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Abstract: Bioactive peptides may exert beneficial activities in living organisms such as the regulation
of glucose metabolism through the inhibition of alpha amylases. Algae and cyanobacteria are gaining
a growing interest for their health-promoting properties, and possible effects on glucose metabolism
have been described, although the underlying mechanisms need clarification. This study proposes a
computer-driven workflow for a proteome-wide mining of alpha amylase inhibitory peptides from
the proteome of Chlorella vulgaris, Auxenochlorella protothecoides and Aphanizomenon flos-aquae. Overall,
this work presents an innovative and versatile approach to support the identification of bioactive
peptides in annotated proteomes. The study: (i) highlighted the presence of alpha amylase inhibitory
peptides within the proteomes under investigation (including ELS, which is among the most potent
inhibitory tripeptides identified so far); (ii) mechanistically investigated the possible mechanisms
of action; and (iii) prioritized further dedicated investigation on the proteome of C. vulgaris and
A. flos-aquae, and on CSSL and PGG sequences.

Keywords: bioactive peptides; pancreatic alpha amylase inhibitors; anti-nutrients; bioinformatics;
molecular modeling; in silico digestion

1. Introduction

Bioactive peptides are short amino acid sequences (from two to twenty residues) exert-
ing biological activity in living organisms once they are released from the protein in which
they are encrypted [1]. They cover a broad spectrum of presumed biological properties
including anti-hypertensive actions, antioxidant effects, regulation of cholesterol level
and glucose metabolism [2], although their actual in vivo activity still lacks a consensus.
Concerning the capability to regulate glucose metabolism, the inhibition of pancreatic alpha
amylase is among the key early mechanisms underpinning the possible hypoglycemic
properties of bioactive peptides [3]. Specifically, the inhibition of alpha amylases can impair
the overall metabolism, eventually affecting the growth of animals when inhibitors are
potent and given at high levels. However, inhibitory peptides have also been described
as beneficial when used to co-treat obesity or diabetes [4–6]. Therefore, the identification
of alpha amylase inhibitory peptides in food is fundamental both to better understand
the effects of a given food on human health and to rationally design functional foods,
ingredients, and targeted nutritional interventions.

Nowadays, the identification and characterization of bioactive sequences in food is still
costly and time-consuming as it is based on high-throughput methods coupling advanced
analytical approaches and biological assays [7,8]. However, in silico and bioinformatics
methodologies have been widely used in the last decade, together or as stand-alone tech-
niques, to support the high-throughput analysis of proteins and derived peptides [9–13].
These approaches may succeed in mining bioactive peptides of food origin supporting the
straightforward and high-throughput identification of sequences active over a variety of
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targets and systems [14–16], also as stand-alone techniques [17–20]. In this context, the
present work aimed at developing a computational workflow integrating bioinformatics
and molecular modeling to mine pancreatic alpha amylase inhibitory peptides from the
annotated proteome of Aphanizomenon flos-aquae (AFA; Klamath algae), Chlorella vulgaris
and Auxenochlorella protothecoides. Based on their presumed beneficial effects on living
organisms, the cyanobacteria AFA and the two microalgae C. vulgaris and A. protothecoides
have a long history as a food source or as a source of nutraceuticals and functional ingre-
dients for food and feed [21,22]. Particularly, potential antidiabetic properties have been
described [23–25], although the comprehension of the underlying mechanisms and the pro-
filing of the bioactive chemical complex are still far from being clarified. Based on their high
protein content (up to 70% of algal biomass) [21,26], it is likely that algae and cyanobacteria
also contain alpha amylase inhibitory peptides with possible consequences on the modula-
tion of glucose metabolism and bioavailability. However, despite the intensive research
carried out in the past years, this specific aspect is still largely overlooked, preventing a
full understanding of the mechanistic connections between microalgae’s macro-nutrients
(protein in this case) and their possible effects in living organisms.

In this context, this work presents an innovative and effective computational workflow
to study the bioactivity of peptides encrypted in a selection of annotated algal proteomes
and shows that the proteome of cyanobacteria and microalgae included in this study may
contain and release peptides with previously demonstrated alpha inhibitory activity. The
presence of novel inhibitory sequences never described before are highlighted for further
dedicated studies.

