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Background. Despite the constant iteration of small-molecule inhibitors and immune checkpoint inhibitors, PRAD (prostate
adenocarcinoma) patients with distant metastases and biochemical recurrence maintain a poor survival outcome along with an
increasing morbidity in recent years. N7-Methylguanine, a new-found type of RNA modification, has demonstrated an essential
role in tumor progression but has hardly been studied for its effect on prostate carcinoma. The current study aimed to seek
m7G (N7-methylguanosine) related prognostic biomarkers and potential targets for PRAD treatment. Methods. 42 genes
related to m7G were collected from former literatures and GSEA (Gene Set Enrichment Analysis) website. Then, RNA-seq
(RNA sequencing) and clinical data from TCGA-PRAD (The Cancer Genome Atlas-Prostate) cohort were retrieved to screen
the differentially expressed m7G genes to further construct a multivariate Cox prognostic model for PRAD. Next, GSE116918,
a prostate cancer cohort acquired from GEO (Gene Expression Omnibus) database, was analyzed for the external validation
group to assess the ability to predict BFFS (biochemical failure-free survival) of our m7G prognostic signature. Kaplan-Meier,
ROC (receiver operator characteristic), AUC (areas under ROC curve), and calibration curves were adopted to display the
performance of this prognostic signature. In addition, immune infiltration analysis was implemented to evaluate the effect of
these m7G genes on immunoinfiltrating cells. Correlation with drug susceptibility of the m7G signature was also analyzed by
matching drug information in CellMiner database. Results. The m7G-related prognostic signature, including three genes
(EIF3D, EIF4A1, LARP1) illustrated superior prognostic ability for PRAD in both training and validation cohorts. The 5-year
AUC were 0.768 for TCGA-PRAD and 0.608 for GSE116918. It can well distinguish patients into different risk groups of
biochemical recurrence (p=1e-04 for TCGA-PRAD and p=0.0186 for GSE116918). Immune infiltration analysis suggested
potential regulation of m7G genes on neutrophils and dendritic cells in PRAD. Conclusions. A m7G-related prognostic
signature was constructed and validated in the current study, giving new sights of m7G methylation in predicting the
prognostic and improving the treatment of PRAD.
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1. Introduction

Reportedly, the morbidity of PRAD in men has grown to the
second highest, being the sixth leading cause of death for
men [1]. About 93% PRAD patients were discovered in the
local stages whose five-year OS (overall survival) rate near
to 100% [2]. In contrast, the OS was less than 30% in
patients accompanied with distant metastases [3]. At pres-
ent, PSA (prostate-specific antigen) is the best first-step
serum marker for the screening of prostate tumor, and it
remains the most commonly used tumor marker [4].
Although PSA has achieved remarkable results in the early
detection of prostate cancer, there is no consensus on
whether PSA can effectively reduce the death risk for PRAD
patients [5]. Currently, the treatment for PRAD, especially
for the advanced PRAD, was still conventional radiotherapy
and chemotherapy [6]. But for patients with advanced
PRAD, the comprehensive efficacy was still not ideal. There-
fore, what is urgently necessary is to find novel biomarkers
for the diagnosis, prognosis, and treatment of PRAD to
improve the survival outcome of patients in terminal stage.

It is known that m7G, one type of RNA modification, is
significantly associated with various biological processes [7]
and is widely found in eukaryotes and prokaryotes [8]. It is
widely distributed in the 5′ cap region of tRNA [9], rRNA
[10], and eukaryotic mRNA [11] to modulate RNA process-
ing [12, 13], elongation [14], splicing [15], nucleation, and
protein translation. M7G has been reported related with
the occurrence of primordial dwarfism in human [8]. The
level of m7G was significantly reduced in the primordial
dwarfism patients with a missense mutation in gene encod-
ing WDR4 [16]. Additionally, the m7G level was also related
with tumor cell chemoresistance [16], cell cycle, and oncoge-
nicity [17]. Decreased m7G tRNA modification could induce
oncogenicity of lung cancer by decreasing cell proliferation,
colony formation, and cell invasion [18]. Although m7G
has had certain research results, the roles of the m7G-related
genes and corresponding RNA modification process in
PRAD remain unknown. In addition, it is unclear for the
prognostic power of m7G-related genes in PRAD. The cur-
rent study aimed to seek m7G-related prognostic biomarkers
for terminal-stage PRAD patients, providing potential drug
targets for advanced prostate cancer patients’ treatment.

