighboring follicular keratinocytes (31). At least six distinct
follicular melanocyte subpopulations can be detected in different
compartments of the growing hair follicle and its associated
sebaceous gland. These are grouped according to their respective
phenotypic characteristics: stemness, melanin-production
capacity, dendricity, and mitotic and apoptotic potential
Frontiers in Oncology | www.frontiersin.org 6
(Figure 3) (48). These include a) melanogenicially-active and
dendritic melanocytes in hair follicle Infundibulum (In-FMU)
and Sebaceous gland (Sb-FMU); b) melanogenicially-inactive
melanocytes in the hair bulge Stem cell niche (Stem-FMU),
Outer root sheath (O-FMU); c) Melanogenicially-active
melanocytes located adjacent to the hair follicle dermal papilla
in the anagen hair bulb (“M-FMU”) and d) finally an enigmatic
melanogenicially-inactive melanocyte subpopulation located in
the most Peripheral-Proximal anagen bulb (PP-FMU)
(see Figure 3).

Unlike melanocytes of the epidermis, the activity of follicular
melanocytes is tightly coupled with the hair growth cycle (47).
M-FMU pigmenting bulbar melanocytes direct melanin to
progenitor pre-cortical keratinocytes (49), while the latter
communicate with and instruct the melanocytes to become
efficient pigment producers via transcription factors
extracellular signaling proteins, and transmembrane receptors,
etc. In this way, this cellular communication contributes to a
homeostatic balance for optimal hair fiber pigmentation. M-
FMU melanocytes exhibit several phenotypic differences from
melanogenically-active melanocytes in the EMU. For example,
M-FMU melanocytes produce 2- to 4-fold larger melanosomes
and harbor more extensive dendrites (21) than differentiated
melanocytes in the EMU.
FIGURE 4 | Pathological evidence of EMU disruption. (A) Dysplastic
junctional naevus with nests and junctional mildly atypical melanocytes at the
dermo-epidermal junction (black arrows). (B) Melanoma in situ with large
melanocytes spreading upwards into the epidermis (arrowheads). Original
magnification 50 mm, hematoxylin-eosin staining.
April 2022 | Volume 12 | Article 878336
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The hair follicle is the only continually-cycling tissue
throughout the lifespan of the mammal (47, 50). This growth
cycle is a unique example of physiological deconstruction of a
pigmentary unit (through programmed melanocyte death),
followed by the reconstruction of the next melanin unit
generation via a burst of melanocyte proliferation followed by
cell maturation. Active melanogenesis within melanocytes and
melanin transfer from melanocytes to keratinocytes occurs for
up to 10 years or more in the human scalp) (51), suggesting that
the melanogenic potential of a relatively small number of bulbar
melanocytes in the M-FMU is much greater than that needed for
the typical anagen length (around 3 years) of scalp hair follicle.
We have previously reported that melanocytes of the M-FMU
undergo selective deletion or cell death by apoptosis during a
phase of the hair growth cycle, called catagen, involving the
involution of ~70% of the hair follicle (28, 47, 48, 50). The
catagen hair follicle then transitions to a phase of relative
dormancy (telogen), only to be followed by a new anagen
phase that is characterized by proliferation and differentiation
of both melanocytes and keratinocytes.
3 EMU DISRUPTION DURING PRIMARY
MELANOMAGENESIS

3.1 Cutaneous Melanoma
Oncogenic transformation of a single melanocyte is the
consequence of a multistage process of successive acquisition
of (epi)genetic alterations affecting cell proliferation and survival
(52). Like other solid malignant tumors, melanoma is
characterized by uncontrolled proliferation, disruption of
cellular and morphological differentiation, invasion, and
metastatic spread to distinct organs. While different stages of
melanoma progression are not easily distinguishable,
pathological characteristics can be partially attributed to
changes in intercellular communication between the
transformed cell, its neighboring non-transformed cells, and
their immediate microenvironment. One of the important early
steps in melanoma development includes disruption of E-
cadherin-mediated adhesive interaction between melanocytes
and keratinocytes, accompanied by increased expression of N-
cadherin, which facilitates proliferation and invasion of
melanoma cells (53). Although changing interactions of
melanoma cells with the tumor microenvironment are clearly
very important, discussion of these phenotypic changes is
beyond the scope of this review.