2. Materials and Methods
2.1. Bioactive Peptide Analysis
2.1.1. Data Retrieval

The list of sequences annotated as alpha amylase inhibitory peptides analyzed in this
study was defined based on an in-depth literature search performed browsing PubMed
and Scopus database (last database accessed on 22 February 2022). To do so, the following
search string was used: “amylase inhib*” AND “bioactive peptides”. The literature search
was limited to papers published from 2012 to 2021 focusing on title, abstract and keywords
fields. The set of papers retrieved (n = 44) was visually inspected to collect the relevant
information concerning the bioactive sequences described, such as the primary protein
sequence of peptides, the peptide activity (e.g., IC50) and the respective protein source.
Nine papers (Table S1), and a total of 179 sequences (from two to eleven residues long)
annotated as alpha inhibitory peptides were identified. Then, the analysis focused on a
subset of tri- and tetra-peptide (the underlying rationale is detailed in Section 3.1). All the
sequences were converted in the FASTA format for further analysis.

All the available proteins of C. vulgaris, A. protothecoides and AFA (including the
2012/KM1/D3 strain) were retrieved from UniProtKB (https://www.uniprot.org) [27]
filling up the Advanced Search Organism (OS IDs 3077, 3075, 1176 and 1532906, respectively;
last database accessed on 22 February 2022).

2.1.2. Searching Bioactive Peptides within Algae and Cyanobacteria Proteome

An iterative local sequence alignment procedure was set up based on the Smith-
Waterman algorithm (EMBOSS 6.6.0.0) [28] and an in-house bash script was written to
iteratively search each bioactive peptide sequence within the selected proteomes. The
opening and extension gap penalty were set at 10 and 0.5, respectively. Then, each output
alignment was concatenated in a unique file used as input for an in-house python script
able to parse it and to render it as an easily readable table for further data processing (see
Table S2 for further details).

https://www.uniprot.org
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2.2. Molecular Modelling
2.2.1. Peptides and Protein Model Design

The 3D structures of tripeptides analyzed in this study were generated in the .mol2
format using the Builder Protein tool implemented in PyMol (version 2.3.0), setting the C-
and N-terminal as deprotonated and protonated, respectively. The model for porcine alpha
amylase was derived from the crystallographic structure with PDB code 1HX0 [29], re-
trieved from the Protein Data Bank (https://www.rcsb.org; last database accessed on 4 May
2022), removing water and the other co-crystallized ligands before running the analysis.

2.2.2. Pocket Scan and Docking Simulations

In agreement with a previous study [5], the identification of allosteric pockets, in
addition to the substrate binding site, was performed using the GetCleft algorithm [30]
with default parameters and setting the maximum number of pockets to identify at five.
The peptides were then docked in each of the five identified pockets (arbitrarily centering
the space to explore in a 10 Å radius sphere around the centroid of the pocket) allowing the
most probable interaction site to be hypothesized. Docking simulations were performed
using the GOLD software (Genetic Optimization for Ligand Docking, version 2021.10) in
agreement with previous studies [15,31] using the internal PLPScore function to estimate
the fitting of each peptide within the pockets identified (the higher the score, the higher
the expected peptide-pocket fitting). A semi-flexible docking approach was applied while
allowing protein’s polar hydrogens free to rotate and considering peptides fully flexible.

2.2.3. Molecular Dynamic Simulations

Molecular dynamic simulations were used to estimate the stability of protein–peptide
complexes, in agreement with a previous study [15], using GROMACS (version 2019.4) [32].
The input complex structures were solvated with SPC/E waters in a dodecahedron periodic
boundary condition and neutralizing the system with counter ions (Na+ or Cl−). Next,
each system underwent an energetical minimization to avoid steric clashes and to correct
improper geometries using the steepest descent algorithm with a maximum of 5000 steps.
Then, all the systems underwent isothermal (300 K, coupling time 2 picoseconds) and
isobaric (1 bar, coupling time 2 picoseconds) 100-picosecond simulations before undergoing
20-nanosecond simulations each (300 K with a coupling time of 0.1 picosecond and 1 bar
with a coupling time of 2.0 picoseconds).

