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Abstract: CSMD1 is a gene involved in various biological processes and is highly expressed
in the central nervous system, where it plays a key role in complement activity, brain
circuit development, and cognitive function. It has been implicated as a susceptibility
gene for schizophrenia and a causative factor in developmental epileptic encephalopathy,
neurodevelopmental disorders, and intellectual disability. However, no MIM phenotype
number has been assigned to CSMD1 for a specific disorder. Here, we report an individual
presenting with moderate intellectual disability, anxiety disorder, obsessive–compulsive
personality traits, and facial dysmorphisms. Trio-based whole-exome sequencing (WES)
identified two heterozygous CSMD1 variants, c.8095A>G and c.5315T>C, both classified
as variants of uncertain significance (VUS) according to ACMG criteria. Computational
analysis using the DOMINO tool supported an autosomal recessive inheritance model
for CSMD1. This study contributes to the growing evidence linking CSMD1 to neurode-
velopmental phenotypes, highlighting the need for further investigations to clarify its
pathogenic role.

Keywords: complement activity; whole-exome sequencing; heterozygous variants; neu-
rodevelopmental disorders

1. Introduction
Complement proteins play a crucial role in brain development and function, as widely

documented. Complement signaling is involved in both neuroprotection and the patho-
genesis of neurological diseases, with dysregulation contributing to various neurodevel-
opmental and neurodegenerative disorders [1,2]. Various proteins traditionally linked
to the complement cascade in innate immunity have been found to play crucial roles in
brain development. Notably, the classical complement cascade is crucial for normal post-
natal synaptic pruning, with the C3b–CR3 interaction enabling microglial engulfment of
low-activity synapses [3].

CUB and Sushi domain-containing protein 1 (CSMD1) stands out as a key complement-
regulatory protein with multiple domains, highly expressed in both the central nervous
system (CNS) and epithelial tissues [4]. CSMD1 is one of the largest genes in the human
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genome, spanning over 2 million base pairs and comprising 70 exons. It occupies almost
the entire chromosomal band 8p24.3. The genomic sequence of CSMD1 is highly GC-poor,
with a GC content predominantly ranging between 35% and 40% (UCSC Genome Browser:
https://genome.ucsc.edu, accessed on 9 March 2025). This nucleotide composition, which
is typical of chromosomal regions harboring tissue-specific genes, is highly conserved
during evolution [5,6]. Indeed, CSMD1 is primarily expressed in the brain and testes, as
confirmed by transcriptomic analyses (Figure 1).
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potential tyrosine phosphorylation site, suggesting a role in regulating cellular functions. 
While the precise mechanisms of CSMD1 remain unclear, it has been implicated in various 
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and cancer progression [9].

As documented, somatic mutations within this gene have been associated with 
various types of cancer [10–12]. Nevertheless, CSMD1 was recently associated with 
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Genome Browser (http://genome.ucsc.edu, accessed on 9 March 2025).

Further investigations have shown that CSMD1 is enriched in neurons, particularly
in cortical and hippocampal regions, suggesting a potential role in synaptic function and
neuronal connectivity [4,7]. Additionally, its expression in the testes correlates with stages
of spermatogenesis [8], although its precise function in germ cell development remains to
be elucidated.

The CSMD1 protein is characterized by a large membrane-bound structure that in-
cludes a short single transmembrane domain. This transmembrane region contains a
potential tyrosine phosphorylation site, suggesting a role in regulating cellular functions.
While the precise mechanisms of CSMD1 remain unclear, it has been implicated in various
biological processes, including development, complement regulation, neurodevelopment,
and cancer progression [9].

As documented, somatic mutations within this gene have been associated with various
types of cancer [10–12]. Nevertheless, CSMD1 was recently associated with cognitive
function, complement activity and immediate episodic memory [13].

Several studies highlight the potential role of CSMD1, which is considered a statisti-
cally strong risk factor for schizophrenia [14–17]. In fact, low expression levels of CSMD1
have been detected in peripheral blood mononuclear cells in individuals with schizophre-
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nia, in comparison to healthy controls [17]. A previous study in mice showed that the
disruption of Csmd1 induced behaviors reminiscent of blunted emotional responses, anxiety,
and depression. These observations suggest an influence of the CSMD1 schizophrenia
susceptibility gene on psychopathology and endophenotypes of the negative symptom
spectra [18].