During oncogenic transformation, melanocytes in human
skin begin to proliferate along the dermo-epidermal junction,
progressively gaining independence from exogenous growth
factors secreted by their keratinocyte partner cells in the EMU.
Disruption in melanocyte-keratinocyte communication can
trigger many phenotypic changes in both cell types, which may
also include nesting into nevi and other benign lesions (54). With
further damaging (genomic) alterations, single melanocytes or
nevus nests of melanocytes may form dysplastic nevi or
melanoma in situ subtypes (Figure 4).
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Melanoma cells usually adopt an epithelioid shape and lack
many features of their normal antecedents e.g., the melanocyte’s
dendricity, lone distribution among 5-8 normal basal
keratinocytes, and pendulous distribution into the upper
papillary dermis whilst remaining firmly anchored to the
basement membrane zone that separates the stratum basale of
the epidermis and dermis (30). Evidence of EMU disruption can
be observed in distinct histological subtypes of melanoma. SSM
and LMM exhibit differences in their growth location and in the
morphology of their melanosomal components. In melanomas
with a superficial spreading component, a pattern of intra-
epidermal growth occurs, often with a marked pagetoid (i.e.,
upward) spread of enlarged malignant cells (55). These can
cluster at both the dermo-epidermal junction as well as more
superficial epidermal areas of a now disorganized epidermis,
characterized by the loss of the stable EMU cell ratio with
keratinocytes (Figure 4).

On the other hand, the epidermis remains relatively thin in
LMM, with proliferating malignant melanocytes restricted to the
epidermal basal layer giving rise to a horizontal spreading phase
referred to as Lentigo Maligna. There is typically other histologic
evidence of severe solar damage (54) but only a modest increase
in their EMU ratio with keratinocytes (Figure 4). By contrast,
NM is characterized by a marked vertical growth pattern,
whereby malignant cells exhibit dermal invasion accompanied
by a higher mitotic rate compared to thin SSM (56). NM cells are
often enlarged spindle or epithelioid shapes and can be organized
into aggregates of so-called cerebroid nests (57, 58). As such, NM
typifies a marked dysregulation of cell communication of the
EMU, as well as with cells of the dermis.

Although the main function of melanin is to protect and
buffer against UVR and redox imbalance, this pigment can also
affect melanoma cell behavior. There is evidence of dysregulated
melanin synthesis in the early stages of melanomagenesis (59),
with melanin synthesis and subtype (eu/pheomelanin) correlated
with melanosome morphology and integrity. Clinico-
pathologica l analysis has shown that dysregulated
melanogenesis can shorten the overall survival time (OST) and
disease-free survival time (DFS) of patients with advanced
metastatic melanomas (60). It has been shown that induction
of melanogenesis in metastatic melanoma cells is closely linked
to an increase of the hypoxia-inducible factor (HIF)-1a
expression, with concomitant upregulation of HIF-dependent
pathways involved in the regulation of glucose metabolism,
angiogenesis and stress responses (61). In addition to altered
melanization, dysregulation of the EMU has been associated with
changes in melanosome matrix components (62). For instance,
SSM melanosomes typically display a round-oval architecture
and high pheomelanin content, while in LMM, melanosomes
retain their usual ellipsoidal shape, typical of non-malignant
melanocytes and are highly melanized (eumelanin) (60). NM, by
contrast, are often hypopigmented or amelanotic tumors (63,
64). Indeed, there is growing interest in the potential role of
pheo-melanogenesis in melanoma, both as a risk factor that
reduces UVR-protection in the skin but also potentially due to
some intrinsic (i.e., UVR-independent) pro-carcinogenic
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characteristic of the pheomelanin polymer itself (65). Earlier
studies reported that dysplastic nevi synthesize more
pheomelanin than eumelanin (66) and that this may be linked
to dysregulated and chronic oxidative stress (67).

