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Many works in the literature are in favour of the universality of power-laws. However, more recently, a 
significant amount of research has exposed more subtle details about this subject. In this paper we present 
two generalisations that aim to solve these possible antagonistic conceptions in a mathematical framework. The 
first generalisation allows us to show that a vast range of power-laws can be produced through multiplicative 
process (for example through a single positive feedback mechanism). The second generalisation shows, by solving 
Lambert’s transcendental equations, that the space of solutions where the Pareto distribution is equal to the 
distribution produced by the power multiplicative transformation (for a number of input distributions) is infinite.
1. Introduction

Power-laws have attracted the attention of many researchers who 
have attempted to show their universality in well-known compilation 
works, such as [1, 2, 3]. However, they have also attracted criticism, 
mainly for two reasons: a) In some cases a power-law is inferred show-

ing that when plotting a curve in log-log scale a straight line emerges. 
This method lacks precision and does not usually resist any analysis of 
statistical significance. b) Sometimes the range where the power-law is 
fulfilled is small and distortions appear outside that range (delimited 
by cut-offs). There is controversy when considering whether these dis-

tortions are inevitable limitations of the real world and, therefore, they 
do not invalidate the models or, on the contrary, they are an indication 
that there is no a power-law present.

Benguigui & Marinov [4] produced a comprehensive survey, encom-

passing 89 papers, in which power-laws were identified in very diverse 
disciplines. Their analysis was done first in a visual way, determining 
the characteristics of the graphic representations in three formats: Zipf, 
PDF (Probability Density Function) and CDF (Cumulative Distribution 
Function). Cut-offs to reject some data in each graphic were established 
and then the works were classified according to whether they were 
strong power-laws, weak power-laws, or false power-laws. After a more 
detailed mathematical analysis, the authors showed that most of them 
were not strong power-laws. They also reported that many distributions 
(LogNormal, Weibull, LogLogistic and others) can be approximated to a 
power-law when a certain arbitrary cut-off on the data is accepted.

* Corresponding author at: Universidad del Valle, Calle 13 100-00, Cali, Colombia.

E-mail address: fabio.guerrero@correounivalle.edu.co (F.G. Guerrero).

Many researchers on this subject have conjectured that because the 
same type of distribution appears in so many different fields (economy, 
geology, incomes, city populations, vocabulary, social networks, etc.), 
then there should be a universal underlying phenomenon behind it. This 
observed universality of power-law distributions makes the search and 
understanding of them very attractive but it is also possible to believe 
that they are present where they do not exist. Several explanations have 
been proposed for the universality of power-laws, such as self-organised 
criticality [5], where cascades of phenomena that follow power-laws 
occur when there is a phase transition between a completely ordered 
(solid) system and a completely disordered (liquid) system; preferential 
attachment [6], exemplified by the saying “the rich get richer”, and as 
being a positive feedback we want to study and generalise in the present 
work; hidden variables [7]; exponential growth with exponential killing 
processes [8], where two exponential processes, one for growth and one 
for observation (or termination) are combined to give a power-law pro-

cess; and, exponential growth with exponential diffusion [9], which is 
very similar to the previous one. It is interesting to note that the growth-

diffusion processes had already been studied by Turing much earlier 
[10], showing that they generate complexity, even though the mathe-

matical treatment of both works is very different. Tsallis’ work in the 
field of statistical mechanics generalized the classical Boltzmann-Gibbs 
entropy [11]. Maximization of the generalized Tsallis entropy, subject 
to certain conditions, lead to the Tsallis probability distributions. Many 
practical problems have been found to be well modeled by the Tsallis 
distributions. Since the Tsallis exponential distribution can be seen as 
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a special case of the Pareto distribution for 𝑞 > 1, there will be cases 
where the Tsallis and Pareto distributions will be indistinguishable. In 
fact, some authors call it the Tsallis-Pareto distribution. Hanel shows 
in [12] a derivation of the Tsallis distribution from first principles of 
statistical mechanics.

In the work by Broido & Clauset [13], a vast majority of the phe-

nomena that were thought to be power-laws are questioned, showing 
that it is not too important if a power-law is found but it is important 
if there is a phenomenon that exhibits fat tails. Thus, the universality 
of power-laws must be reformulated in favour of fat-tail distributions, 
which are captured very well (as we show in this work) by Pareto dis-

tributions, for example. There is a crucial observation, which we are 
going to fulfill here. Many phenomena “in the wild” do not have an ob-

servable data production mechanism; that is, only its output data can 
be observed but not its underlying mechanism. All power-laws are fat-

tails, but not all fat-tails are power-laws. However, as we are going to 
show, it is easy to find a parametrisation of a Pareto distribution that 
approximates many fat-tail distributions. So, even if we do not know 
the phenomenon that generates fat-tail data, we can in many situations 
approximate it fairly well by a Pareto distribution.

Mitzenmacher in [14] described a basic multiplicative process, in 
the context of biology, that produces a Lognormal distribution. The 
author shows with the help of an example that small changes to the 
Lognormal generative process can lead to a generative process with 
power law distributions. Sato [15] showed in the context of financial 
time series, that a system modeled by a first-order stochastic differ-

ential equation perturbed with multiplicative noise as well as additive 
noise has a state solution with a Tsallis Gaussian probability distribution 
function. Awazu observed in [16] that Normal, Power Laws or some 
intermediate distributions appear depending on the strength of a feed-

back. For strong feedbacks, the result is a power law; when there is no 
feedback the result is normal; and in a certain intermediate zone, the 
result is a mixture of both distributions, which is characterized by a 
differential stochastic equation. In [17] the behaviour of several cryp-

tocurrencies is analyzed and it is validated that in the long-run they 
follow a fat-tailed law that is caused by a herding phenomenon that 
can be viewed as positive feedback too. In this paper, we are going 
to show on a mathematical basis, in a general way, that the probabil-

ity distribution function of many different phenomena that results from 
multiplicative transformations can be approached very well by a Pareto 
distribution. A secondary goal is to show that a Pareto distribution is a 
good approximation to data which exhibits a fat-tail distribution.

In Section 2, we will show how the exponential transformation pro-

duces exact Pareto distributions or similar distributions for several input 
distributions. In section 3, we study the distributions obtained by the 
power transformation and how a Pareto distribution can be indistin-

guishable under certain assumptions in many cases from the output 
distribution. In Section 4, the multiplicative Kolmogorov transformation 
is presented as the basis of a comparison to the power transformation. 
In Section 5, the main conclusions of this work are summarised.

2. Exponential transformation

The well-known 80-20 rule attributed to Pareto states (for exam-

ple) that 80% of the world’s wealth belongs to 20% of the population, 
but this is a rule formulated informally. Later, distributions were for-

mulated that fulfill that characteristic in what is known today as Pareto 
distributions. One of its most relevant aspects is that the average value 
is very sensitive to the exact values of the sample; that is, it does not 
converge or, if it does, then the standard deviation does not. This is due 
to the phenomenon of the “fat tail”, which means that as the values of 
the sampling points become smaller, their probability of occurrence de-

creases but slowly, so that there is no value from which the following 
values can be ignored. All values are important and they all contribute 
to the average value of the distribution.
2

There are several variants of the Pareto distribution. Pareto IV is one 
of the most flexible and best suited to many datasets because it provides 
more adjustment parameters to approximate, for instance, a LogNormal 
distribution, as we will show in Section 3. It should be noted, however, 
that in a strict mathematical sense, Pareto IV is not a pure power-law 
(see Appendix A).