2.3. In Silico Digestion

An in silico protein digestion analysis was performed using the python-based Rapid
Peptides Generator (RPG, version 1.2.4) tool [33]. This tool requires protein FASTA se-
quence as input and accurately predicts protease-dependent and chemical means-induced
cleavage sites allowing simulation of multiple protease digestion/hydrolysis for a precise
estimate of peptide release. A concurrent and systematic digestion method was chosen,
allowing all the possible binary combinations of enzymes and chemical means to digest
the protein of interest. At the time of analysis (as of July 2022), the software implemented
42 enzymes/chemicals and an in-house python script was exploited to generate all the
possible paired conditions (1722 combinations in total).

3. Results and Discussion
3.1. Data Retrieval

The in-depth literature search identified nine papers useful for the sake of this study
(Table S1). The papers were published between 2012 and 2021, and a total of 179 sequences
(from two to eleven residues long) annotated as alpha inhibitory peptides were found.
The analysis was then focused on tri- and tetra-peptides (34 sequences). The rationale
underlying this choice was to focus the analysis on sequences with a high chance of being
active per se in a real-world scenario. Indeed, longer (oligo)peptides proved to have
a relatively low transepithelial permeability and they are likely to undergo proteolytic

https://www.rcsb.org
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cleavage by brush boarder’s proteases [34]. Conversely, shorter sequences (di-, tri- and
tetra-peptides) may have a higher epithelial permeability and bioavailability [35]. Table 1
reports the set of 34 alpha amylase’s inhibitory tri- and tetra-peptides initially meant to be
searched within the algal proteomes under investigation. Only sequences unambiguously
associated with an individual IC50 value were carried forth to the analysis (six sequences
in total) while excluding those assessed in multi-peptide mixtures and lacking individual
activity data. Of note, dipeptides were excluded from the analysis as they were only
assessed in mixtures.

Afterward, all the protein sequences available for C. vulgaris, A. protothecoides and AFA
were searched. To do so, the gold benchmark database of protein sequences, UniProtKB
(https://www.uniprot.org) [27], was browsed. All the protein sequences were retrieved in
the FASTA format grouping 596, 20,903 and 13,584 sequences for each organism, respec-
tively (35,083 sequences in total; last database accessed on 22 February 2022). Notably, only
0.3% of them (103 out of 35,083 sequences) were annotated as “reviewed” protein and nearly
90% of them belonged to C. vulgaris (90 out of 103 sequences). The “reviewed” specification
indicates the protein has been manually annotated based on transcription/expression
information extracted from the literature or curator-evaluated computational analysis.
Conversely, “unreviewed” specification indicates the protein has been computationally
analyzed and automatically annotated, awaiting manual curation. Keeping in mind that
this work aimed to identify actual protein sources of bioactive peptides, only the reviewed
sequences were analyzed.

From a general perspective, this evidence highlighted the scarce understanding and
characterization of the algal proteomes under analysis. This is of particular concern con-
sidering the growing interest in algae either as an innovative, multi-purpose and valuable
source of protein or for their use in food and feed production. Specifically, proteins may
encrypt a vast variety of bioactive sequences, including but not limited to health promoting
peptides. Indeed, short peptides with toxic or antinutritional effects have been reported
too [36], and their identification in matrices meant to be used in food/feed production or as
source of bioactive peptides is strongly advisable. In this context, the use of bioinformatics
analysis may substantially support the study of bioactive peptides from food protein [37]
while its usage to search bioactive peptides from structured database has been already
reported [38]. However, the degree of characterization of the space under analysis, which is
represented by the level of characterization of algal proteomes in this case, may relevantly
affect the quality, the confidence, and the throughput of the analysis. In this respect, our
study highlighted the very limited characterization of algal proteomes posing a compelling
line of evidence for the urgent need of annotation to: (i) better understand the encrypted
bioactive components; (ii) ensure a more informed use of algae and cyanobacteria in food
and feed; and (iii) allow a more proficient use of bioinformatics.

3.2. Mining of Bioactive Sequences into Algal Proteomes

The in-depth literature search of tri- and tetra-peptides with inhibitory activity against
pancreatic alpha amylase meant to be searched into algal proteomes identified 34 sequences
(Table 1). However, 28 sequences were not considered for subsequent analysis as they were
assessed in mixtures with only mixture activities reported with no information about their
individual activity. Conversely, the six sequences tested as single substances and with an
individual IC50 reported (namely CSSV, YSFR, SAAP, PGGP, ELS and GGSK) were further
analyzed and searched in the reviewed fraction of algal proteomes under investigation.