2. Material and Methods

2.1. Differentially Expressed N7-Methyladenosine-Related
Genes. The RNA-seq data of 551 samples, including 52 nor-
mal samples and 499 PRAD samples, was downloaded in
TCGA database [19] in the form of row counts. The clinical
data, such as age, sex, tumor grade, Gleason score, and PSA,
was also acquired from TCGA. Similar information about
the external validation cohort (GSE116918) was acquired
from GEO database. The m7G-related gene sets, “GOMF
M7G 5 PPPN DIPHOSPHATASE ACTIVITY,” “GOMF
RNA 7 METHYLGUANOSINE CAP BINDING,” and
“GOMF RNA CAP BINDING” contain 26 genes which were
related with m7G, were downloaded from the GSEA [20].
Even more, according to previous reports, we finally found

other 16 m7G-related genes which were illustrated in supple-
mentary materials (available here). The “limma” [21], a kind
of R packages, was used to recognize m7G-related differen-
tially expressed genes (mDEGs), with p < 0:05. To explore
the potential regulating relationship, STRING (Search Tool
for the Retrieval of Interacting Genes) [22] was employed
to seek possible regulating relationship among these mDEGs
in version 11.5.

2.2. Analysis and Validation of Our Prognostic Signature.
These mDEGs were subsequently subjected to estimate their
prognostic power by univariate Cox regression with p < 0:05.
Then, lasso (least absolute shrinkage and selection operator)
[23] Cox regression analysis was adopted for this prognostic
signature construction by using R package “glmnet.” Finally,
three mDEGs were included in the prognostic signature after
lasso penalty. The proportional hazard was counted as the
formula: risk score = ∑3

i Xi ∗ Yi (X: coefficients, Y : gene
expression). The forest plot was drawn by “survminer” pack-
age to show hazard ratio and confidence interval of genes.
Patients were stratified into low- and high-risk clusters based
on optimal cut-off; their survival difference was displayed in
KM (Kaplan-Meier) curves. PCA (principal component
analysis) was conducted to demonstrate the distance of sub-
groups by using R package stats. R packages, including
“survminer” and “timeROC,” were also employed to com-
pute ROC curves of 1, 3, 5 years for the prognostic signature.
Same analytic strategy was also conducted in the external
validation cohort GSE116918.

2.3. The Prognostic Value of This m7G-Related Signature.
Univariate and multivariate Cox regression analyses were
employed to assess prognostic value for this signature. HR
of this signature and traditional clinical factors for prognos-
tic, including Gleason score and tumor grade, were displayed
in the forest map and heat map. Same strategy was also car-
ried out in the external validation cohort GSE116918.
According to multivariate Cox regression analysis’ results,
a nomogram combing the m7G-related signature and clini-
cal factors was depicted to provide easy access to patients’
prognostic risk.

The calibration curve was also demonstrated to verify
the integrity of the above nomogram.

2.4. The Expression Validation of 3 Genes in m7G Signature.
To understand the expression of these genes in PRAD
patients with different stages, the clinical correlation analysis
was utilized between PRAD clinical characteristics and the
level of risk score, as well as expression level of these genes.
In addition, immunohistochemical images of EIF4A1,
EIF3D, and LARP1 in normal tissues and PRAD tissues for
this study were downloaded from the Human Protein Atlas
[24], which were used for further understanding their
expression situation in proteins.

2.5. Downstream Regulatory Pathways and Infiltrating
Immune Cells of the m7G-Related Signature. To determine
the downstream regulatory pathway of genes in the m7G-
related signature, differential analysis was accomplished
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Figure 1: Continued.
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between different risk subsets where DEGs were selected
when its jlog 2FCj ≥ 1 and FDR < 0:05.

Then, KEGG (Kyoto Encyclopedia of Genes and
Genomes) and GO (Gene Ontology) analyses were conducted
with R package “clusterProfiler” [25] for these DEGs. GSVA
(Gene Set Variation Analysis) [26] was utilized to analyze
the relationship of some immune cells and immune pathways
by R package “GSVA.” Furthermore, correlation analysis was
performed between immune cells and immune pathways to
computing their potential regulating relationship.

2.6. Drug Sensitivity Analysis for the 3 Genes in m7G
Signature. In the data of the US NCI (National Cancer Insti-
tute) 60, a total of 60 cancer cell lines have been derived
from nine different cancers [27], which was acquired from
CellMiner database. Pearson’s correlation analysis was uti-
lized to assess the relationship between drug response and
gene expression levels related to m7G.