The exponential killed process is a well-known example of an expo-

nential transformation [8], which refers to a process with exponential 
distribution observed randomly through an exponential transformation 
giving as a result a Pareto probability distribution function. The term 
killed comes from the fact that every new observation is independent 
of any previous observation. In the next subsections, the derivation of 
Pareto I and Pareto IV probability distribution functions based on kill 
exponential processes is presented.

2.1. The kill process and the Pareto I distribution

Let 𝑋 be a decaying exponential random experiment whose PDF 
(Probability Density Function) is given by

𝑓𝑋 (𝑥) = 𝛼𝑒−𝛼𝑥 𝛼 ∈ℝ>0, 𝑥 > 0 (1)

and let 𝑌 be the random variable obtained through the transformation

𝑌 = 𝑘𝑒𝑋 𝑘 ∈ℝ>0 (2)

The process described by Eq. (2) is referred as a killed process be-

cause every time that an event is consumed, a new one starts. For 
instance, let us consider a sample of 𝑋 with 𝛼 = 0.7 equal to {0.23, 
0.38, 0.34}. The transformation given by Eq. (2) with 𝑘 = 1.2 will pro-

duce the sample of 𝑌 equal to {1.51, 1.75, 1.69}. Our goal is to find the 
probability distribution of 𝑌 in terms of 𝑦. Using the derived distribu-

tions concept [18, pp. 40, ch. 3], we can express the CDF (Cumulative 
Density Function) of 𝑌 in terms of the CDF of 𝑋 as

𝐹𝑌 (𝑦) = 𝑃 (𝑌 ≤ 𝑦) = 𝑃 (𝑘𝑒𝑋 ≤ 𝑦) = 𝑃
[
𝑋 ≤ Log

(
𝑦

𝑘

)]
= 𝐹𝑋

[
Log
(
𝑦

𝑘

)]
(3)

Since the CDF of the exponential decaying experiment 𝑋 is given by

𝐹𝑋 (𝑥) = 1 − 𝑒−𝛼𝑥 𝑥 ≥ 0 (4)

the PDF of the resulting derived distribution is the derivative of 𝐹𝑌 (𝑦)
in Eq. (3); that is,

𝑓𝑌 (𝑦) =
𝑑𝐹𝑌 (𝑦)
𝑑𝑦

= 𝑑

𝑑𝑦

[
1 − 𝑒−𝛼Log

(
𝑦

𝑘

)]
= 𝑘𝛼𝑦−(𝛼+1)𝛼 (5)

which corresponds to the PDF of the distribution commonly known as 
Pareto I with parameter 𝑘 and shape factor 𝛼 [19, pp. 50].

2.2. The kill process and the Pareto IV distribution

Now we consider a more elaborated transformation. Let 𝑌 be the 
derived exponential transformation given by

𝑌 = 𝑘
(
𝑒𝑋 − 1

)𝛾 + 𝜇 𝑘, 𝛾 ∈ℝ>0, 𝜇 ∈ℝ (6)

Following the same line of reasoning described by Eq. (3), we can 
express the CDF of 𝑌 in terms of the CDF of 𝑋 as

𝐹𝑌 (𝑦) = 𝐹𝑋
{

Log

[(
𝑦− 𝜇
𝑘

)1∕𝛾
+ 1
]}

(7)

Using Eq. (4) we finally get the PDF for the transformed variable 𝑌
as

𝑓𝑌 (𝑦) =
𝑑𝐹𝑌 (𝑦)
𝑑𝑦

= 𝑑

𝑑𝑥

{
1 − Exp

(
−𝛼Log

[(
𝑦− 𝜇
𝑘

)1∕𝛾
+ 1
])}

= 𝛼(𝑦− 𝜇)
1
𝛾
−1

𝛾𝑘1∕𝛾
[(

𝑦−𝜇
𝑘

)1∕𝛾
+ 1
]𝛼+1 (8)
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Fig. 1. Positive feedback process.

which corresponds to the PDF of the distribution that is commonly 
known as Pareto IV with parameter 𝑘, shape parameter 𝛾 and loca-

tion parameter 𝜇. As we have just shown, the kill process produces an 
accurate Pareto distribution when X has an exponential distribution.

If in Eq. (2) we take 𝑋 with Normal distribution with CDF 
1
2 erfc

(
𝜇−𝑥√
2𝜎

)
, and 𝑘 = 1, then we have

𝑓𝑌 (𝑦) =
𝑑𝐹𝑌 (𝑦)
𝑑𝑦

= 𝑑

𝑑𝑥

[
1
2

erfc

(
𝜇 − 𝑦1∕𝛾√

2𝜎

)]

= 𝑒
− (𝜇−log(𝑦))2

2𝜎2√
2𝜋𝜎𝑦

(9)

which is exactly the probability distribution function of a LogNormal 
distribution with parameters 𝜇 and 𝜎 and, as is shown in subsection 3.5, 
in this case there exists a space of solutions where a LogNormal distri-

bution is indistinguishable from a Pareto IV distribution. Similarly, it 
can also be observed that when 𝑋 in Eq. (2) has a LogNormal distribu-

tion with parameters 𝜇 and 𝜎, a distribution of the form 𝑒
− {log[log(𝑥)]−𝜇}2

2𝜎2√
2𝜋𝜎𝑥 log(𝑥)

is obtained. However, although in this case under certain parameters 
the resulting PDF can be very similar to Pareto IV, there is no space 
of solutions where both are indistinguishable. Thus, we see that the 
transformation of Eq. (2) is able to produce distributions very similar to 
Pareto for certain input distributions.

3. Power transformation

Consider a positive feedback as shown in Fig. 1. Feedback is defined 
in a process when at least one output is connected to at least one in-

put. Loosely speaking, positive feedback is characterised as a process 
that auto-amplifies its output: the more there is of something, the more 
there will be in the future. In contrast, negative feedback tends to sta-

bilise the output: it tends to eliminate disturbances. In all engineering 
areas, negative feedback is used extensively to be able to synthesise 
stable and predictable systems. It is also used to try to cancel any possi-

ble positive feedback that may appear, for the same reasons. However, 
in non-designed systems (physical, chemical, biological and even eco-

nomic and social, as long as there is no centralised control), positive 
feedback plays a very important role (sometimes undesirable, some-

times creative).