As recently documented, mice lacking Csmd1 exhibited increased levels of the com-
plement component C3, greater colocalization of C3 with presynaptic terminals, fewer
retinogeniculate synapses, and disrupted segregation of eye-specific retinal inputs to the
visual thalamus during the critical period of complement-dependent circuit refinement [19].
In the central nervous system (CNS), C3 serves as a key effector with diverse functions,
acting as a potent modulator of astrocyte activity and playing critical roles in inflammation,
neurodegeneration, and neuroprotection [20–23].

This study aims to explore a potential association between CSMD1 and the broad spec-
trum of symptoms observed in the examined individual harboring two genetic variants in
compound heterozygosity, further supporting existing evidence in the literature regarding
the gene’s pathogenicity.

2. Results
2.1. Clinical Data

The individual examined in this study is the child of non-consanguineous parents.
The pregnancy progressed physiologically until the seventh month; at seven months and
two weeks, during a routine check-up, a cesarean section was scheduled due to the absence
of a fetal heartbeat. After birth, the patient was placed in an incubator and experienced
sucking difficulties, failing to latch onto the breast. The birth weight was 2.6 kg, the length
was 47 cm, and cyanosis at birth was reported. At nine days of life, pulmonary valve
stenosis was diagnosed, followed by the detection of a small atrial septal defect. The
patient began walking shortly after 15 months, started speech therapy at three years old,
developed structured language around seven years, and achieved sphincter control at six
years. Learning difficulties were reported. At ten months, episodes of loss of consciousness
occurred, and valproic acid was administered until the age of four years. The mother
reported frequent infectious and inflammatory episodes. Genetic analyses, including
karyotyping, array-CGH, and MLL2 gene molecular analysis, were all negative. At clinical
examination, the patient weighed 79 kg (75th–90th percentile), measured 166 cm in height
(3rd–10th percentile), with a BMI of 28.73 kg/m2, indicating excess weight, and a head
circumference of 57 cm (50th–97th percentile). Their general conditions were good, but
notable dysmorphic features included a flat occiput, a square-shaped face, a prominent
chin, downward-slanting palpebral fissures with mild eversion of the outer third of the
lower eyelid, thick eyebrows, and slightly anteriorly rotated ears. Pulmonary, cardiac,
abdominal, and genital examinations were unremarkable, and the patient exhibited an
autonomous gait with normal muscle tone, trophism, and strength. On the Token Test,
verbal comprehension was below the expected level for educational attainment, scoring
more than two standard deviations below the mean.

2.2. Genetic Variant Detection

Whole-exome sequencing analysis identified the heterozygous variants c.5315T>C
p.Leu1772Pro and c.8095A>G p.Arg2699Gly within the CSMD1 (NM_033225.6) gene
(Figure 2).
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(chromosomal position 3,189,995 A>G, corresponding to c.5315T>C in the NM_033225.6 transcript) 
and exon 53 (chromosomal position 3,000,066 T>C, corresponding to c.8095A>G in the NM_033225.6 
transcript); (b) graphical representation of the whole-exome sequencing (WES) analysis performed 
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S1). The variant c.5315T>C was classified as “Uncertain significance”, according to the 
ACMG guidelines and following the criteria PP4, PM2, and PP3. With regard to the vari-
ant c.8095A>G, it was described as “Uncertain significance” following the criteria PP4, 
PM2, and PP3. The mutation p.Leu1772Pro was localized within the Sushi 10 domain (aa 
1739-1800), while the mutation p.Arg2699Gly was localized within the Sushi 18 domain 
(aa 2678-2735) (Figure 3). 

Figure 2. Next-generation sequencing for the identification of the c.5315T>C and c.8095A>G variants
in compound heterozygosity within the CSMD1 (NM_033225.6) gene: (a) graphical representation
of the chromosomal localization of the CSMD1 gene and the specific variants, located in exon 34
(chromosomal position 3,189,995 A>G, corresponding to c.5315T>C in the NM_033225.6 transcript)
and exon 53 (chromosomal position 3,000,066 T>C, corresponding to c.8095A>G in the NM_033225.6
transcript); (b) graphical representation of the whole-exome sequencing (WES) analysis performed
on the patient, his mother, and his father. The figure has been adapted from the Integrative Genomics
Viewer (IGV) software version 2.19.4.