2.7. Statistic and Software. The data was processed and ana-
lyzed using R 4.41 (package: limma, ggplot2, survminer,
timeROC, GSVA, and so on). Statistical correlations of para-
metric and nonparametric variables were analyzed using the
Pearson and Spearman correlations. We considered all data
analyses to be statistically significant with p < 0:05.

3. Results

3.1. Differential Analysis between Normal and Tumor
Prostate Tissues. Differential analysis of the 42 m7G-related
genes was conducted between PRAD tissues and normal
prostate tissues in TCGA, and 16 DEGs were identified
with p < 0:05. As illustrated in Figure 1(a), a heat map
showed the expression levels for these mRNAs related to
m7G. To discover the possible interactions between m7G-
related genes, protein-protein interactions analysis was con-
ducted (Figure 1(b)). For the interaction analysis, a mini-
mum interaction score of 0.9 was required, and the result
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Figure 1: Expression of 42 m7G-related genes and their interactions. (a) An overview of the genes on this heat map (∗∗P < 0:01; ∗∗∗ P
< 0:001). (b) Network illustrating gene interactions among m7G-related genes. (c) A correlation network showing relationship between
genes related with m7G (positive correlation with red line; negative correlation with blue line).
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Figure 2: Signature of risk in TCGA. (a) Results of univariate Cox regression analysis for 16 mDEGs. (b) Lasso regression analysis of 3
genes. (c) Lasso regression analysis with cross-validation. (d) Multivariable Cox regression of the 3 genes. (e) PCA plot for PRAD
patients. (f) Distributions of PRAD patients based on this signature. (g) Distributions of BFFS status and risk score. (h) KM curves for
BFFS. (i) ROC curves of risk score.
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Figure 3: Validation of this signature in GEO. (a) Multivariable Cox regression of 3 genes in the signature. (b) PCA plot for prostate cancer
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shows that NCBP1, NCBP2, AGO2, EIF4A1, EIF43D,
EIF4G3, and EIF4E2 were hub genes. The correlation net-
work which contained 42 m7G-related genes is demonstrated
in Figure 1(c).

3.2. A m7G-Related Gene Prognostic Model in TCGA. After
removing the sample with missing clinical data, the 339
samples were used for further analysis. Firstly, the primary
screening of genes associated with BCR (biochemical recur-
rence) was estimated by univariate Cox regression analysis.
To keep prognosis value of our prognostic signature, the
cut-off p-value for the study was set at 0.05, and 3 genes
(EIF3D, EIF4A1, LARP1) were obtained (Figure 2(a)). Then,
the lasso Cox regression analysis was carried out for further
screening, then a 3-gene signature was acquired with the
ideal λ value (Figures 2(b) and 2(c)). The multivariable
Cox regression was employed in the 3 genes, and the result
shows that EIF3D (p = 0:020), EIF4A1 (p = 0:004), LARP1
(p = 0:038) could be well prognostic genes (Figure 2(d)).
Based on the following calculation, risk score was computed:
risk score = ð−0:021 ∗ EIF3D exp:Þ + ð0:349 ∗ EIF4A1 exp:Þ
+ ð0:036 ∗ LARP1 exp:Þ. In accordance with the optimum
standard, 339 patients were separated: 226 patients with
low risk and 113 patients with high risk. Then, the result
of PCA illustrated that PRAD patients from TCGA with
varying risk scores were well separated into two different
groups (Figure 2(e)). A higher number of BCR samples were
collected from patients with higher risk scores; meanwhile, a
shorter BFFS time was recorded than that with lower risk
scores (Figures 2(f) and 2(g)). With p < 0:001, significant
differences were found between the BFFS times of the two
groups (Figure 2(h)). The sensitivity and specificity of this
m7G gene prognostic signature were evaluated by ROC anal-
ysis. The results of ROC illustrated that AUC was about
0.768 for 1 year, 0.666 for 3 years, and 0.681 for 5 years
BCR (Figure 2(i)).