The positive-feedback transformation process can be observed in 
many situations of real life. For instance, when a person gets some 
wealth, they invest that wealth and increase their savings. Imagine a 
group of people who take their money to their respective bank. Each 
bank has a different (albeit similar) interest rate, and each person 
chooses a bank at random, and stays there for 𝑇 periods. If all of the 
people start with exactly the same money, then after 𝑇 periods we will 
see that a power-law distribution appears. In general, when there is 
positive feedback, the successive output values of the process are multi-

plied by the previous ones, which is what we are studying in this article. 
As we will see, the result can be suitably modeled by Pareto IV distri-

bution.

Other examples of positive feedback are the reproductive growth 
of populations of individuals without resource constraints: the more 
3

individuals there are, the more individuals there will be; the mechanism 
of preferential attachment [20] in social networks: the more friends you 
have, the more friends you will meet; and the more quotes a paper has, 
the more citations they will receive.

Going back to Fig. 1, the variable 𝑋 is an intrinsic parameter of the 
system. For example, if the system were a bank, then 𝑉 would be the 
initial capital, and 𝑋 would be the interests of a period, while 𝛾 would 
be the number of periods.

Initially, we are going to assume a fixed and constant initial capital 
(then, we will relay that assumption). The variable 𝑋 is not constant 
but is a random variable with a certain distribution. In the banking ex-

ample, all banks offer a similar but not equal interest, which will follow 
a certain distribution (in banks, it is typically a normal distribution).

We define the power transformation as the transformation given by

𝑌 = 𝑘𝑋𝛾 𝑘 ∈ℝ>0, 𝛾 > 0 (10)

where 𝑋 is a random variable with probability distribution function 
𝑓𝑋 (𝑥).

Many situations in real life can be modeled as a positive feedback 
process, as shown in Fig. 1. We will not consider this yet but sometimes 
there is an initial input distribution 𝑓𝑉 (𝑣) which is multiplied many 
times by 𝑓𝑋 (𝑥). Initially, we will consider 𝑓𝑉 (𝑣) = 𝑘 (constant); that 
is, people who open their bank account all with the same amount of 
money. The interest offered by each bank follows a distribution 𝑋. All 
people save their money during the same number of periods 𝛾 , at the 
end of which, looking at the wealth of people we will find a distribution 
𝑌 . Now, let us analyze what distribution 𝑌 emerges, depending on the 
initial distribution 𝑋. (In Appendix C we will discuss the case when 
𝑓𝑉 (𝑣) is not constant but a uniform distribution, that is, people with a 
random initial amount of money; but we can anticipate that the results 
are similar.)

3.1. Power transformation for X having an exponential distribution

Let us consider the power transformation of Eq. (10) where the ran-

dom variable 𝑋 has the decaying exponential PDF given by equation 
(1). It is worth noting that the exponential distribution is a special case 
of the Weibull distribution with parameters {1, 1

𝜆
}. Similar to what we 

did in equation (3), we express the CDF of 𝑌 in terms of the CDF of 𝑋, 
that is

𝐹𝑌 (𝑦) = 𝐹𝑋
[(
𝑦

𝑘

)1∕𝛾]
(11)

Since the CDF of the exponential decaying random variable 𝑋 is 
given by Eq. (4), the PDF of the resulting derived distribution is given 
by

𝑓𝑌 (𝑦) =
𝑑𝐹𝑌 (𝑦)
𝑑𝑦

= 𝑑

𝑑𝑦

[
1 − 𝑒−𝛼

(
𝑦

𝑘

)1∕𝛾]
=
𝛼

(
𝑦

𝑘

) 1
𝛾
−1
𝑒
−𝛼
(
𝑦

𝑘

)1∕𝛾
𝑘𝛾

(12)

We now want to investigate the similarity between equations (12)

and (8) (with 𝜇 = 0, for simplicity). Because our goal is to adjust their 
curves, it is reasonable to equal the variable 𝛾 of both equations. For 
this purpose, we establish an equation between the two PDFs, in 𝛼𝐸
and 𝛼𝑃 , respectively, solve the limits when 𝛾 →∞ at each side. We use 
𝛼𝐸 to refer the parameter we would obtain from experimentation or ob-

servation, and 𝛼𝑃 to refer the parameter we would adjust in the Pareto 
distribution of Eq. (8). In the positive feedback experiment, it is reason-

able to assume a large value of 𝛾 (i.e., that the iteration has been done 
many times). The condition 𝛾 → ∞, see Fig. 1, reflects the fact of ob-

serving several generations of a process given by the transformation of 
Eq. (10). By eliminating common terms at both sides after some routine 
algebra, we arrive to the following expressions derived from equations 
(12) and (8) respectively

lim 𝑒
−𝛼𝐸
(
𝑦

𝑘

)1∕𝛾
=
𝛼𝐸
𝛼

(13)

𝛾→∞ 𝑒 𝐸
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Fig. 2. Solutions space for 𝑋 exponential.

lim
𝛾→∞

[(
𝑦

𝑘

)1∕𝛾
+ 1
]−(𝛼𝑃 +1)

𝛼𝑃 =
𝛼𝑃

2(𝛼𝑃 +1)
(14)

By solving equations (14) and (13) for 𝛼𝑃 given 𝛼𝐸 , we get a Lam-

bert’s transcendental equation with solutions

𝛼𝑃 =
⎧⎪⎨⎪⎩
−𝑊−1[−𝑒−𝛼𝐸 𝛼𝐸 log(4)]

log(2)

−𝑊0[−𝑒−𝛼𝐸 𝛼𝐸 log(4)]
log(2)

(15)

where 𝑊𝑘(𝑧) is the Lambert function which gives the 𝑘th solution for 
𝑤 in 𝑧 = 𝑤𝑒𝑤. Fig. 2 shows the space of solutions given by equation 
(15). The blue line corresponds the upper branch solution whereas the 
brown line corresponds to the lower branch solution. Fig. 2 shows a 
range for which only complex solutions exists for 𝛼𝑃 given 𝛼𝐸 (approxi-

mately between 0.393201 and 2.039184). In this region, an acceptable 
approximation is given by the magnitude of the conjugate pairs com-

plex solutions. Apart from this, there is an infinite number of solutions 
for which equation (12) is essentially equal to the Pareto probability 
distribution of equation (8). At the other hand, as Fig. 2 shows, for a 
given 𝛼𝑃 there will always exist real solutions in 𝛼𝐸 . Fig. 2 shows that 
there can exist two different values (two solutions) of 𝛼𝑃 that produce 
the same Pareto distribution. This means, for instance, that researchers 
working with the same data might obtain two different values of 𝛼𝑃 in 
the model of their Pareto distribution, being both valid. Equations (13)

and (14) also show that the PDFs do not depend on 𝑘 when 𝛾 is large, 
as expected since 𝑘 is a constant and it can be interpreted simply as a 
scale parameter. For the special case 𝛼𝑃 = 𝛼𝐸 , one of the solutions is 
the transcendental number 𝛼 = log(2)

1−log(2) with the right-hand side of equa-

tions (13) and (14) being equal to 2
1

log(2)−1 . However, we must keep in 
mind the condition 𝛾 →∞ that in many cases this is not a too stringent 
condition (as we will see in the next example).