The involvement of keratinocytes in the crosstalk with
malignant melanocytes has been reported. For example,
aberrant suprabasal expression of keratin 14 in the epidermis
surrounding NM has been detected i.e., a marker of associated
keratinocyte hyperplasia (68). This study highlights the
importance of the keratinocyte microenvironment in
melanoma biology, particularly the necessity of a balanced
communication within the cell subpopulations of the EMU.
Further, rare examples of recurrent LMM co-mingling with
nests of basal cell carcinoma have also been reported (69).

3.2 Connection Between Melanocyte Life
Stages and Melanoma Progression
Phenotypic heterogeneity is a defining characteristic of melanoma,
in part because melanoma cells can dynamically and reversibly
switch between differentiated and undifferentiated states, thereby
exhibiting distinct proliferative, invasive, and tumor-initiating
characteristics (70, 71). Without a precise understanding of the
true status and nature of the melanoma ‘originator’ cell(s) in
human skin, it remains difficult to delineate how a defined
population of normal melanocytes can initiate a transformation
process that ultimately gives rise to such a heterogeneous tumor. It
may be reasonable to assume that single cells within the tumor
occupy distinct cell states (e.g., of differentiation) or different
positions on a dynamic landscape (i.e., continuum). The
proportion of cells in different states and positions may
influence the outcome and prognosis of this neoplasm.

The literature contains a plethora of data supporting the
origin of cutaneous melanoma from either melanocyte stem cells
(McSCs) or from mature differentiated melanocytes.
Confounding this issue is that most data has emerged from
model organisms, particularly melanocytes of the mouse dermis,
rather than from research focused on the pigmentation of human
epidermis, nor even murine pigmented epidermis (ear/tail). This
furred and nocturnal species lacks melanogenically-active
melanocytes in their adult truncal epidermis and exhibits
several other key differences, including the enzymatic
regulation of melanogenesis (28).

During embryogenesis, committed melanocyte precursors or
melanoblasts, originating from a multipotent neural crest (71,
72), (some perhaps also from Schwann cell precursors), migrate
through the dermis from which they arrive to ‘invade’ the
developing epidermis. Subsequently, a subpopulation of these
melanocytes change from E-cadherin to P-cadherin-expressing
cells, thereby enabling them to enter the developing P-cadherin-
rich hair follicles as the latter start to develop (30). Although the
melanin units of the epidermis and hair follicle are thereafter
distinct, they do remain open, especially when the skin tissue
is stimulated.

Still, it is important to emphasize that a considerable fraction
of cutaneous melanocytes reside outside of the epidermis in adult
human skin; mostly located in multiple distinct compartments of
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the hair follicle, its associated sebaceous gland, and even in sweat
glands [see Figure 3; (73)]. Thus, the question of the precise
location of the melanoma-targeted pigment cell must be very
relevant in any discussion of human melanomagenesis. For
example, upon stimulation (e.g., UVR or wound healing), hair
follicle McSCs can indeed migrate to the interfollicular epidermis
and differentiate into pigment-producing melanocytes (73–75).

But the hair follicle and sebaceous gland are not the only
sources of melanocytes in the interfollicular epidermis post-
stimulation. For example, studies from mouse tail skin lacking
appendages show that this epidermis contains a low frequency of
immature amelanotic melanocytes, which may function as
interfollicular McSCs (76–78). These cells are reminiscent of
the rare immature melanocytes that survive in the leucodermic
epidermis of long-duration human vitiligo (79) or of immature
melanocytes in hair-less glabrous skin - the suggested source for
repigmenting of the lip in vitiligo.

