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Background: The association between the serum anion gap (AG) and

prognosis of patients with spontaneous subarachnoid hemorrhage (SAH)

remains unknown. Thus, this study aimed to explore the association between

AG levels and mortality in patients with SAH in the intensive care unit (ICU).

Methods: This was a retrospective analysis of data stored in the Medical

Information Mart for Intensive Care–IV and eICU Collaborative Research

databases. Critically ill patients diagnosed with spontaneous SAH were

included. The primary outcomemeasure was in-hospital all-cause mortality. A

multivariate Cox proportional hazards regression model and a restricted cubic

spline were used to evaluate the relationship between AG concentration and

outcomes. Kaplan–Meier curves were used to compare cumulative survival

among patients with AG levels.

Results: A total of 1,114 patients were enrolled. AG concentration was

significantly associated with in-hospital all-cause mortality [hazard ratio ([HR],

1.076 (95% confidence interval (CI), 1.021–1.292; p = 0.006)]. The risk of

mortality was higher in the Category 2 group (AG ≥10 mmol/L and <13

mmol/L; HR, 1.961; 95% CI, 1.157–3.324; p = 0.0) and the Category 3

group (AG ≥13 mmol/L; HR, 2.151; 95% CI, 1.198–3.864; p = 0.010) than

in the Category 1 group (AG < 10 mmol/L). Cumulative survival rates were

significantly lower in patients with higher AG levels (log-rank p < 0.001).

Conclusions: In-hospital and ICU mortalities increase with increasing AG

concentration in patients with SAH. An increased serum AG level is an

independent, significant, and robust predictor of all-cause mortality. Thus,

serum AG levels may be used in the risk stratification of SAH.

KEYWORDS

subarachnoid hemorrhage, anion gap, intensive care unit, in-hospital mortality, ICU
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Introduction

Spontaneous subarachnoid hemorrhage (SAH) accounts for 5–10% of all strokes

(1). Patients with SAH tend to be younger than patients with other stroke subtypes,

thus leading to an enormous burden of premature mortality (2). Half of surviving SAH

patients experience long-term neuropsychological complications and lower quality of
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life (3). Early identification and appropriate treatment regimens

can improve the overall survival of patients with SAH. Thus, a

robust and easily accessible clinical indicator for determining

prognosis is needed for patients with SAH.

The plasma anion gap (AG) is a mathematical derivation

parameter calculated using the formula Na++ (Cl− +HCO3−).

AG has been widely applied in diagnosing various forms of

metabolic acidosis for more than 50 years (4). Previous research

has found relationships between AG and mortality in patients

with many different diseases, such as acute renal failure (5),

cerebral infarction (6), acute myocardial infarction (7), acute

ischemic stroke (8), coronary artery disease (9), and aortic

aneurysms (10). Furthermore, in the general population, which

is essentially free of these diseases, higher levels of AG might be

of prognostic significance because an increase in AG has been

associated with insulin resistance (11), hypertension (12), and

low cardiorespiratory fitness (13). However, it is still unknown

whether such changes in AG during the course of SAH are

associated with a risk difference in mortality. Therefore, this

study aimed to investigate the relationship between AG and SAH

using publicly accessible clinical databases.

Methods

Study design and population

This retrospective study analyzed data from the Medical

Information Mart for Intensive Care (MIMIC)-IV database

(version:1.0) (14) and eICU Collaborative Research Database

(15). The MIMIC-IV database, as an update to the MIMIC-

III database, contains de-identified health-related data of over

40,000 unique patients who were admitted to the critical

care units of Beth Israel Deaconess Medical Center between

2008 and 2019. The eICU database is a multicenter database

(208 hospitals) comprising de-identified health data associated

with over 200,000 ICU admissions between 2014 and 2015

FIGURE 1

Flow charts of patient inclusion.

across the United States. Adult patients with spontaneous

SAH, as defined according to the International Classification

of Diseases, Ninth and Tenth Revision (ICD-9 and ICD-10)

codes and Acute Physiology and Chronic Health Evaluation

admission codes, were included in the study. Patients meeting

the following criteria were excluded: (1) age <18 or >90 years,

(2) with insufficient AG data, and (3) with diagnoses related to

traumatic SAH. One of the authors who passed the Collaborative

Institutional Training Initiative exam and accessed database for

data extraction (X.T. certification number:43334826).