3.3. External Validation of This Prognostic Signature. The
data of extra RNA-seq and clinical characteristics of 248
PRAD patients were downloaded in a GEO cohort
(GSE116918) for external validation. The multivariable
Cox regression of 3 genes was also conducted in GEO
cohort, and the result shows EIF3D (p = 0:896), EIF4A1
(p = 0:031), LARP1 (p = 0:014) (Figure 3(a)). The GEO
cohort was reclassified as either low or high risk based on
the sores in the TCGA cohort, with 165 patients classified
as low risk, and the other 83 patients as high risk. The
PCA analysis illustrated significant separation of the two dif-
ferent risk groups (Figures 3(b) and 3(c)). Patients with
lower risk scores were found to have longer BFFS time and
lower BCR rate (Figure 3(d)). According to the external val-
idation model, BFFS time also significantly associated with
risk score with p = 0:019 (Figure 3(e)). In GEO cohort,
ROC curve indicated that our prognostic signature had sig-
nificant prognostic value with AUC of 0.920 for 1 year,
0.588 for 3 years, and 0.610 for 5 years depending on the
BCR (Figure 3(f)).

3.4. Evaluation of Prognostic Value of m7G-Related Gene
Signature. Table 1 summarizes clinical features of PRAD
patients (339 patients from TCGA and 248 from CEO
cohorts). Univariate and multivariate Cox regression analy-
ses were employed in order to assess whether this prognostic
signature could well predict the BFFS independently. As
determined by outcomes of univariate Cox regression, the
signature could be a predictor of survival of PRAD patients
in TCGA (p < 0:001) and GEO (p = 0:043) database
(Figures 4(a) and 4(c)). Using the multivariable Cox regres-
sion analysis, we found this risk signature could be a well
independent predictor of BCR for PRAD patients, indepen-
dently of age, gender, and other confounding factors in
TCGA (p < 0:001, Figure 4(b)) and GEO (p = 0:030,
Figure 4(d)) cohorts. Based on clusters divided by the risk

Table 1: Clinical characteristics of the PRAD patients in different risk groups.

Clinical characteristics (samples)
TCGA cohort (339) GSE116918 cohort (248)

Low risk High risk Low risk High risk

Age (years)

<65 156 70 47 28

≥65 70 43 118 55

Pathologic N

N0 199 82

N1 27 31

Pathologic T

T1+T2 115 28

T3+T4 111 85

Gleason score

<=6 14 5 26 16

=7 126 44 58 41

>=8 86 64 81 26

PSA (ng/ml)

<20 96 46

>=20 69 37
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Figure 4: Analyses of univariate and multivariate Cox regression. (a and b) TCGA analysis using univariate and multivariate cox analysis.
(c and d) Cox analysis of GEO cohort using univariate and multivariate methods. (e) The association of clinical features with risk groups
shown in the heat map (low expression in green; high expression in red).
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scores, we created a heat map to illustrate the differences in
the distribution of clinical characteristics between different
risk groups’ patients in TCGA (Figure 4(e)). Figure 5(a)
shows the situation that the prognostic nomogram for BFFS
from the TCGA cohort included all significant clinical find-
ings. In addition, the calibration curve for the probability of
recurrence of biochemical abnormalities in PRAD patients
at 1, 3, or 5 years showed optimal agreement with predic-

tions derived by the nomogram (Figure 5(b)). On the blue
curve, the prediction model accuracy for survival over one
year was represented. Likewise, the violet curve represented
survival over three years and the red curve represented sur-
vival over five years.

3.5. Expression Validation of the Risk Model in Prostate
Cancer Patient. The correlation analysis was employed
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Figure 5: An example of a signature nomogram. (a) Prediction of 1-, 3-, and 5-year BFFS using a nomogram-based genes signature. (b) A
calibration plot depicting the agreement between the BFFS prediction and the actual observation over 1, 3, and 5 years.
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between the clinical characteristics and the expression of
EIF3D, EIF4A1, and LARP1 in TCGA cohort, the risk score
as well. As shown in Figures 6(a)–6(c), T classification and
lymph node involvement were significantly associated with
EIF3D expression; a significant association was also identi-
fied between LRP1 expression and T classification, lymph
node involvement, and Gleason score (p < 0:05). Further-
more, risk scores were also notably correlated to T-staging
in pathology, N-staging in pathology, and Gleason score
for progression of PRAD (Figures 6(d)–6(f)). In accordance
with the Human Protein Atlas database, we discovered that
EIF3D, EIF4A1, and LARP1 were all upregulated in PRAD
tissues (Figure 6(g)).