However, available data suggest that melanoma may not arise
from immature melanocytes, melanoblasts, etc. In fact, recent
lineage-tracing studies using mouse tail epidermis (containing
melanocytes) reported that melanoma arises instead from
mature melanogenically-active melanocytes of the inter-
follicular epidermis (80). These fully-differentiated cells appear
to be reprogrammed and thereafter de-differentiate into cancer-
initiating cells in vivo. Thus, differentiated pigment cells may
acquire multipotency like their embryonic ancestors, allowing
them to form heterogeneous tumors.

Other data supporting a melanocyte dedifferentiation mode
of melanomagenesis is the coincident loss of melanocyte
differentiation markers during melanoma progression, as well
as an upregulation of genes associated with earlier stages of their
development (81). The well-accepted concept in cancer biology
that tumorigenesis recapitulates embryonic development has
also been validated in a zebrafish melanoma model, in which
loss of melanocyte signatures and emergence of neural crest
signatures precede the expansion of melanoma (82). The
relevance of this in public sun care policy may be important
given the common ‘mole-watch’ focus of many melanoma
prevention strategies, while at the same time, most melanomas
(>70%) arise not from such lesions but rather arise de novo. This
latter finding was given a powerful explanation from a human
study where melanocytes in healthy skin were found to
commonly contain pathogenic mutations (albeit weakly
oncogenic ones) (83). This probably explains why they do not
give rise to discernible melanocytic lesions. It also highlights that
elucidation of the genomic ‘landscapes’ of individual
melanocytes can provide insights into the cause and origin of
melanoma. Increasing awareness of the clinicopathological and
body-site differences between melanomas arising de novo or in
association with a pre-existing pigmentary lesion supports the
divergent pathway model of melanomagenesis (84).

While much of the above data is derived from modified mice
models and requires urgent confirmation in human melanoma,
these data suggest overall that melanoma can arise either from
immature or mature pigment cells. This may explain the
variability in cutaneous melanoma presentation and their
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outcomes. Therefore, it may be reasonable to suggest that the
very significant heterogeneity observed in melanoma results
from the involvement of several distinct subpopulations of
melanocytes in different stages of their life histories and within
various distinct cutaneous melanin units.

3.3 Does Hair Follicle-Derived
Melanoma Exist?
A hallmark of the comparative biology of epidermal and hair
follicle melanocytes is the observation that melanogenesis in the
latter is stringently coupled to the hair growth cycle (anagen-
specific melanogenesis), while melanogenesis in the former is
continuous, albeit often augmentable (e.g., after exposure to
UVR). Up to 90% of melanomas are said to be ‘caused’ by
UVR from sunlight (85), and while much incident UVB and
UVA readily reaches melanocytes in the superficial epidermis,
hair follicle melanocytes are located more deeply in the skin,
most located well below the level of UVB penetration (18, 29).
That said, more superficially distributed melanocytes, e.g., in the
upper infundibulum (In-FMU) and potentially also the bulge
stem niche Stem-FMU), may receive carcinogenic doses of UVB.
This may be particularly so in small hair follicles producing fine
and vellus hairs (86).

However, it is remarkable that the skin’s main appendage, the
hair follicle, appears to be largely resistant to melanomagenesis.
This is despite the fact that keratinocyte neoplasms can occur in
this skin appendage, although much less commonly than in the
epidermis. If hair follicle tumors do occur, they are most often
benign (e.g., pilomatrixoma); although some can be malignant
(e.g., pilomatrix carcinoma) (86). This relative resistance of hair
follicles to transform may be due to their inherent capacity to
engage in life-long cycling (i.e., hair follicle cells naturally
regenerate themselves). This may protect them against
tumorigenesis and tumor growth, even in the presence of the
well-known cancer-causing mutations (87). Melanomas do not
typically arise from melanocyte/melanoblast subpopulations in
the hair follicle, despite their life-long proliferative potential.
Very rare exceptions, so-called follicular malignant melanoma,
have been reported, including some arising from the sun-
damaged skin of elderly individuals (88). However, even here,
there is a strong possibility that this melanoma may not be
primary in origin but rather folliculotropic i.e., migrate toward
the hair follicle. Greater attention to these tumors may help us
understand the origin of the melanoma cell, given that cycling
hair follicles exhibit both the highest rate of epithelial cell
proliferation (after the gut), as well as periodic bursts of
melanoblast/melanocyte proliferation (28).