The search was performed using an iterative bioinformatic approach (see Section 2
for further details) to check the presence of CSSV, YSFR, SAAP, PGGP, ELS and GGSK
within the list of reviewed proteins of C. vulgaris, A. protothecoides and AFA (Table S3).
Interestingly, only ELS was found to occur in the set of reviewed algal proteins. Specifically,
it was found in seven proteins of C. vulgaris and in one protein of AFA (Table 2). Notably,
ELS is the most potent peptide in the list of those considered in this analysis (Table 1). The
results collected highlighted a multiple occurrence of ELS in the reviewed fraction of C.

https://www.uniprot.org
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vulgaris proteome and some of the containing proteins had homologues in the proteome
of the Porphyra spp. where ELS was found and studied for the first time (Table 2). This
evidence further pointed to the possible relevance of C. vulgaris proteins as a possible and
relevant source of ELS, likewise Porphyra spp. Concerning AFA, ELS was found only in
one protein (UniProt entry A0A0B0QJN8). The single occurrence among AFA proteins
was likely due to the lower number of reviewed proteins compared to C. vulgaris and
therefore AFA could also be considered as a possible source of ELS worthy of further
dedicated investigations. Moreover, the missed identification of ELS within the proteins of
A. protothecoides could be due to the very scarce annotation of its proteome, which included
only six reviewed proteins. Therefore, its relevance as a possible source of ELS could not be
excluded completely.

Afterward, as a proof of principle, an additional sequence analysis was performed
searching the presence of sequences similar to CSSV, YSFR, SAAP, PGGP and GGSK in
the AFA’s phycocyanin. The similarity threshold was arbitrarily set at 75% of identity,
allowing the subsequent analysis sequences to carry forth with only one residue substitu-
tion/removal. Based on the assumption that a single-residue substitution/removal may
have a limited impact on peptide bioactivity, this choice was made to increase the chance
of identifying novel sequences with a high inhibitory potential. This analysis targeted the
AFA’s phycocyanin as it is the most abundant among the class of phycobiliproteins, which
account for nearly 60% of the whole cyanobacteria protein content. The analysis revealed
the presence of PGG, PGGN and CSSL in the C-phycocyanin beta subunit (UniProt entry
P85869; residues 59–61, 59–62 and 116–119, respectively). PGG and CSSL were highly simi-
lar to their orthologous sequence (PGGP and CSSV, respectively) and they were deemed
likely to retain a certain degree of activity. Therefore, they were considered for the sub-
sequent analysis. Conversely, PGGN was not considered in the light of the substantial
physico-chemical difference between N and G, which was expected to have a major impact
on peptide bioactivity.

Table 1. List of tri- and tetra-peptides with reported inhibitory activity against pancreatic alpha amylase.

Sequence Activity Source References

FLS

225 µg/mL a Yellow field pea [39]

YAL
TVF
IFS
FSL
ERA
EAR
NKN
KNN
NNK
PHY
WNP

GKGN
SLSD
VVSE
TFPG
ASFP
IARP
LQRF
RVLD
VDRI
INKQ
KQVQ
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Table 1. Cont.

Sequence Activity Source References

DLRV
VDRL
IVDR
KFFE

ACGP 2.74 mM b Bovine casein [40]

CSSV 34.88 mM c
Chinese giant

salamander (Andrias
davidianus)

[41]
YSFR 18.93 mM c

SAAP 12.95 mM c

PGGP 12.96 mM c

ELS 2.58 ± 0.08 mM c Red seaweed
(Porphyra spp.) [42]GGSK 2.62 ± 0.05 mM c

Note: a Peptide concentration with the highest inhibitory activity reported; b the reported activity (IC50) refers
to the activity of a mixture of peptides containing ACGP; the activity of ACGP could be inferred accordingly;
c Individual IC50; The sequences tested as a single substance with an individual IC50 reported are shown in bold.

Table 2. List of C. vulgaris and AFA reviewed proteins containing ELS.