3.6. Functional Enrichment and Immune Activity Analysis.
Differential analysis was conducted by “limma” R package
to extract genes which were differentially expressed between
different risk groups to explore signaling functions and path-
ways. 2219 DEGs were identified in TCGA cohort under
the criteria: FDR < 0:05, as well as jlog 2FCj ≥ 1, including

19 downregulated genes and 2200 upregulated genes in the
high-risk cluster. Through these DEGs, enrichment analy-
sis of KEGG and GO indicated that these genes were
closely correlated with humoral immune response regulated
by circulating immunoglobulin, immunoglobulin complex,
immunoglobulin receptor binding, and neuroactive ligand-
receptor interaction (Figures 7(a) and 7(b)).

ssGSEA analysis demonstrated a correlation between
TCGA and GEO for 16 immune cell infiltration values and
13 immune-related pathway activities. Results from TCGA
cohort analysis illustrated that patients with higher risk
scores had less immune cell infiltration compared with
low-risk participants, such as aDCs, neutrophils, and Th1
cells (Figure 8(a)). In immune-related pathways activity
analysis, MHC (major histocompatibility complex) class I,
parainflammation, and type I IFN (interferon) response
showed the lower activity in high expression group
(Figure 8(b)). Additionally, in GEO cohort, we found that
DCs (dendritic cells), mast cells, pDCs (plasmacytoid
DCs), and Th (T helper) cells had significant difference in

EIF3D LARP1EIF4A1

Normal

Pathologic T Pathologic N Gleason score

Tumor

(g)

Figure 6: Gene expression from the signature in patients with PRAD. (a–c) The correlation between gene expression and pathologic T and
N stages, as well as Gleason score, of PRAD. (d–f) Relationship between this signature and clinical features of PRAD. (g)
Immunohistochemistry figures from The Human Protein Atlas database of these genes.
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subgroups (Figure 8(c)). Immune-related pathways, such as
APC (antigen-presenting cell) co-stimulation, check point,
and T cell co-stimulation, also had significant differences
(Figure 8(d)). Then, the correlation of infiltrating immune
subsets between different immune cells and pathways related
to immune is demonstrated in Figures 9(a) and 9(b). The
closer the correlation coefficient was to 1, the higher the cor-
relation between immune cells or immune-related pathways.
A heat map illustrated that T helper cells, HLA (human leu-
kocyte antigen), and parainflammation were significantly
associated with PRAD samples.

3.7. Expression of Genes with Sensitivity of Cancer Cells to
Chemotherapy. Pearson’s correlation analysis was conducted
to assess whether 3 genes within NCI-60 cell lines have a
relationship with drug sensitivity and there was a p-value <
0.01. The EIF3D, EIF4A1, and LARP1 genes have all been
implicated in chemotherapeutic drug sensitivity, such as
hydroxyurea, chelerythrine, methylprednisolone, cladribine,
and cytarabine (Figure 10). EIF3D was identified to enhance
the sensitivity of cancer cells to some chemotherapeutics,
such as hydroxyurea, chelerythrine, and vorinostat, while
LARP1 weakened the sensitivity of denileukin diftitox ontak.
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Figure 7: Functional analysis of KEGG and GO in TCGA. (a) Barplot graph for GO analysis (bar length means degree of enrichment and
color means degree of difference). (b) Bubble graph for KEGG enrichment (bigger bubbles indicate more enriched genes, whereas deeper red
means more notable differences).
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Figure 8: Correlation analysis between ssGSEA scores and immune cells or immune pathways. (a and b) A comparison of enrichment
scores of immune cells and pathways related to immune in TCGA cohort (groups in green are at low risk; groups in red are at high
risk). (c and d) A comparison of enrichment scores across GEO cohorts.
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4. Discussion

In our study, the differentially expressed m7G-related genes
were analyzed between normal prostate tissues and prostate
cancer tissues in TCGA, and 16 m7G-related genes were iden-
tified as mDEGs. Univariate and lasso Cox regression analyses
were then utilized to develop this 3-gene risk signature that
assessed the prognostic relevance of genes which were signifi-
cantly connected with m7G. Taking outcomes of our study
into account, we believe that this signature could be regarded
as a prognostic factor to predict the BFFS for PRAD patients
independently. Then, the function enrichment analysis pre-
sents that this prognostic signature was observably related
with immune cells and immune-related pathways. Addition-
ally, analysis of drug sensitivity indicated that EIF3D, EIF4A1,
and LARP1 expressed by cancer cells greatly influenced the
sensitivity of the cells to chemotherapy.