A contrary view has recently been proposed by Sun et al.
These researchers genetically engineered a c-KIT promoter-
driven mouse model so that these mice expressed oncogenic
mutations (a combination of oncogenic BrafV600E induction
and Pten loss) in their hair follicle McSCs (89). They were
able to track their potential involvement in subsequent
melanomagenesis, and found that these mutated melanoblasts,
under the influence of Edn and Wnt signaling, migrated out of
the hair follicle bulge into the overlying (melanocyte-free)
epidermis and became invasive melanomas. Interestingly, these
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melanomas exhibited similar genetic and molecular
characteristics to human melanomas. In another mouse
melanoma model study, UVB-stimulated McSCs were
translocated from the quiescent hair follicle niche into the
epidermis in an inflammation-dependent manner (90).
However, these studies are based on genetically-manipulated
mouse models. It will need to be confirmed whether these are
true models of human melanomagenesis.

Although the involvement of the upper hair follicle in
spreading malignant melanoma has been reported, human
melanoma characteristically progresses within the epidermis
i.e., along the dermal-epidermal junction. This is in marked
contrast to melanomagenesis in mice, which emerge from the
dermis. In a study of 100 cases of primary human cutaneous
melanomas, which also examined growth association with
nearby hair follicles, most cases had melanoma tumor cells
within at least one hair follicle. Of these, the vast majority of
cases showed melanoma cells limited to the infundibulum. Less
than a third of cases with hair follicle association showed
melanoma cells extending a little deeper to the isthmus (the
upper hair follicle between infundibulum and insertion site of
arrector pili muscle). Remarkably, only in one exceptional case
did the researchers detect melanoma cells below the level of the
hair follicle bulge, located in the upper third of the hair follicle
(91). These authors postulated that some ‘physiologic barrier’
might restrict the intra-epithelial spread of melanoma tumor
cells at or beyond the level of the stem cell niche in the hair
follicle bulge.

To our knowledge, clear evidence of melanoma originating
solely within the M-FMU - the home of melanogenically-active
and post-mitotic follicular melanocytes - is lacking (34).
Together, these data suggest that the hair follicle contains a
remarkably effective system of checks and balances, which may
prevent melanocytes from going ‘feral’ (i.e., as in melanoma) or
even from allowing migration of transformed pigment cells deep
into the proliferative part of the growing hair follicle. The nature
of such a physiological barrier remains unknown but may reflect
the existence of an inhibitory ‘chalone,’ reminiscent of some such
chalone that confers a ‘refractory’ state to some resting (telogen)
hair follicles that fail to progress to a ‘competent’ growing stage
during the hair growth cycle (92).
4 WHAT CAN VITILIGO, ALBINISM,
PSORIASIS, AND ALOPECIA AREATA
TELL US ABOUT MELANIN UNIT
INTEGRITY AND MELANOMAGENESIS?

Recently, we have become interested in the fate of melanocytes in
several unrelated skin conditions, with and without an obvious
pigmentary association. Remarkably, some skin disorders that
are characterized by a disturbance in the integrity of their
cutaneous melanin units (e.g., Vitiligo, Albinism, Psoriasis,
Alopecia Areata) may be part ia l ly protected from
melanomagenesis. This might come as a surprise to the reader
after we have placed much emphasis above on the importance of
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maintaining melanin unit integrity to help prevent melanoma
formation. Still, we believe much can be learned from these skin
diseases, especially in how the melanocyte-keratinocyte
symbiotic unit is regulated.