3.2. Would the power transformation converge to a LogNormal distribution 
for X exponential?

We could ask if the process 𝑘𝑋𝛾 for 𝑋 being an exponential distribu-

tion could converge to the LogNormal distribution, at least within some 
subspace, by means of the limit approach as we did with the Pareto dis-

tribution in subsection 3.1. Following the same approach, we arrive at 

the best to lim
𝜎→∞

𝑒
− [log(𝑦)−𝜇]2

2𝜎2√
2𝜋

= 1√
2𝜋

and lim
𝜇→∞,𝜎>0

𝑒
− [log(𝑦)−𝜇]2

2𝜎2√
2𝜋

= 0. We can see 
that there are no parameters left to adjust the LogNormal distribution 
to the distribution resulting from the transformation 𝑘𝑋𝛾 , contrary to 
what occurs with the Pareto distribution. As shown in subsection 3.5

(or also Fig. 8), there can be instances where a Pareto distribution can 
be almost indistinguishable from a LogNormal distribution. The Log-

Normal distribution, in contrast, models very well the multiplicative 
Kolmogorov transformation, as detailed in section 4.
4

3.3. Power transformation for X having a normal distribution

Let us consider the power transformation of equation (10) where the 
random variable 𝑋 has the normal distribution

𝑓𝑋 (𝑥) =
𝑒
− (𝑥−𝜇)2

2𝜎2√
2𝜋𝜎

𝜇 ∈ℝ, 𝜎 > 0 (16)

Since the CDF of 𝑋 is given by

𝐹𝑋 (𝑥) =
1
2erfc

(
𝜇−𝑥√
2𝜎

)
𝜇 ∈ℝ, 𝜎 > 0 (17)

where erfc(𝑧) is the complementary error function given by 1 − erf(𝑧) =
1 − 2√

𝜋
∫ 𝑧0 𝑒

−𝑡2𝑑𝑡, using Eq. (11) we find the probability distribution of 
𝑌 as

𝑓𝑌 (𝑦) =
𝑑

𝑑𝑦

⎧⎪⎨⎪⎩
1
2

erfc

⎡⎢⎢⎢⎣
𝜇 −
(
𝑦

𝑘

)1∕𝛾
√
2𝜎

⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭ =
(
𝑦

𝑘

)1∕𝛾
𝑒
−

[
𝜇−
(
𝑦
𝑘

)1∕𝛾 ]2
2𝜎2√

2𝜋𝛾𝜎𝑦
(18)

We now establish an equation between equations (18) and (8). By 
making the same analysis and assumptions for the value of 𝛾 as in sub-

section 3.1 and eliminating common terms at both sides of the equation, 
we arrive to the following limit derived from Eq. (18)

lim
𝛾→∞

1√
2𝜋𝜎

𝑒
−

[
𝜇−
(
𝑦
𝑘

)1∕𝛾 ]2
2𝜎2 = 𝑒

− (𝜇−1)2

2𝜎2√
2𝜋𝜎

(19)

The limit of the Pareto distribution of Eq. (8) is the same as given by 
Eq. (14). As we mentioned earlier, in practice, the condition for 𝛾 being 
large can be easily fulfilled due to the power nature of the positive 

feedback transformation. Solving the equation 𝛼𝑃

2(𝛼𝑃 +1) =
𝑒
− (𝜇−1)2

2𝜎2√
2𝜋𝜎

for 𝛼𝑃
we get

𝛼𝑃 =

⎧⎪⎪⎨⎪⎪⎩
− 1

log(2)𝑊−1[−

√
2
𝜋
log(2)𝑒

− (𝜇−1)2

2𝜎2

𝜎
]

− 1
log(2)𝑊0[−

√
2
𝜋
log(2)𝑒

− (𝜇−1)2

2𝜎2

𝜎
]

(20)

Since the Lambert function 𝑊𝑘(𝑧) is real for 𝑧 > −1∕𝑒, the space of so-

lutions for real values for 𝛼𝑃 imposes the constraint −
√

2
𝜋
log(2)𝑒

− 1
2
(
𝜇−1
𝜎

)2
𝜎

>

−1
𝑒

which leads to the following constraint between 𝜇 and 𝜎

1 + 𝑏 < 𝜇 < 1 − 𝑏 0 < 𝜎 ≤ 𝑒
√

2
𝜋
log(2)

−∞ < 𝜇 <∞ 𝜎 > 𝑒

√
2
𝜋
log(2)

(21)

where 𝑏 = 2 + 𝜎
√

log
[
2 log2(2)
𝜋𝜎2

]
. Fig. 3 shows an example of the space of 

solutions given by Eq. (20). The brown plane corresponds to the upper 
branch solution whereas the blue plane corresponds to the lower branch 
solution.

3.4. Power transformation for X having a uniform distribution

Let us consider the power transformation of equation (10) with 𝑋
having the uniform distribution

𝑓𝑋 (𝑥) =

{
1
𝑏−𝑎 𝑎 ≤ 𝑥 ≤ 𝑏

0 otherwise
{𝑎, 𝑏 ∈ℝ, 𝑎 < 𝑏} (22)

Since the CDF of 𝑋 is given by

𝐹𝑋 (𝑥) =

{
𝑥−𝑎
𝑏−𝑎 𝑎 ≤ 𝑥 ≤ 𝑏

1 𝑥 > 𝑏
(23)
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Fig. 3. Example of a solutions space for 𝑋 normal in the power transformation.

Fig. 4. Example of a solutions space for 𝑋 uniform in the power transformation.

then by using Eq. (11) we find the probability distribution of 𝑌 as

𝑓𝑌 (𝑦) =
𝑑𝐹𝑌 (𝑦)
𝑑𝑦

= 𝑑

𝑑𝑦

⎡⎢⎢⎢⎣
(
𝑦

𝑘

)1∕𝛾
− 𝑎

𝑏− 𝑎

⎤⎥⎥⎥⎦ =
(
𝑦

𝑘

) 1
𝛾
−1

𝛾𝑘(𝑏− 𝑎)
(24)

Similarly to our work in the previous subsections, we establish an 
equation between equations (24) and (8). Making the same analysis 
and assumptions for the value of 𝛾 as in subsection 3.1 and eliminating 
common terms at both sides of the equation, the limit of the Pareto 
distribution of Eq. (8) being the same as given by Eq. (14), we arrive to 
the equation 𝛼𝑃

2(𝛼𝑃 +1) =
1
𝑏−𝑎 . Solving for 𝛼𝑃 we get

𝛼𝑃 =
⎧⎪⎨⎪⎩
− 1

log(2)𝑊−1[
2 log(2)
𝑎−𝑏 ]

− 1
log(2)𝑊0[

2 log(2)
𝑎−𝑏 ]

(25)

Fig. 4 shows an example of the space of solutions given by Eq. (25). 
The brown plane corresponds to the upper branch solution whereas the 
blue plane corresponds to the lower branch solution.