The genetic variants were confirmed with Sanger sequencing (Supplementary Figure S1).
The variant c.5315T>C was classified as “Uncertain significance”, according to the ACMG
guidelines and following the criteria PP4, PM2, and PP3. With regard to the vari-
ant c.8095A>G, it was described as “Uncertain significance” following the criteria PP4,
PM2, and PP3. The mutation p.Leu1772Pro was localized within the Sushi 10 domain
(aa 1739-1800), while the mutation p.Arg2699Gly was localized within the Sushi 18 domain
(aa 2678-2735) (Figure 3).

2.3. Protein Structure Prediction and Hydrogen Bonding Alterations

Protein model predictions for the wild-type and both mutated proteins revealed slight
differences in the number of hydrogen bonds. Specifically, the wild-type protein formed
a total of 2552 hydrogen bonds, while the p.Leu1772Pro mutant formed 2548 hydrogen
bonds. In comparison, the p.Arg2699Gly mutant formed 2558 hydrogen bonds.

As predicted, the wild-type residue Leu1772 formed two hydrogen bonds with Val1779
at distances of 2.952 Å and 2.769 Å, respectively, while Arg2699 formed hydrogen bonds
with Tyr2698 (3.566 Å) and Cys2720 (2.841 Å) (Figure 4). In contrast, the mutated Pro1772
formed only a single hydrogen bond with Val1779 (3.234 Å), and the mutated Gly2699
retained just one hydrogen bond with Cys2720 (2.877 Å), indicating a reduction in hydrogen
bonding interactions upon mutation.
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Figure 3. Structure prediction of the wild-type and both mutated CSMD1 proteins. The rainbow
palette of color has been assigned from the starting amino acids (blue) to the final amino acids
(red). (a) Structure prediction of the wild-type CSMD1 protein. (b) Graphical representation of the
domain organization of the CSMD1 protein. This Figure has been adapted from a previous work [24].
(c) Structure prediction of the CSMD1 protein with the mutation p.Leu1772Pro. (d) Structure pre-
diction of the CSMD1 protein with the mutation p.Arg2699Gly. All the structures of CSMD1 have
been predicted using the AlphaFold algorithm and modeled using the software UCSF ChimeraX
version 1.8.
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Figure 4. Close up of the hydrogen bonds’ interaction involving the wild-type Leu1772 and Arg2699
residues and the mutated Pro1772 and Gly2699. (a) Focus on the hydrogen bond interactions
involving the wild-type residue Leu1772 of CSMD1 protein. As predicted, it engaged two hydrogen
bonds with Val1779 at distances of 2.952 Å and 2.769 Å, respectively. (b) Close up on the mutated
Pro1772 which engages a hydrogen bond interaction with the residue Val1799 at the distance of
3.234 Å. (c) Hydrogen bonds formed between the wild-type Arg2699 and both Tyr2698 (3.566 Å)
Cys2720 (2.841 Å), respectively. (d) Interaction between the mutated Gly2699 and the residue Cys2720
(2.877 Å).
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2.4. Structural Alignment and Stability Predictions

The protein alignment comparing the wild-type structure model with both mutated
structures showed notable differences between the wild-type and the mutated structures
(Figure 5). Specifically, the alignment resulted in an RMSD of 1.157 Å for 560 pruned atoms.
When considering all 3564 residues, the alignment yielded an overall RMSD of 44.211 Å.
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Figure 5. The structural alignment comparing the wild-type protein (red) with the mutated
p.Leu1772Pro (blue) and p.Arg2699Gly (light green) CSMD1 proteins: (a) wild-type CSMD1 protein
structure (red); (b) predicted structure of the p.Leu1772Pro mutant (blue); (c) predicted structure
of the p.Arg2699Gly mutant (light green); and (d) superimposed structures showing alignment
between wild-type and mutant proteins, with the square bracket indicating the most conserved
structural region across all variants. Structural predictions were derived from AlphaFold models,
and alignments were performed using UCSF ChimeraX (version 1.8).