Since the advent of biologics, many melanoma patients treated
with anti-PD-1/PD-L1 antibodies show signs of induced cell death
of their normal epidermis melanocytes (93). This skin
depigmentation has more than a passing resemblance to the
presumptive autoimmune disorder vitiligo. In the former
scenario, it appears to result from drug-associated induction of a
cytotoxic T-cell mediated anti-melanoma immune response,
where target antigens are expressed on both melanoma cells and
normal melanocytes (e.g., MART-1, GP100, TRP1-2, tyrosinase).
These observations suggest that melanocytes and derived
melanoma cells share much immunologically, but also that cell
death could possibly be leveraged across both normal melanocytes
and melanoma, as seen in this treatment ‘spill over’ (94).

However, not all melanocytes are deleted in the leucodermic
epidermis of vitiligo patients, even after several decades (79),
suggesting that these melanocytes can somehow avoid immune-
mediated detection or at least immune-mediated deletion. That
leucodermic epidermis can be repigmented in glabrous (e.g., lip) as
well as hairy skin suggests that not all repigmenting melanocytes
need to emerge from the upper hair follicle (95, 96). Perhaps
counter-intuitively, vitiligo epidermis is also remarkably resistant
to actinic damage and skin cancer (97, 98). Patients with vitiligo
may have 3-fold fewer skin cancers than their healthy partners.
Importantly, this is true not only for keratinocyte cancers
(squamous cell carcinoma and basal cell carcinoma) (99) but
also for melanoma. Indeed, if skin cancer is ever detected in vitiligo
patients, this is usually in their ‘normally pigmented skin (100).
Fascinating work by Schallreuter and colleagues reported evidence
for upregulated wild-type p53 together with p76 (MDM2); major
players in the control of DNA damage/repair, suggesting their
involvement in the prevention of photodamage and skin cancer in
vitiligo (101).

Patients with the hypopigmentary disorder oculocutaneous
albinism, which unlike vitiligo, presents a normal density of
melanocytes in their cutaneous melanin units, are by contrast
very susceptible to keratinocyte skin cancers. Some die of this
complication. However, the occurrence of melanomas in South
African Albino patients has been reported to be very rare, with
most of the published studies reporting significantly less than 1%
melanoma incidence in this patient group (102, 103). On the
surface, this may appear paradoxical given that eumelanin is
photoprotective, and its absence or reduction may be expected
to increase the risk of UVR-associated DNA mutations
characteristic of melanoma. As perhaps expected, when
melanoma is found in these albino patients, it is usually
amelanotic. There may be several issues at play here, however.
Residual pigment or altered melanogenesis chemistry in these
patients could represent a risk factor for amelanotic melanoma
(104). However, melanoma incidence among Black South Africans
is broadly like its incidence in Black South African albinos, also at
lower than 1%, in contrast to a lifetime risk of 2.6% for melanoma
in Caucasians (105). Thus, black skin’s protection frommelanoma
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may not be due solely to an increased absolute amount of melanin
pigment, but rather their melanocytes may have some additional
(epigenetic) trait that confers them protection from melanoma,
even in the absence/reduction of eumelanin.