3.5. Power transformation for X having a LogNormal distribution

Let’s consider the power transformation of equation (10) when 𝑋
has the log normal distribution given by

𝑓𝑋 (𝑥) =
𝑒
− [log(𝑥)−𝜇]2

2𝜎2√
2𝜋𝜎𝑥

𝑥 > 0, 𝜇 ∈ℝ, 𝜎 > 0 (26)

Since the CDF of 𝑋 is given by

𝐹𝑋 (𝑥) =
1
2erfc

[
𝜇−log(𝑥)√ ]

𝑥 ≥ 0 (27)

2𝜎

5

Fig. 5. Example of a solutions space for 𝑋 LogNormal in the power transforma-

tion.

then by using Eq. (11) we find the probability distribution of 𝑌 as

𝑓𝑌 (𝑦) =
𝑑

𝑑𝑦

⎧⎪⎪⎨⎪⎪⎩
1
2

Erfc

⎡⎢⎢⎢⎢⎣
𝜇 − log

[(
𝑦

𝑘

)1∕𝛾]
√
2𝜎

⎫⎪⎪⎬⎪⎪⎭
= 𝑒

−

{
𝜇−log

[(
𝑦
𝑘

)1∕𝛾 ]}2

2𝜎2√
2𝜋𝛾𝜎𝑦

(28)

If we express Eq. (26) as 𝑓𝑋 (𝑥; 𝜇, 𝜎), then Eq. (28) can be expressed 
as 𝑓𝑌 [𝑦; 𝛾𝜇 + log(𝑘), 𝛾𝜎], which is in agreement with the fact that the 
multiplicative process of a LogNormal distribution follows also a Log-

Normal distribution [21, pp. 362]. We now establish an equation using 
equations (28) and (8), with 𝜇 = 0 for the latter for simplicity. By mak-

ing the same analysis and assumptions for the value of 𝛾 as in subsection 
3.1 and eliminating common terms at both sides, we arrive to the fol-

lowing limits

lim
𝛾→∞

𝑘−1∕𝛾
[(
𝑦

𝑘

)1∕𝛾
+ 1
]−(𝛼𝑃 +1)

𝑦1∕𝛾𝛼𝑃 =
𝛼𝑃

2𝛼𝑃 +1
(29)

lim
𝛾→∞

𝑒
−

{
𝜇−log

[(
𝑦
𝑘

)1∕𝛾 ]}2

2𝜎2√
2𝜋𝜎

= 𝑒
− 𝜇2

2𝜎2√
2𝜋𝜎

(30)

Solving the equation 𝛼𝑃

2𝛼𝑃 +1 = 𝑒
− 𝜇2

2𝜎2√
2𝜋𝜎

for 𝛼𝑃 we get

𝛼𝑃 =

⎧⎪⎪⎨⎪⎪⎩
− 1

log(2)𝑊−1[−

√
2
𝜋
log(2)𝑒

− 𝜇2

2𝜎2

𝜎
]

− 1
log(2)𝑊0[−

√
2
𝜋
log(2)𝑒

− 𝜇2

2𝜎2

𝜎
]

(31)

Similarly to the normal distribution case, since the Lambert func-

tion 𝑊𝑘(𝑧) is real for 𝑧 > −1∕𝑒, the space of solutions for real values 

for 𝛼𝑃 imposes the constraint −
√

2
𝜋
log(2)𝑒

− 𝜇2

2𝜎2

𝜎
> −1

𝑒
which leads to the 

following constraint between 𝜇 and 𝜎

𝑏 < 𝜇 < −𝑏 0 < 𝜎 ≤ 𝑒
√

2
𝜋
log(2)

−∞ < 𝜇 <∞ 𝜎 > 𝑒

√
2
𝜋
log(2)

(32)

where 𝑏 = 𝜎
√

log
[
2 log2(2)
𝜋𝜎2

]
.

Fig. 5 shows an example of the space of solutions given by Eq. (31). 
The brown plane corresponds to the upper branch solution whereas the 
blue plane corresponds to the lower branch solution.
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3.6. Power transformation for X having a Laplace distribution

Let us consider the power transformation of equation (10) where 𝑋
has the Laplace distribution given by

𝑓𝑋 (𝑥) =
⎧⎪⎨⎪⎩
𝑒
− 𝑥−𝜇

𝛽

2𝛽 𝑥 ≥ 𝜇

𝑒
− 𝜇−𝑥

𝛽

2𝛽 Otherwise

𝜇 ∈ℝ, 𝛽 > 0, 𝑥 ∈ℝ (33)

Since the CDF of 𝑋 is given by

𝐹𝑋 (𝑥) =
⎧⎪⎨⎪⎩
1 − 1

2 𝑒
− 𝑥−𝜇

𝛽 𝑥 ≥ 𝜇

1
2 𝑒

− 𝜇−𝑥
𝛽 Otherwise

(34)

then by using Eq. (11) the probability distribution of 𝑌 is

𝑓𝑌 (𝑦) =
𝑑

𝑑𝑦

⎧⎪⎪⎨⎪⎪⎩
1 − 1

2 𝑒
−

(
𝑦
𝑘

)1∕𝛾
−𝜇

𝛽 𝑦 ≥ 𝑘𝜇𝛾

1
2 𝑒

−
𝜇−
(
𝑦
𝑘

)1∕𝛾
𝛽 Otherwise

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
𝑦

𝑘

) 1
𝛾
−1
𝑒
−

(
𝑦
𝑘

)1∕𝛾
−𝜇

𝛽

2𝛽𝛾𝑘 𝑦 ≥ 𝑘𝜇𝛾

(
𝑦

𝑘

) 1
𝛾
−1
𝑒
−
𝜇−
(
𝑦
𝑘

)1∕𝛾
𝛽

2𝛽𝛾𝑘 Otherwise

(35)

We now establish an equation using equations (35) and (8) with 𝜇 =
0 for the latter for simplicity. Making the same analysis and assumptions 
for the value of 𝛾 as in subsection 3.1 and eliminating common terms 
at both sides we arrive to the following limit derived from Eq. (35) for 
the upper branch

lim
𝛾→∞

𝑒
−

(
𝑦
𝑘

)1∕𝛾
−𝜇

𝛽

2𝛽
= 𝑒

𝜇−1
𝛽

2𝛽
(36)

The limit of the Pareto distribution of Eq. (8) is the same as given 

by Eq. (14). By solving the equation 𝛼𝑃

2(𝛼𝑃 +1) =
𝑒

𝜇−1
𝛽

2𝛽 for 𝛼𝑃 , we get

𝛼𝑃 =

⎧⎪⎪⎨⎪⎪⎩
− 1

log(2)𝑊−1[−
log(2)𝑒

𝜇−1
𝛽

𝛽
]

− 1
log(2)𝑊0[−

log(2)𝑒
𝜇−1
𝛽

𝛽
]

(37)

Similarly to the normal distribution case, since the Lambert function 
𝑊𝑘(𝑧) is real for 𝑧 > −1∕𝑒, the space of solutions for real values for 𝛼𝑃

imposes the constraint − log(2)𝑒
𝜇−1
𝛽

𝛽
> −1

𝑒
, which leads to the following 

constraint between 𝜇 and 𝛽

𝜇 < 1 + 𝛽 log
[

𝛽

𝑒 log(2)

]
(38)

Fig. 6 shows an example of the space of solutions given by Eq. (37). 
The brown plane corresponds to the upper branch solution whereas the 
blue plane corresponds to the lower branch solution.