Protein Name UniProt AC Corresponding Protein in Porphyra spp.
Containing ELS

Translation initiation factor IF-1, chloroplastic a P56290 Homolog not detected
Photosistem II protein D1 a P56318 Photosistem II protein D1 (P51212)

ATP-dependent zinc metalloprotease FtsH homolog a P56369 Sequence not detected

ATP syntase subunit beta, chloroplastic a P32978 ATP synthase subunit beta, chloroplastic
(P51259)

DNA direct RNA polymerase subunit alpha a P56298 DNA direct RNA polymerase subunit
alpha (P51293)

Probable sulfate/thiosulfate import ATP-binding
protein CysA a P56344 Homolog not detected

Photosystem I assembly protein Ycf4 a P56312 Photosystem I assembly protein Ycf3
(P51258)

Protein adenylyltransferase MntA b A0A0B0QJN8 Homolog not detected

Note: a indicates proteins of C. vulgaris; b indicates a protein of AFA.

3.3. Molecular Modeling Results

The subsequent analysis comprised a molecular modeling procedure to study the
capability of PGG and CSSL to interact with the pancreatic alpha amylase to predict their
inhibitory potential. To do so, the mechanism of inhibition of the orthologous inhibitory
peptides PGGP and CSSV was studied first. In this respect, the mechanism of inhibition
of alpha amylase inhibitory peptides was rarely investigated in the studies available in
the literature at the time of analysis. As an example, for the set of sequences considered
here (namely, CSSV, YSFR, SAAP, PGGP and GGSK), GGSK was only reported as a non-
competitive inhibitor, while the mechanism was not reported for the other peptides. For
this reason, GGSK was also included in the molecular modeling study along with CSSV
and PGGP as a reference sequence to test the procedural reliability (see below).

The mechanisms of inhibition of pancreatic alpha amylase still need clarification.
It has been proved that the competition with the substrate within the catalytic binding
site may efficiently inhibit the enzyme, but the presence of allosteric site(s) has also been
described [5]. However, the location of allosteric site(s) on the protein structure is not
precisely identified yet. Indeed, previous computational studies identified up to seven
different pockets, in addition to the substrate binding site, that could be targeted to inhibit
enzymatic activity [5]. Following a similar approach, this study screened the protein surface
identifying three major pockets in terms of dimension, in addition to the substrate binding
site. Then, CSSV, PGGP and GGSK were docked within each surface pocket and within the
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substrate binding site (Figure 1). The most probable site(s) of interaction was identified
based on the docking scores considering that the score amount is proportional to the
physico-chemical match between the pocket and the various peptides (the higher the score,
the more favorable the interaction within the given pocket), as previously reported [43]. As
shown in Table 3, CSSV, PGGP and GGSK recorded comparably high scores in two different
sites each (CSSV within site one and two; GGSK site two and four; PGGP site one and three)
pointing to the possible multi-site interaction for all of them. The geometrical stability
of the best scored protein–peptide complexes and the capability of peptides to persist
at the identified binding sites over time was further assessed with molecular dynamic
simulations. As shown in Figure 2, the analysis of peptide trajectories revealed that CSSV
was found to stably interact with site one (i.e., the substrate binding site) but not with site
two, GGSK was found comparably able to persist at site two and four, while PGGP was
found to interact with site one and site three. On this basis, it was inferred that CSSV was
likely to have a competitive mechanism of inhibition, while PGGP was likely to have a
mixed mechanism as it was theoretically able to interact with site one (the substrate binding
site) and three. Of note, the procedure excluded a competitive mechanism for GGSK as
it was not found to favorably interact with site one (i.e., the substrate binding site). This
result agreed with the data from the literature that proposed a non-competitive inhibition
for GSSK [42]. This ultimately supported the reliability of the methodology proposed to
investigate the possible mechanism of inhibition.

Figure 1. Surface representation of pancreatic alpha amylase. The yellow sphere indicates the location
of the substrate binding site, while the green spheres indicate the location of the additional surface
pockets considered in this study.

Table 3. Docking scores of CSSV, PGGP, GGSK, CSSL and PGG.

Peptide Site 1 (Substrate Binding Site) Site 2 Site 3 Site 4

CSSV 70 * 70 * 64 65
GGSK 67 72 * 65 72 *
PGGP 63 * 54 64 * 61
CSSL 70 * np np np
PGG 51 * np 53 * np

Note: * indicates the binding poses investigated via molecular dynamic simulations; “np” stands for “docking
study not performed”.
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Figure 2. Trajectories of peptides under investigation. The protein is represented as white surface,
while peptides are represented as tubes. The red-to-blue color switch indicates the stepwise changes
of coordinates over time. The red dashed circles indicate the detachment of CSSV from site two.