Both MuPRO and mCSM tools predicted a decrease in protein stability as a consequence
of the observed mutations. Specifically, MuPRO estimated a ∆∆G of −1.661 kcal mol−1

for the p.Leu1772Pro mutation and −1.914 kcal mol−1 for the p.Arg2699Gly mutation,
indicating reduced stability. Similarly, mCSM predicted a ∆∆G of −0.892 kcal mol−1 and
−0.347 kcal mol−1 for p.Leu1772Pro and p.Arg2699Gly, respectively, further supporting
the destabilizing effect of these variants.

2.5. Predicted Structural Disorder

PONDR analysis predicted a significant increase in structural disorder as a conse-
quence of the p.Leu1772Pro mutation in the CSMD1 protein compared to the wild-type
(Figure 6).
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Figure 6. PONDR analysis predicted the structural disorder of the CSMD1 protein as a consequence
of both identified variants. The blue line represents the VLXT score variation in the wild-type protein,
while the orange line indicates the VLXT score variation in the p.Leu1772Pro mutant, showing an
increased structural disorder (VLXT score > 0.50) affecting residues 1777–1782. The green dashed
line marks the mutation site at position 1772. The red line represents the VLXT score variation in
the p.Arg2699Gly mutant, which did not exhibit any notable differences compared to the wild-type
protein. The purple dashed line indicates the mutation site at position 2699.

Specifically, the mutation resulted in an elevated disorder, indicated by a VLXT score
greater than 0.50, affecting residues 1777–1782, which was not observed in the wild-type
protein. In contrast, the PONDR disorder prediction for the mutation p.Arg2699Gly showed
no notable differences compared to the wild-type protein.

2.6. Allele Frequency and Evolutionary Conservation

According to the GnomAD database, both identified genetic variants exhibited low
allele frequencies. Specifically, the c.5315T>C variant had a frequency of 0.0000006252,
detected in only 1 allele out of 1,599,564 total alleles, in a female of European non-Finnish
ancestry. Similarly, the c.8095A>G variant was found in 4 alleles (1 in an individual of
African ancestry and 3 in European non-Finnish females) out of 1,603,262 total alleles,
corresponding to an allele frequency of 0.000002738. Additionally, the DOMINO tool
indicated a highly probable autosomal recessive inheritance pattern for the CSMD1 gene,
with a score of 0.254.

The sequence alignment of the human CSMD1 protein with those of other mammals
revealed a sequence identity ranging from 81% with Sus scrofa to 99% with Pan troglodytes
(Figure 7). Both the wild-type Leu1772 and Arg2699 residues are highly conserved across
mammalian species, indicating their potential functional significance.



Int. J. Mol. Sci. 2025, 26, 4297 8 of 14

Int. J. Mol. Sci. 2025, 26, x FOR PEER REVIEW 9 of 16 
 

 

 

Figure 7. Sequence identity analysis of the CSMD1 protein across different species, including Homo 
sapiens (HUMAN), Sus scrofa (PIG), Gorilla gorilla (GORGO), Macaca mulatta (MACMU), Pan troglo-
dytes (PANTR), Mus musculus (MOUSE), and Cavia porcellus (CAVPO). (a) Heatmap depicting the 
sequence identity of the CSMD1 protein in Homo sapiens compared to the six aforementioned spe-
cies. (b) Graphical representation of the amino acid positions affected by the mutations, highlighting 
the wild-type Leu1772 and Arg2699 residues. These specific residues are marked with red lines. 

3. Discussion 
In this study, we report an individual displaying moderate intellectual disability, 

anxiety disorder, obsessive–compulsive personality traits, and facial dysmorphisms. WES 
analysis performed in the examined patient and both healthy parents identified the com-
pound heterozygous genetic variants c.5315T>C and c.8095A>G. Both the variants were 
described as “uncertain significance” following the ACMG criteria. According to the 
DOMINO database, the CSMD1 gene follows an autosomal recessive inheritance pattern. 
Data from the GnomAD database indicate that both variants have a very low allele fre-
quency in the human population, suggesting that these mutation sites are not under 
strong selective pressure. To date, this gene does not have an MIM phenotype entry in the 
OMIM database associated with a specific condition. As recently documented, biallelic 
variants found in this gene are implicated in a neurodevelopmental disorder with intel-
lectual disability and variable cortical malformations [24]. In the individual examined in 
this study, notable dysmorphic facial features included a flat occiput, a square-shaped 
face, a prominent chin, downward-slanting palpebral fissures with mild eversion of the 
outer third of the lower eyelid, thick eyebrows, and slightly anteriorly rotated ears. As 