The mRNA cap m7G is reported as a ubiquitous posi-
tively charged modification [7] and can modulate nearly all
stages of mRNA synthesis. However, how m7G-related genes
related with the occurrence and progression of PRAD, as
well as the survival time of PRAD patients, was still uncer-

tain. Based on 3 genes associated with the m7G sequence,
this study developed a signature, including EIF3D, EIF4A1,
and LARP1. Later, we found the signature could predict
the BFFS of PRAD patients. EIF3 is the largest of the ribo-
somal EIF complexes that bind to the 40S ribosome and
maintains dissociation of the 40S and 60S ribosomal sub-
units. According to some previous studies, EIF3D, the larg-
est subunit of EIF3, regulates the stability of the association
between EIF3 subunits [28]. EIF3D has also been reported
to play some important role in tumors, such as colon cancer
[29], melanoma [30] and breast cancer [31]. Recent studies
concluded that the EIF3D expression is critical to the occur-
rence of cancer by promoting protein synthesis. Overexpres-
sion and activity of EIF4A1, which is an ATP-dependent
RNA helicase, have been linked to the development of cer-
tain tumors [32]. In ATP-dependent protein translation,
EIF4A1 catalyzes unwinding of mRNA’s 5′ UTR, an essen-
tial step in RNA processing, prior to ribosome binding, espe-
cially for mRNAs with increased lengths and complexity of
the 5′ UTR. Previous studies over the past decade had
proved the antitumor toxicity of EIF4A1 inhibition, main-
taining a therapeutic window for normal cells [32, 33].
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Figure 9: The results of immunocorrelation analysis. (a and b) Correlation between immune cells and pathways related to immune (the
redder the color, the higher the correlation). (c) The heat map shows the infiltration of immune cells and pathways related to immunity.
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LARP1 had also been reported to have significant correlation
with some tumor, such as colorectal cancer [34] and ovarian
cancer [35]. What has been illustrated is that LRP1 com-
plexes with PABP (poly-A binding protein) and binds an
interactome of over 3000 mRNAs, among them transcripts
encoding the ribosomal machinery, which lack the 5′ TOP
motif [36]. Furthermore, LARP1 had been shown to contrib-
ute significantly to ribosome biogenesis through its involve-
ment in mTOR signaling [37]. A m7G group or derivative at
the 5′ end of an RNA molecule showed selective and nonco-
valent interactions with EIF3D, EIF4A1, and LARP1,
according to the gene sets “GOMF RNA CAP BINDING.”
In summary, EIF3D, EIF4A1, and LARP1 in the prognostic
model were proved to be m7G-related genes. Our study
showed that not every gene we examined was related to a
better PRAD prognosis. Thus, the specific mechanism of
these genes interacting with each other during m7G remains
to be further explored.

Up to now, the research on mechanism of m7G-related
genes in PRAD is still insufficient. Our study identified that
EIF3D, EIF4A1, and LARP1 may be key m7G-related genes
in PRAD. In our analyses of prognostic value of these genes,
we identified a signature that may function as a prognostic
factor independently. Moreover, immunoactivity analysis
and function enrichment were also employed to investigate
the possible functions of this signature. However, the specific
mechanism of m7G-related genes, including EIF3D, EIF4A1,
and LARP1, affecting the occurrence, development, and
prognosis of PRAD deserves further research.

In conclusion, the study presented that m7G was closely
related with PRAD, because for the expression of most of the
genes related to m7G, there was a great difference between
tumor and normal prostate tissues. Aside from that, the
score calculated from the 3 m7G-related genes signature

had significant correlation with the prognosis of PRAD
patient. Also, the model may be a method for predicting
BFFS independently in TCGA cohort and GEO cohort for
PRAD patients. On the other hand, immunity was associ-
ated with DEGs which was identified from different risk
clusters. In our study, a novel prognostic signature was iden-
tified to predict the BFFS for PRAD patients, and the genes
EIF3D, EIF4A1, and LARP1, related to m7G, were identified
as the genes representing m7G-related genes in PRAD for
further mechanisms research. In addition, the study pro-
vides a well condition to investigate the regulating relation-
ship between m7G and immunity in PRAD.

5. Conclusion

In our study, multiple bioinformatics analyses were utilized
to identify a 3-gene signature related with m7G to evaluate
the prognosis of PRAD patient. Our study found that the
signature was significantly related with the prostate cancer
clinical characteristics and immunity. Thus, the gene signa-
ture in our study could be utilized as an independent prog-
nostic indicator for PRAD patients.
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