Then, the interaction of CSSL and PGG within the sites identified for the orthologue
sequences CSSV and PGGP was calculated to investigate whether the sequence modifica-
tions could affect the capability to interact with the enzyme. Specifically, the interaction of
CSSL was calculated at site one, while the interaction of PGG was calculated at site one
and three. As shown in Table 3, both peptides recorded relatively high scores pointing
to their capability to favorably interact with the respective site of interaction. Of note,
PGG recorded scores lower than that of PGGP, possibly suggesting the formation of a
weaker interaction. However, the lower number of atoms of PGG (31 atoms) compared
to PGGP (45 atoms) could also have had a role to determine the lower score considering
that each single-atom contribution concurs to the overall score. As shown in Figure 2,
molecular dynamics confirmed the capability of CSSL and PGG to stably interact with
the respective binding sites. Therefore, these results suggested that the V > L substitution
found in CSSL and the removal of the Proline at the C-terminus of PGG are not likely to
significantly prevent the interaction with the pancreatic alpha amylase. On this basis, CSSL
and PGG may have alpha amylase inhibitory properties and they could be considered
strong candidates for further dedicated analysis. Importantly, CSSL and PGG were found
in the sequence of AFA’s C-phycocyanin beta subunit, which is a well-known abundant
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protein with orthologs already described as relevant sources of bioactive peptides with
potential antidiabetic properties (e.g., [44]). Taken together, these results pointed to the
possible relevance of AFA as a source of peptides modulating glucose metabolism and
suggested the need for specific and dedicated investigations.

3.4. In Silico Protein Digestion Results

The presence of the bioactive peptide within the primary structure of a protein does
not warrant the actual release during digestion or upon processing. Indeed, many factors
may influence the release of specific peptides from a protein matrix [45]. In this respect,
beneficial effects in living organisms should be claimed after the actual release and ad-
sorption along the gastrointestinal tract of peptides at a significant physiological level are
proved. However, several technological and industrial approaches including fermentation
and enzymatic/chemical means have been developed to promote the release of desired
peptides [46]. For this reason, an in silico digestion has been performed to preliminarily
assess the possible release of ELS, CSSL and PGG in the proteins they were found in (see
above) upon gastrointestinal digestion or food processing. Specifically, we pipelined the
RPG (v. 1.2.4) tool [33], which provides 42 enzymatic and chemical means to hydrolyze
protein based on their primary sequence, to an in-house python script (see Section 2.3) to
check all their possible paired combinations. A series of coupled enzymes/chemicals able
to release all the peptides except PGG has been found (Table 4).

Table 4. Released peptides after the in silico digestion procedure using RPG software.

Released
Peptide UniProt AC Condition 1/Condition 2

ELS

A0A0B0QJN8

Endoproteinase Arg-C/Ficin
Endoproteinase Arg-C/Thermolysin

Clostripain/Ficin
Clostripain/Thermolysin

Ficin/Papain
Ficin/Trypsin

Papain/Thermolysin
Thermolysin/Trypsin

P32978 Ficin/Formic Acid

P56290 Neutrophil-elastase/Ficin

P56369 Neutrophil-elastase/Ficin

P56298

Bromelain/Ficin
Bromelain/Thermolysin

Neutrophil-elastase/Ficin
Neutrophil-elastase/Thermolysin

P56318

BNPS-Skatole a/Ficin
BNPS-Skatole a/Thermolysin

Chymotrypsin/Ficin
Chymotrypsin/Thermolysin

Iodosobenzoic acid/Ficin
Iodosobenzoic acid/Thermolysin

CSSL P85869

Endoproetinase Asp-N/Chymotrypsin
Endoproetinase Asp-N/Proteinase-K

Chymotrypsin/Formic acid
Chymotrypsin/Endoproteinase Glu-C

Chymotrypsin/NTCB b

Formic acid/Proteinase-K
Endoproteinase Glu-C/Proteinase-K

NTCB b/Proteinase-K

Note: a [2-(2-nitrophenyl)-3-methyl-3-bromoindolenine]; b 2-nitro-5-thiocyanatobenzoic acid. The software was
used in the “concurrent mode” considering the two conditions simultaneous and not sequential.
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The inability to release PGG was likely due to the presence of a Pro residue that
inherently confers a certain resistance to hydrolysis. Concerning the release of ELS and
CSSL, some of the effective conditions involved enzymes already used in the food industry
such as papain, bromelain, ficin and thermolysin [47]. This result pointed to the likely
release of both sequences upon food/protein processing suggesting the possible relevance
of ELS- and CSSL-containing proteins as an effective peptide source to investigate further.
Starting from these results, the development of fit-for-purpose processes may be envisaged
for the future to maximize the yield of release of such peptides from algal proteins.