Figure 7. Sequence identity analysis of the CSMD1 protein across different species, including
Homo sapiens (HUMAN), Sus scrofa (PIG), Gorilla gorilla (GORGO), Macaca mulatta (MACMU), Pan
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3. Discussion
In this study, we report an individual displaying moderate intellectual disability, anx-

iety disorder, obsessive–compulsive personality traits, and facial dysmorphisms. WES
analysis performed in the examined patient and both healthy parents identified the com-
pound heterozygous genetic variants c.5315T>C and c.8095A>G. Both the variants were
described as “uncertain significance” following the ACMG criteria. According to the
DOMINO database, the CSMD1 gene follows an autosomal recessive inheritance pattern.
Data from the GnomAD database indicate that both variants have a very low allele fre-
quency in the human population, suggesting that these mutation sites are not under strong
selective pressure. To date, this gene does not have an MIM phenotype entry in the OMIM
database associated with a specific condition. As recently documented, biallelic variants
found in this gene are implicated in a neurodevelopmental disorder with intellectual dis-
ability and variable cortical malformations [24]. In the individual examined in this study,
notable dysmorphic facial features included a flat occiput, a square-shaped face, a promi-
nent chin, downward-slanting palpebral fissures with mild eversion of the outer third of
the lower eyelid, thick eyebrows, and slightly anteriorly rotated ears. As reported, the
intronic variant rs2740931 has been associated with the learning phase of verbal memory
tests [13], and our patient demonstrated verbal comprehension below the expected level
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for their educational attainment. Furthermore, he underwent speech therapy at three years
old, and learning difficulties were reported.

This study aims to explore a potential association between CSMD1, and the wide array
of symptoms observed in the examined patient. However, we cannot rule out the possibility
that other undetected genetic variants or epigenetic modifications may contribute to the
patient’s phenotype. In this context, we emphasize that both karyotype analysis and array
CGH did not reveal chromosomal abnormalities in the examined individual.

As indicated in the gene expression database GTEx, CSMD1 shows high expression
patterns in the human brain, specifically, in the amygdala, anterior cingulate cortex, frontal
cortex, hippocampus, hypothalamus, nucleus accumbens (basal ganglia), and spinal cord.

On the other hand, as documented in the BrainRNAseq database, CSMD1 displays
the highest expression pattern in neurons (Figure 8).
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Figure 8. CSMD1 expression profile in human brain across different cell types. Data are expressed
in fragments per kilo base of transcript per million mapped fragments (FPKMs). The dataset used
in this study was obtained from previously published work [25] and is publicly available in the
BrainRNAseq repository (https://brainrnaseq.org) (accessed on 7 February 2025). Data analysis was
performed using R Studio (version 3.4.3) with the ggplot2 package.

Within this context, we consider it plausible that the mutation altered the gene ex-
pression profile of CSMD1 across the human brain, potentially disrupting its complement
inhibition activity. Furthermore, supported by recent documentation [26], the dysregulation
of CSMD1 complement components may contribute to psychosis and is associated with
cognitive function. Also, as recently documented, CSMD1 has been described as a causative
gene of developmental and epileptic encephalopathy and generalized epilepsies [27]. It is
worth mentioning that, despite CSMD1 having been described as a candidate susceptibility
gene for schizophrenia, its specific role in neurodevelopmental disorders is unclear [15,16].
To elucidate this mechanism, a previous model was proposed and assessed through ex-
perimental studies in mice [19]. This model involved the inhibition of the complement
cascade in neural tissues mediated by CSMD1. As demonstrated, knockout of the CSMD1
gene led to increased complement activity in the brain, resulting in the accumulation of
the complement protein C3, which, in turn, contributed to the development of psychiatric
disorders. Figure 9 summarizes the previously mentioned model.