For the lower branch of equation (35), we solve the limit

lim
𝛾→∞

𝑒
−
𝜇−
(
𝑦
𝑘

)1∕𝛾
𝛽

2𝛽 = 𝑒

1−𝜇
𝛽

2𝛽 and by solving the resulting equation 𝛼𝑃

2𝛼𝑃 +1 =

𝑒

1−𝜇
𝛽

2𝛽 for 𝛼𝑃 we get

𝛼𝑃 =

⎧⎪⎪⎨⎪⎪
− 1

log(2)𝑊−1[−
log(2)𝑒

1−𝜇
𝛽

𝛽
]

− 1
log(2)𝑊0[−

log(2)𝑒
1−𝜇
𝛽

𝛽
]

(39)
⎩
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Fig. 6. Example of a solutions space for 𝑋 Laplace in the power transformation.

Due to the condition − log(2)𝑒
1−𝜇
𝛽

𝛽
> −1

𝑒
to get real solutions the fol-

lowing constraint between 𝜇 and 𝛽 should be imposed

1 − 𝛽 log
[

𝛽

𝑒 log(2)

]
< 𝜇 (40)

In summary, as long as 1 − 𝛽 log
[

𝛽

𝑒 log(2)

]
< 𝜇 < 1 + 𝛽 log

[
𝛽

𝑒 log(2)

]
there 

will be real solutions for 𝛼𝑃 . Since Eq. (35) is composed of two seg-

ments, there is a set of solutions of 𝛼𝑃 for each one, given by equations 
(37) and (39).

3.7. Power transformation for X having a Pareto distribution

Let us consider the Pareto IV distribution of equation (8) with 𝜇 = 0, 
that is

𝑓𝑋 (𝑥) =
𝛼𝑥

1
𝛾
−1
[(

𝑥

𝑘

)1∕𝛾
+1
]−(𝛼+1)

𝛾𝑘1∕𝛾
𝛾, 𝑘, 𝑥 > 0 (41)

We are interested in the distribution produced by the power trans-

formation of equation (10) with 𝑋 following the distribution of equa-

tion (41). Since the CDF of 𝑋 of is given by

𝐹𝑋 (𝑥) = 1 −
[(

𝑥

𝑘

)1∕𝛾
+ 1
]−𝛼

𝑥 > 0 (42)

then we can find the probability distribution of the derived process in 
terms of 𝑦 as

𝑓𝑌 (𝑦) =
𝑑

𝑑𝑦

⎧⎪⎪⎨⎪⎪⎩
1 −
⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝
[
𝑦

𝑘

]1∕𝛾
𝑘

⎞⎟⎟⎟⎠
1∕𝛾

+ 1
⎤⎥⎥⎥⎦
−𝛼⎫⎪⎪⎬⎪⎪⎭

=
𝛼𝑥

1
𝛾2

−1
(
𝑘
− 𝛾+1
𝛾2 𝑥

1
𝛾2 + 1

)−(𝛼+1)

𝑘

𝛾+1
𝛾2 𝛾2

(43)

In this case it is not possible to find a space of solutions, as we did 
earlier, for the distribution produced by the transformation of Eq. (10). 
Thus, a Pareto distribution of the form given by Eq. (41) under the 
transformation of Eq. (10) does not produce a distribution that could 
be essentially indistinguishable from a Pareto distribution. This obser-

vation can also be easily verified graphically. Returning to our bank 
analogy, bank interests following a Pareto distribution would mean 
that most people will choose poor banks, and only a lucky few will 
choose very good banks. Therefore, when iterating over 𝛾 periods, only 
an extremely few people will see large benefits, while the rest will see 
extremely reduced benefits (compared to when the distribution of in-

terest was uniform). Therefore, it is reasonable to think that the result 
is no longer fat-tail but it has a more abrupt descent.
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4. Kolmogorov transformation

The Kolmogorov transformation has been studied by Kolmogorov 
[21, pp. 451] and others, where it is well-known that a multiplicative 
Kolmogorov transformation produces a LogNormal distribution. How-

ever, in this section, we want to emphasise the differences with the 
power transformation.

The central limit theorem for the sum of random variables is a well-

known and established theorem in probability theory [18, pp. 273, 
ch. 5]. A related theorem is the Central Limit Theorem for the mul-

tiplication of random variables [22, pp. 220, ch. 8] which is usually 
stated as follows. Consider the random variable 𝑌 given by

𝑌 =𝑋1𝑋2…𝑋𝑛 𝑛 ∈ℕ (44)

for large 𝑛 the probability density function of 𝑌 is approximately the 
logNormal distribution

𝑓𝑌 (𝑦) =
𝑒
−
[
log(𝑦)−𝜇

]2
2𝜎2√
2𝜋𝜎𝑦

𝑦 > 0 (45)

with mean and variance given by

𝜇 =
∑𝑛
𝑖=1 log

(
𝑋𝑖
)

𝜎2 =
∑𝑛
𝑖=1 Var

[
log
(
𝑋𝑖
)]

(46)

Now if we transform the random variable 𝑌 as 𝑍 = log(𝑌 ) then since

𝑍 = log(𝑋1) + log(𝑋2) + ...+ log(𝑋𝑛) (47)

according to the CLT for the sum of random variables, for large 𝑛, the 
right-hand side of equation (47) will be close to a normal distribution. 
Meanwhile, since in general the transformed distribution 𝑒𝑢 where 𝑢 is a 
normal distribution is a LogNormal distribution and noting that 𝑌 = 𝑒𝑍 , 
the conclusion is made that 𝑌 should be a LogNormal distribution.

In contrast, let us now consider the transformation given by Eq. (10)

with 𝑘 = 1 constant, that is

𝑌 =𝑋𝑛 𝑛 ∈ℝ (48)

From the derived transformations theory, we obtain the exact gen-

eral expression for the distribution of 𝑌

𝑓𝑌 (𝑦) =
𝑑𝐹𝑌 (𝑦)
𝑑𝑦

= 𝑑

𝑑𝑦

[
𝐹𝑋 (𝑦1∕𝑛)

]
(49)

Example 1. We now compare equations (45) and (49) with a simple 
example involving the uniform distribution. Consider that the distribu-

tion 𝑋𝑖 in equation (44) corresponds to a uniform distribution between 
0 and 1. Then, by applying equation (45) we get the distribution

𝑓𝑌 (𝑦) =
𝑒
−
[
log(𝑦)+𝑛

]2
2𝑛√

2𝜋𝑛𝑦
(50)

Meanwhile, the exact expression for the multiplication when the 𝑋𝑖
in Eq. (44) comes from the uniform distribution in the interval [0, 1] is 
given by

𝑓𝑌 (𝑦) =
(−1)𝑛−1 log𝑛−1(𝑦)

(𝑛− 1)!
(51)

By applying equation (49), we get the derived distribution

𝑓𝑌 (𝑦) =
𝑑𝐹𝑌 (𝑦)
𝑑𝑦

= 𝑑

𝑑𝑦

[
𝑦1∕𝑛
]
= 𝑦

1
𝑛
−1

𝑛
(52)

Fig. 7 shows a comparison of equations (50), (51) and (52) for 
𝑛 = 20. The green curve corresponds to expression (52), the blue curve 
corresponds to expression (50), and the orange curve corresponds to 
expression (51).
7

Fig. 7. Comparison of CLT for multiplication and power transformation.