Another interesting disorder where the integrity of the melanin
unit is disturbed but where the skin also appears to be protected
from melanomagenesis is the common hyper-proliferative
dermatosis psoriasis (106, 107). We have recently reported that
melanocytes can indeed proliferate in the epidermis of lesional and
perilesional psoriasis (108). This was quite unexpected as
melanocytes exist in a post-mitotic state in non-neoplastic skin.
Epidermal melanocyte proliferation in psoriasis may be associated
with the massive keratinocyte hyperplasia characteristic of
psoriasis, which drives extreme elongation of epidermis rete
ridges with a consequent massive expansion of the basal layer
surface area wherein melanocytes reside. In that way, melanocyte
proliferation may be a compensatory response to such rete ridge
elongation (due to the keratinocyte hyperplasia) i.e., to maintain
EMU’s stable melanocyte-keratinocyte ratio in the basal layer of
the epidermis. It is also possible the psoriasis-associated immune-
mediated stimulation of the epidermis may (transiently) shift
melanocytes out of their usual post-/non-mitotic state.
Regardless, it may be considered reasonable that proliferating
melanocytes in a highly-inflamed psoriatic epidermis may
exhibit an increased risk of progressing to melanoma.
Remarkably such an increased risk of melanomagenesis does not
appear to occur in these patients. This is even more remarkable as
psoriasis patients often experience extended periods of PUVA
(Psoralen and UVA) treatment (107). Treated psoriatic skin can
exhibit increased numbers of senescent keratinocytes, which
contribute to a field effect in the epidermis via secretion of
cellular factors. This may help prevent tumor progression in
adjacent cells. It would be interesting to explore the role of such
cellular factors as anti-proliferative and anti-angiogenic factors in
a pre-malignant human epidermis environment.

Lastly, alopecia areata, a non-scarring hair loss disorder, also
shows several pigmentary anomalies. There is often a preferential
targeting of pigmented hair and a relative sparing of white hair in
these patients. While part of the FMU is selectively targeted in this
disease [i.e., the M-FMU (31)], the rate of melanoma in these
patients is reported to be low (109). Paradoxically, this observation
may be linked to a melanocyte-targeted immune response in the
alopecia areata-affected hair follicle (35). Indeed, it is postulated that
localized hair depigmentation in alopecia, like vitiligo cases, could be
an example of antigen-specific immunity in melanoma patients. In
these patients, hair loss might be a side effect of T-lymphocyte-
mediated cross-reactivity between tumor cells and protected
melanocytes of the hair bulb (110). Clearly, a lot remains to be
learned about the immunological response to melanocytes in
different skin compartments and across different skin disorders.
5 CONCLUSIONS

The collective understanding of melanoma pathogenesis and
genomics has expanded dramatically in the past few decades,
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leading to a marked increase in our knowledge of melanocyte
biology and the identification of potential targets for treatments.
Despite the significant progress in the management of this
disease, melanoma still has a poor prognosis for many patients.
Therefore, an in-depth awareness of the journey from the tumor
originator cell (of the melanocytic lineage) to the malignant
melanoma cell, and the selective pressures that operate on them
during the early phases of transformation, is needed. This is due
in part to the complexity of melanoma genetics involving
variable gene-gene interactions and several immune escape
mechanisms, but it is beyond doubt that altered cell-cell
communication plays a critical role in melanoma development.
With regards to melanomagenesis the interaction of the
melanocytes and keratinocytes in the symbiotic relationship of
the EMU is crucial to the maintenance of skin homeostasis.

In this review, we focus on the early phases of
melanomagenesis, stepping back to consider the role of (un)
stable melanin units (EMU) on melanocyte oncogenic
transformation. Melanocytes of the human skin epidermis are
highly resistant to cell-death by apoptosis, contrasting with
melanogenically-active melanocytes in the hair follicle (FMU).
There appear to be some protective mechanisms in the hair follicle
that limit genomic instability and melanomagenesis.

In summary, the very significant heterogeneity of cutaneous
melanoma tumors appears to derive from the existence of
multiple melanocyte types. These may exist either as distinct
cell subpopulations or as cells in different stages of melanocyte
differentiation. Both are likely to relate directly to their location
Frontiers in Oncology | www.frontiersin.org 11
within the different skin melanin units. Greater knowledge of
how to target unstable melanocytes may provide new avenues for
melanoma prevention and treatment.
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