According to the HGMD database, 2/3 of the 160 genetic variants identified in the
CSMD1 gene have been associated with neurodevelopmental disorders. Furthermore, most
of the annotated variants have been classified as likely disease-causing mutations (DM?)
for their uncertain significance.

https://brainrnaseq.org
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Figure 9. Synaptic model of complement activity regulated by CSMD1. As previously documented,
knockout of the CSMD1 gene in mice led to the dysregulation of complement activity, resulting
in increased and uncontrolled C3 deposition [19]. This figure has been adapted from a previous
study [19].

The mutations p.Leu1772Pro and p.Arg2699Gly were localized within the Sushi 10
(aa 1739-1800) and 18 domains (aa 2678-2735), respectively (Figure 3). As annotated in
ProSite database, these specific domains (PRU00302) are involved in many recognition
processes, including the binding of several complement factors to fragments C3b and C4b.
Furthermore, both mutations occurred within the extracellular protein region (aa 27-3487).
It is worth noting that both mutated amino acids are highly conserved across different
species (Figure 7b), indicating their evolutionary significance. This strong conservation
suggests that these residues play a crucial functional role, and any alteration may disrupt
essential protein interactions or biological processes. Evolutionary conservation often
implies selective pressure to maintain the integrity of these amino acids, further supporting
their potential impact on protein function when mutated.

Protein structure predictions using the AlphaFold algorithm revealed differences in
both mutated structures compared to the wild-type protein. Protein model predictions also
indicated slight differences in the number of hydrogen bonds. Specifically, the total number
of hydrogen bonds showed minor variations compared to the wild-type structure. However,
notable differences were observed at the mutated residues Pro1772 and Gly2699 when
compared to the wild-type residues Leu1772 and Arg2699. In particular, both mutations
resulted in the loss of one hydrogen bond at the mutated residue compared to the respective
wild-type amino acid (Figure 3). Despite the low variation in the total number of hydrogen
bonds, structural alignment of both mutated proteins with the wild-type protein revealed
notable differences in folding. Across the total of 3564 residues, only 560 amino acids were
aligned across all three structures.

As predicted by MuPRO and mCSM tools, both the observed mutations caused a
destabilizing effect within the protein structure. On the other hand, the prediction of the
structural disorder carried out with PONDR, predicted a notable increase in the protein
disorder comprising residues 1777–1782, as results of the mutation p.Leu1772Pro.

This work strengthens the foundations related to the potential association, corrobo-
rated by the literature, between CSMD1 and neuropsychiatric disorders. Nevertheless, we
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emphasize that functional studies are imperative for this purpose and for assigning an
MIM phenotype code associating this gene to a specific phenotype.

4. Materials and Methods
4.1. Library Preparation and Whole-Exome Sequencing (WES)

Genomic DNA was obtained from the patient and their parents’ peripheral blood
leukocytes, as previously described [28]. The preparation of libraries (TRIOS) and exome
enrichment were carried out using the Agilent SureSelect V7 Kit (Santa Clara, CA, USA), in
accordance with the manufacturer’s instructions. The sequencing run was performed by
the Illumina HiSeq 3000 instrument (San Diego, CA, USA). The method adopted enabled
the achievement of 97% of regions covered at least 20×. The unveiled variants were filtered
based on (i) a recessive/de novo/X-linked pattern of inheritance and (ii) allele frequencies
(minor allele frequency, MAF) <1%, using, as a reference, the following genomic datasets:
1000 Genomes, ESP6500, ExAC, GnomAD. The reference genome used for this study
was HG38. Both variants were confirmed through conventional Sanger sequencing using
the BigDyeTM Terminator v1.1 Cycle Sequencing Kit (Life Technologies, Carlsbad, CA,
USA) with the SeqStudio Genetic Analyzer instrument (Thermo Fisher Scientific, Waltham,
MA, USA).

4.2. Variant Identification and Filtering

The variants were searched on the Human Gene Mutation Database (HGMD Pro-
fessional 2024.4) (https://www.hgmd.cf.ac.uk/ac/index.php) (accessed on 7 February
2025). The notation “(DM?)” indicates a variant classified as likely disease-causing but
with uncertain pathogenicity, as documented in [29]. Furthermore, they were filtered using
Franklin (Genoox, Tel-Aviv, Israel) (https://franklin.genoox.com) (accessed on 4 February
2025). The described variants were classified according to the “American College of Medical
Genetics” (ACMG) guidelines [30].