Fig. 7 shows that there is a notorious discrepancy for the results 
produced by equations (45) and (49). This has to be so because we 
are dealing with two quite different models. The CLT considers the 
multiplication of 𝑛 distinct values taken from independent identical dis-

tributions. The transformation 𝑋𝑛 corresponds to the multiplication of 
the same value taken from a given distribution 𝑛 times, the experiment 
being repeated many times.

As shown in section 3, when considering the power transformation 
(equation (48)), in general there is a space of solutions where the Pareto 
distribution is essentially indistinguishable to the result of equation 
(52). In the limit when 𝑛 → ∞, the subspace of solutions provided by 
the Pareto distribution is actually infinite. This is not the case for the 
LogNormal distribution, although, as we will discuss in Appendix B, for 
certain parameters a LogNormal distribution can look similar to Pareto.

5. Conclusions

Through this work we have been able to show that fat-tail distribu-

tions emerge as convergent distributions when multiplicative transfor-

mations are involved, for many input distributions, this being particu-

larly the case for the exponential and the power transformation. The 
key aspect of the power transformation is that small initial differences, 
for instance as given by a uniform distribution, can lead to highly dif-

ferent results after 𝛾 iterations. The initial conditions do not seem to 
influence too much, that is, it does not seem to matter if we start from 
a uniform distribution or other kind of distribution, for an ample range 
of input distributions. The final result, after many iterations, can be 
well approximated by a Pareto distribution and, as showed in equation 
(25) for instance, it is possible to determine the space of solutions for 
which this is valid (for further details, see also Appendix C). Thus the 
power transformation suggests a behaviour opposite to chaotic phenom-

ena whose result depends strongly on the initial conditions. Contrary to 
chaotic systems, the accumulation of successive multiplications shapes 
the result, quite independently of the initial conditions. It is worth not-

ing that although we are assuming 𝛾 integer, mathematically there is 
no reason to be so, as indicated in equation (10), the values of 𝛾 can be 
real values.

The power multiplicative transformation suggests certain resem-

blance with the central limit theorem in which the Normal distribution 
arises when adding many independent distributions. In our work, as we 
have shown, fat-tail distributions arise, for many distributions, when 
there is an underlying multiplicative transformation. This result is quite 
general: a Pareto-like distribution can fit very well the result within a 
mathematically proven space of solutions. Even for the multiplicative 
Kolmogorov transformation, which produces a LogNormal distribution 
for a wide range of distributions, as shown in section 4, the result can 
be approximated by a Pareto distribution, as shown in subsection 3.5. 



F.G. Guerrero, A. Garcia-Baños Heliyon 6 (2020) e04266
Finally, a very interesting concept for the sciences of complexity arises 
by observing that when 𝑋 is a uniform distribution, the transforma-

tion 𝑋𝛾 leads to a Pareto distribution. This shows how easy complexity 
can emerge. A uniform distribution express the randomness concept par 
excellence, while a Pareto distribution is the complexity par excellence.
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Appendix A. Is Pareto IV a pure power-law?

Power-laws are characterised by exhibiting a straight line behaviour 
in a log-log plot. The equation of a straight line in a log-log plot is given 
by log(𝑦) = log(𝑘) + 𝛾 log(𝑥) where 𝛾 is the slope of the straight line and 𝑘
a constant, 𝑘 > 0. Thus 𝑦 = 𝑒log(𝑘)+𝛾 log(𝑥) = 𝑒log(𝑘)𝑒𝛾 log(𝑥) = 𝑒log(𝑘)

[
𝑒log(𝑥)

]𝛾 =
𝑘𝑥𝛾 . Therefore, any expression of the form

𝑓 (𝑥) = 𝑘𝑥𝛾 (A.1)

will draw a straight line in a log-log plot.

Does a Pareto IV distribution display a pure straight line in log-log 
plot? Let us consider an expression of the form of equation (8) in the 
variable 𝑥. For simplicity, let the location parameter 𝜇 = 0. Taking the 
log of the expression we obtain

log
[
𝑓𝑋 (𝑥)

]
= log

(
𝛼

𝛾

)
−

log(𝑘)
𝛾

− (𝛼 + 1) log
[(
𝑥

𝑘

)1∕𝛾
+ 1
]

+
(
1
𝛾
− 1
)
log(𝑥)

(A.2)

As can be observed in equation (A.2), there are two terms of 𝑥. 
Taking the limit when 𝛾 →∞ for each term, we get

lim
𝛾→∞

− (𝛼 + 1) log
[(
𝑥

𝑘

)1∕𝛾
+ 1
]
= −(𝛼 + 1) log(2) (A.3)

lim
𝛾→∞

(
1
𝛾
− 1
)
log(𝑥) = − log(𝑥) (A.4)

Equation (A.3) shows that such term is essentially constant over a large 
range of 𝑥. However, we are interested into seeing the value of the 
left-hand side of equation (A.3) when 𝑥 is very large, that is

lim
𝑥→∞

− (𝛼 + 1) log
[(
𝑥

𝑘

)1∕𝛾
+ 1
]
= −∞ (A.5)

Thus, in the very long run the term of equation (A.3) tends to mi-

nus infinity, no matter the value of 𝛾 . In general for equation (A.2)

lim
𝑥→∞

(
log
[
𝑓𝑋 (𝑥)

])
= −∞. Also lim

𝑥→0,𝛾>1

(
log
[
𝑓𝑋 (𝑥)

])
=∞. We can see thus 

that a Pareto IV distribution, as given by equation (8) is not a straight 
line in a pure mathematical sense in log-log plot. However, the com-

ponent that makes it “impure” grows so slowly that, for a very large 
interval, it is almost indistinguishable from a constant. However, in the 
limit when 𝑥 tends to infinity, this component also tends to infinity.
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Example 2. Let us consider in equation (A.2) the term 𝑔(𝑥) = −(𝛼 +

1) log
[(

𝑥

𝑘

)1∕𝛾
+ 1
]

with the following parameters 𝛼 = 2, 𝛾 = 2000 and 

𝑘 = 4. The result of 𝑔(𝑥) evaluated for 𝑥 = 10 and 𝑥 = 1010 is −2.08013 
and −2.09572, respectively. Using equation (8) in 𝑥 with 𝜇 = 0 and 

given that the CDF of 𝑓𝑋 (𝑥) is given by 𝐹𝑋 (𝑥) = 1 −
[(

𝑥

𝑘

)1∕𝛾
+ 1
]−𝛼

, 

we find that 𝑃 [𝑋 ≤ 1010] is 75.27% of the total probability. We also 
see that the value of 𝑥 for which 𝑃 [𝑋 ≤ 𝑥] = 0.99, in this example, is 
𝑥 = 1.22202 ×101909, but for this value of 𝑥 the value of 𝑔(𝑥) is −6.90776, 
as suggested by equation (A.5). Thus, in this example, up to at least 
𝑥 = 1010 the log-log plot of equation (A.5) will be almost indistinguish-

able from a pure straight line.