Data extraction and outcome measures

The following patient characteristics were collected: (1)

comorbidities including myocardial infarct, congestive heart

failure, peripheral vascular disease, chronic pulmonary disease,

rheumatic disease, peptic ulcer disease, liver disease, diabetes,

renal disease, and malignant cancer; (2) Sequential Organ

Failure Assessment (SOFA) score; (3) first day vital signs,

including temperature, systolic blood pressure, diastolic blood

pressure, and respiratory rate heart rate; (4) and first day

laboratory test results, including AG, bicarbonate, creatinine,

chloride, glucose, hematocrit, hemoglobin, lactate, platelets,

potassium, sodium, blood urea nitrogen (BUN), white blood

cell (WBC), and calcium. The overall Charlson Comorbidity

Index (CCI) (16) was calculated using 18 categories of medical

conditions identified in the medical records. For patients with

multiple intensive care unit (ICU) admissions, we collected

information only on the first ICU admission.

The primary outcome measure was in-hospital mortality,

and the secondary outcome measure was ICU mortality. The

patients were classified into three groups based on the three AG

categories (Category 1, AG < 10 mmol/L; Category 2, AG ≥ 10

mmol/L and <13 mmol/L; and Category 3, AG ≥ 13 mmol/L).

Previous studies have shown that an increase in AG levels is

associated with poor clinical outcomes in several diseases. To
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TABLE 1 Patient characteristics by anion gap concentration subgroup.

Characteristics Anion gap subgroups (mmol/L) P value

Category 1 Category 2 Category 3

(<10, n = 283) (≥10, <14; n = 476) (≥14; n = 236)

Age, years [mean (SD)] 57.32 (15.60) 59.52 (14.13) 59.10 (14.42) 0.125

Male (%) 123 (43.5) 192 (40.3) 108 (45.8) 0.359

Days in Hospital [mean (SD)] 14.34 (19.74) 13.16 (10.52) 11.95 (10.94) 0.149

Days in ICU [mean (SD)] 8.32 (7.37) 9.17 (8.89) 7.90 (7.73) 0.115

Hospital mortality (%) 40 (14.1) 80 (16.8) 58 (24.6) 0.006

ICU mortality (%) 29 (10.2) 58 (12.2) 47 (19.9) 0.003

Vital signs [mean (SD)]

Heart rate 61.69 (12.78) 63.27 (12.49) 64.03 (15.34) 0.121

Systolic blood pressure 97.41 (15.46) 97.68 (14.72) 99.97 (19.54) 0.144

Diastolic blood pressure 49.45 (9.86) 48.11 (10.13) 49.80 (11.54) 0.075

Respiratory rate 11.39 (4.02) 11.90 (3.58) 12.49 (3.75) 0.005

Temperature 36.25 (0.78) 36.40 (0.60) 36.39 (0.71) 0.013

SPO2 91.82 (10.70) 93.05 (7.44) 90.58 (11.91) 0.007

Comorbidities [n (%)]

Myocardial infarction 4 (1.4) 20 (4.2) 11 (4.7) 0.072

Congestive heart failure 7 (2.5) 22 (4.6) 15 (6.4) 0.097

Peripheral vascular disease 6 (2.1) 17 (3.6) 15 (6.4) 0.04

Chronic pulmonary disease 15 (5.3) 57 (12.0) 25 (10.6) 0.01

Rheumatic disease 2 (0.7) 6 (1.3) 5 (2.1) 0.367

Peptic ulcer disease 1 (0.4) 3 (0.6) 2 (0.8) 0.765

Mild liver disease 6 (2.1) 12 (2.5) 4 (1.7) 0.774

Severe liver disease 1 (0.4) 4 (0.8) 1 (0.4) 0.648

Diabetes 7 (2.5) 36 (7.6) 19 (8.1) 0.008

Renal disease 15 (5.3) 13 (2.7) 19 (8.1) 0.006

Paraplegia 4 (1.4) 30 (6.3) 15 (6.4) 0.005

Malignant cancer 8 (2.8) 9 (1.9) 5 (2.1) 0.694

Charlson Comorbidity Index [mean (SD)] 3.62 (1.81) 4.04 (2.01) 4.20 (2.13) 0.002

SOFA score [mean (SD)] 3.16 (2.80) 3.49 (2.69) 3.68 (2.74) 0.083

Laboratory results [mean (SD)]

Anion gap 7.06 (1.75) 11.73 (1.09) 16.72 (2.18) <0.001

Bicarbonate 23.23 (3.32) 22.68 (3.31) 20.57 (3.18) <0.001

Creatinine 0.83 (0.48) 0.78 (0.39) 1.03 (1.67) 0.002

Chloride 104.29 (4.81) 103.49 (4.72) 102.12 (4.70) <0.001

Glucose 120.78 (33.32) 127.32 (35.57) 139.60 (50.88) <0.001

Hematocrit 35.80 (5.85) 35.81 (4.95) 36.79 (5.60) 0.052

Hemoglobin 11.99 (2.11) 12.02 (1.80) 12.35 (1.98) 0.062

Platelets 210.84 (70.99) 211.63 (71.56) 232.58 (89.81) 0.001

Potassium 3.66 (0.49) 3.63 (0.43) 3.72 (0.51) 0.042

Sodium 137.41 (3.96) 138.34 (4.23) 138.12 (3.63) 0.008

BUN 13.88 (9.22) 13.24 (7.12) 17.50 (18.63) <0.001

WBC count 10.95 (13.11) 10.72 (3.92) 12.08 (4.58) 0.09

Calcium 8.23 (0.86) 8.31 (0.73) 8.51 (0.74) <0.001

SAH, subarachnoid hemorrhage; SD, standard deviation; BUN, blood urea nitrogen; WBC, white blood cell.
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thoroughly analyze whether this trend also occurred in patients