4.3. Inheritance Pattern and Allele Frequencies

The inheritance pattern of the CSMD1 gene was determined using the DOMINO web
server (https://domino.iob.ch/) (accessed on 7 February 2025). Allele frequencies of both
variants were retrieved from the GnomAD database v4.1.0 (https://gnomad.broadinstitute.
org/) (accessed on 7 February 2025).

4.4. Gene Expression and Functional Domain Analysis

The genetic expression of the CSMD1 gene in human tissues was analyzed using GTEx
(https://www.gtexportal.org/) (accessed on 7 February 2025). The functional domains
of the CSMD1 protein were examined using the Uniprot (https://www.uniprot.org/)
(accessed on 7 February 2025) and Prosite (https://prosite.expasy.org/) (accessed on 7
February 2025) databases.

4.5. Impact of Mutations on Protein Structure

To assess the thermodynamic impact of the identified mutations on the CSMD1 protein
structure, the MuPRO tool (https://mupro.proteomics.ics.uci.edu/) (accessed on 7 Febru-
ary 2025) and mCSM (https://biosig.lab.uq.edu.au/mcsm/) (accessed on 7 February 2025)
were used. Additionally, the PONDR tool (http://pondr.com/) (accessed on 7 February
2025) was utilized to study the stability changes resulting from the mutations within the
CSMD1 structure.

https://www.hgmd.cf.ac.uk/ac/index.php
https://franklin.genoox.com
https://domino.iob.ch/
https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
https://www.gtexportal.org/
https://www.uniprot.org/
https://prosite.expasy.org/
https://mupro.proteomics.ics.uci.edu/
https://biosig.lab.uq.edu.au/mcsm/
http://pondr.com/
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4.6. Protein Structure Prediction and Modeling

The structures of the CSMD1 proteins were predicted using the AlphaFold server
(https://alphafoldserver.com/) (accessed on 7 February 2025), selecting the “best model”.
These structures were modeled using UCSF ChimeraX software version 1.8. The predicted
alignment error (PAE) heatmaps for the three top-ranked structural models are presented
in Supplementary Figure S2.

4.7. Sequence Alignment and Phylogenetic Analysis

The sequence alignment of the human CSMD1 protein with six mammalian species
(Sus scrofa, Macaca mulatta, Mus musculus, Pan troglodytes, Gorilla gorilla, and Cavia porcellus)
was performed using BioEdit version 7.2 (Software Informer, https://bioedit.software.
informer.com/7.2/ (accessed on 7 February 2025)) [31]. This software was also used to
calculate the identity matrix. The protein alignment data were processed to generate a
heatmap with a dendrogram using R Studio version 3.4.3 and the pheatmap package.

4.8. Brain Expression Profile Analysis

The expression profile of CSMD1 across various human brain organs was retrieved
from the Brain RNAseq database (https://brainrnaseq.org/) (accessed on 7 February 2025).
The dataset included the following cell populations: fetal astrocytes (n = 6), astrocytes
mature (n = 12), endothelial (n = 2), microglia (n = 3), neurons, and oligodendrocytes
(n = 5). Data visualization was performed using the ggplot2 package in R Studio ver-
sion 3.4.3, generating a comparative expression barplot.

5. Conclusions
Whole-exome sequencing (WES) analysis identified two genetic variants, c.5315T>C

and c.8095A>G, in the CSMD1 gene in compound heterozygosity in an individual present-
ing with moderate intellectual disability, anxiety disorder, obsessive–compulsive personal-
ity traits, and facial dysmorphisms. While intronic variants of CSMD1 have previously been
associated with schizophrenia, biallelic exonic variants have been linked to neurodevelop-
mental disorders. This study further supports the potential association between CSMD1
and neurodevelopmental phenotypes. We hope that this work will inspire further research
aimed at elucidating the molecular mechanisms of CSMD1, which remain largely unknown.
Additionally, we anticipate that an MIM phenotype number will eventually be assigned
to CSMD1, associating it with neurodevelopmental disorders and an autosomal recessive
inheritance pattern.
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