As a general comment, RPG was used in the “concurrent” mode simulating the
simultaneous use of proteases and other chemical means [33]. This allowed a simulating
environment closer to a real-world condition than other benchmark software making an
“hysteretic” digestion where each protease/chemical recursively processes the digestion
product of a previous combination. This warrants the accessibility of a wider number
of cleavage sites providing a more reliable estimate of the peptide mixtures generated in
the output [33]. Nevertheless, protease activities are approximated at their optimum in
terms of pH, ionic strength and temperature, making the peptide release hard to estimate
from a quantitative point of view. However, the in silico digestion performed in this study
provided important information to further design effective biochemical/chemical strategies
to release the desired peptides.

4. Conclusions

This work presented a computational workflow based on an in-depth literature search
collecting publicly available sequences with inhibitory activity against the pancreatic alpha
amylase to: (i) identify novel possible protein sources of already described inhibitory
sequences by means of bioinformatics; and (ii) identify novel active sequences with a high
inhibitory potential for further analysis using a molecular modeling approach. The study
focused on algae and cyanobacteria, chosen as case study to describe the relevance of
bioinformatics and molecular modeling to investigate emerging and scarcely characterized
organisms meant to be used in the food and feed production chain. The pipeline also
included the calculation of peptide release upon hydrolysis for a more relevant and reliable
evaluation of identified algal and cyanobacteria proteins as bioactive peptides source.
Concerning the reliability of the computational workflow and methods used, the pipeline
itself has been widely validated in previous works succeeding to identify bioactive peptides
for a variety of pharmacologically relevant targets [1,43,48]. In addition, its fit-for-purpose
validation and accuracy to alpha amylase inhibition was further confirmed based on the
match between the results of reference peptides included in the study and the experimental
data available in the literature.

The study described that ELS, which is among the most potent inhibitory short pep-
tides of alpha amylase described so far, is present in proteins of C. vulgaris and AFA,
pointing to their possible relevant source of previously characterized bioactive sequences.
Moreover, CSSL and PGG have been identified within the annotated proteome of AFA
and described for the first time, to the best of our knowledge, as possible alpha amylase
inhibitory peptides. Their occurrence in the AFA’s C-phycocyanin beta subunit, which is a
well-known very abundant protein, could suggest a high degree of relevance ultimately
prioritizing those sequences and AFA for further dedicated investigations. However,
cyanobacteria have been also associated with toxicological risks [49] and the use of whole
harvested organisms in food and feed production should be advisably considered after a
careful risk–benefit assessment.

Overall, this study: (i) highlighted the presence of alpha amylase inhibitory sequences,
including two potential peptides never described before, in the proteome of AFA and
C. vulgaris; (ii) identified with precision the bearing proteins, which were deemed relevant
from a food production standpoint; (iii) pointed out the possible role of AFA and C. vulgaris
as a source of bioactive peptides modulating glucose metabolism and disposability, shed-
ding light on the likely mechanisms underlying the beneficial effects of algae previously
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reported; and (iv) proposed enzymes/chemicals possibly able to release desired bioactive
peptides from the organisms under investigation.

Concerning possible follow-up investigation, the activity of CSSL and PGG should
be further assessed from a mechanistic point of view as they may be fundamental for a
rational and informed use in food/nutraceuticals production. Afterwards, the actual release
of those sequences in real-world conditions (e.g., via in vitro digestive models including
transepithelial adsorption and optimizing the chemical condition described above), should
be assessed before moving to ex vivo or in vivo trials, which may eventually confirm
their efficacy in living organisms. Finally, technological processes combining chemical
and enzymatic means described in this work could be designed and further optimized to
maximize the release of those sequences from the proteins that have been described.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu14214680/s1, Table S1: List of papers containing alpha amylase
inhibitory peptides retrieved from the literature; Table S2: Example of table generated after parsing
the performed sequence alignment; Table S3: UniProt accession code of reviewed proteins analyzed.
List of references cited in Supplementary Materials: [50–54].
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