Appendix B. Does a LogNormal distribution display a pure 
straight line in a log-log plot?

Let us now return to the analysis of the LogNormal distribution and 
why it can be easily confused in log-log plot with the Pareto distribu-

tion. Let us take the log of the LogNormal distribution as given by Eq. 
(26), that is

log
[
𝑓𝑋 (𝑥)

]
= −

[log(𝑥) − 𝜇]2

2𝜎2
− log

(√
2𝜋𝜎𝑥

)
(B.1)

As explained in Appendix A, for Eq. (B.1) to be a pure straight line, 
the first term of the right-hand side must be a constant. One way in 
which this is possible is observing that lim

𝜎→∞
− (log(𝑥)−𝜇)2

2𝜎2 = 0. This means 
in practice that if 𝜎 is large, then Eq. (B.1) will plot an almost pure 
straight line. Also, if 𝜇 >> log(𝑥) then the term − [log(𝑥)−𝜇]2

2𝜎2 will be dom-

inated by 𝜇, thus becoming almost constant, and in this case, Eq. (B.1)

would also look like an almost pure straight line. Finally, if both 𝜇 and 
𝜎 are quite large the first term of the right-hand side in Eq. (B.1) will be 
zero, that is, lim

𝜇→∞,𝜎→∞
− [log(𝑥)−𝜇]2

2𝜎2 = 0. As explained also in Appendix A, 
since the Pareto distribution under certain parameters is able to dis-

play a plot very similar to a straight line in log-log plot, this reminds 
us how easy it i to confuse the Pareto and LogNormal distributions in 
a log-log plot. Mathematically speaking, as we see in Section 3.5, un-

der certain assumptions, it is possible for a Pareto distribution to be 
mathematically similar to a LogNormal distribution. There is an infinite 
set of values of the Pareto distribution parameters (even though those 
values form a subspace of the universe of possible values) for which 
the Pareto distribution can be almost indistinguishable from the Log-

Normal distribution. By carefully selecting the parameters of a Pareto 
distribution, a curve very similar to the LogNormal distribution can be 
obtained. However, the LogNormal distribution is much more limited 
if we want to approximate it to a Pareto distribution. In this sense, the 
Pareto distribution can be regarded as a more universal distribution 
than the LogNormal distribution.

Example 3. Let us consider the LogNormal of Eq. (26) distribution with 
𝜇 = 0.79 and 𝜎 = 3.2 and the Pareto distribution of Eq. (8) with 𝛼 = 1.06, 
𝛾 = 2.05, 𝑘 = 2 and 𝜇 = 0. Fig. 8 shows the two curves on the same 
plot, and as it can be observed, the two curves are indistinguishable at 
eye. The integral between 0.1 and 3.0 for the LogNormal distribution 
is equal to 0.371501 whereas the integral for the Pareto between the 
same limits is equal to 0.371971, as expected, in coincidence with their 
very similar look.

Appendix C. Power transformation with multiplication 
distribution as input

Let us consider a uniform distribution multiplied by a Pareto Distri-

bution which has been obtained through a multiplicative process. Let 𝑉
be a uniform distribution with probability distribution function given 
by
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Fig. 8. Example of LogNormal and Pareto similarity.

𝑓𝑉 (𝑣) =

{
1
𝑏−𝑎 𝑎 ≤ 𝑥 ≤ 𝑏

0 otherwise
(C.1)

with 𝑎 > 0, 𝑏 > 0.

The uniform distribution can be considered a reasonable distribution 
as one of the factors because it provides a sense of equity and fairness 
as the starting point for a population distribution. Let 𝑋 be a Pareto IV 
distribution with location parameter zero with probability distribution 
given by equation (41). It can be shown the probability distribution 
function of the multiplicative transformation 𝑈 = 𝑉 𝑋 is given by

𝑓𝑈 (𝑢) =

𝛼𝑒−𝑖𝜋(𝛼+𝛾)

[
𝐵
−
(
𝑎𝑘

𝑢

)1∕𝛾 (𝛼 + 𝛾,−𝛼) −𝐵
−
(
𝑏𝑘

𝑢

)1∕𝛾 (𝛼 + 𝛾,−𝛼)
]

𝑘(𝑎− 𝑏)
𝑢 ≥ 0

(C.2)

where 𝐵𝑧(𝑎, 𝑏) = ∫ 𝑧0 𝑡
𝑎−1(1 − 𝑡)𝑏−1𝑑𝑡 is the incomplete beta function. The 

probability distribution in Eq. (C.2) is quite similar to the original pdf 
in Eq. (41). For instance, the integral of equations (41) and (C.2) with 
𝛼 = 1, 𝛾 = 100, 𝑘 = 1, 𝑎 = 1, 𝑏 = 2 between 10−9 and 109 are 0.103247 and 
0.103256, respectively. The resulting distribution is extremely similar 
to Pareto for a very large range of values. It is also interesting to note 
that when multiplying the uniform distribution by other distribution, in 
many cases, the result has a great similarity with the second one, in a 
way that resembles the neutral element of multiplication. For instance, 
let us consider the variable 𝑋 a zero-mean normal distribution with 
probability distribution given by

𝑓𝑋 (𝑥) =
𝑒
− 𝑥2

2𝜎2√
2𝜋𝜎

(C.3)

It can be shown that the probability distribution of the derived trans-

formation 𝑈 = 𝑉 𝑋 is given by

𝑓𝑈 (𝑢) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

|||||
Γ
(
0, 𝑢2

2𝑎2𝜎2

)
√
2𝜋(2𝑎𝜎)

||||| 𝑏 = 0

|||||
Γ
(
0, 𝑢2

2𝑏2𝜎2

)
√
2𝜋(2𝑏𝜎)

||||| 𝑎 = 0

|||||
Γ
(
0, 𝑢2

2𝑎2𝜎2

)
−Γ
(
0, 𝑢2

2𝑏2𝜎2

)
2
√
2𝜋𝜎(𝑎−𝑏)

||||| Otherwise

(C.4)

where Γ(0, 𝑧) is the incomplete gamma function Γ(0, 𝑧) = ∫ ∞
𝑧
𝑡−1𝑒−𝑡𝑑𝑡.

This behaviour is also observed, for instance, when multiplying the 
uniform distribution by the exponential, LogNormal, Laplace and other 
distributions. However, this is not a mathematical rule because, for in-

stance, multiplying two uniform distributions, as can be easily observed, 
gives us a result that is significantly different from a uniform distribu-

tion.
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