with SAH, we only collected the minimum results for patients

with a multi-lab test in the first 24 h of ICU admission.

Statistical analysis

Continuous variables were presented as the mean

and standard deviation, while categorical variables were

presented as proportions in each category, substratified by

AG concentrations. Chi-square or Fisher’s exact tests were

used to compare categorical variables, and the t-test or one-

way analysis of variance was used to compare continuous

variables. Multivariate Cox proportional hazards regression

models adjusted for potential confounders were used to assess

hazard ratios (HRs) of mortality for AG concentration in SAH

patients. Three cox models were performed as follows: model 1,

without adjusting for any confounders; model 2, adjusting for

demographic information, vital signs and score system which

have p values < 0.2 in the univariate analysis; model 3, adjusting

for all confounders with p values< 0.2 in the univariate analysis.

Restricted cubic spline (RCS) models fitted with three knots

at the 10th, 50th, and 90th percentiles of AG were used for

multivariate Cox proportional hazards regression model 3 to

show the association between AG and in-hospital mortality in

patients with SAH. The Kaplan–Meier method was employed

to calculate the absolute risk of in-hospital and ICU mortalities

for each subgroup of different AG concentrations. The data

were reported as HRs with 95% confidence intervals (CIs). All

statistical analyses were performed using R software (version

4.0.1). All tests were two sided, and statistical significance

between two or more groups was set at p < 0.05.

Results

Patient characteristics

A total of 1,519 patients were confirmed to have spontaneous

SAH, including 831 patients from the MIMIC-IV database and

688 patients from the eICU database. After exclusion, 1,114

patients were finally included in the analysis (Figure 1). The

mean age of the total cohort was 58.74 ± 14.51 years, and

42.5% (474/1,114) were men. The in-hospital mortality and ICU

mortality rates were 17.4% (194/1,114) and 13.2% (147/1,114),

respectively. The basic patient characteristics by category are

summarized in Table 1. Themean AG concentrations of the total

cohort and Categories 1, 2, and 3were 11.84± 3.70mmol/L, 7.06

± 1.75mmol/L, 11.73± 1.09mmol/L, and 16.72± 2.18mmol/L,

respectively. In general, patients with higher AG levels also had

higher in-hospital (14.1 vs. 16.8 vs. 25.6%, p = 0.006) and ICU

mortality (10.2 vs. 12.2 vs. 19.9%, p = 0.003). Patients with

higher AG levels also had larger vital signs indices and a higher

proportion of chronic pulmonary disease, diabetes, paraplegia

and renal disease.

Association between AG and outcomes

The mean hospital stay duration for the survivor and

the non-survivor groups was 14.76 ± 14.40 days and 6.75

± 7.08 days, respectively. Hazards ratios (HR) of these three

models were as follows: model 1, 1.061 (95%CI, 1.022–1.102;

p = 0.002); model 2, 1.060 (95%CI, 1.015–1.105; p = 0.007)

(adjusting for age, sofa score, systolic blood pressure, diastolic

blood pressure, respiratory rate, temperature and SPO2); model

3, 1.076 (95%CI, 1.021–1.292; p = 0.006) (adjusting for age,

systolic blood pressure, diastolic blood pressure, respiratory rate,

temperature, SPO2, mild liver disease, serve liver disease, renal

disease, malignant cancer, Charlson Comorbidity Index, SOFA

score, bicarbonate, creatinine, glucose, hematocrit, hemoglobin,

platelets, potassium, BUN, WBC count, and calcium) (Table 2).

RCS curve showed that the risk of in-hospital mortality

increased as the AG concentration increased (Figure 2A). With

the Category 1 group as the reference, the HRs for all-cause in-

hospital mortality were higher in the Category 2 (HR, 1.961; 95%

CI, 1.157–3.324; p = 0.012) and Category 3 groups (HR, 2.151;

95% CI, 1.198–3.386; p = 0.010) (Table 3). Similar results were

found for the association between AG concentration and ICU

mortality (Figure 2B and Table 3). The Kaplan-Meier survival

curve demonstrated significantly lower cumulative survival for

patients with higher AG levels (log-rank p < 0.001) (Figure 3).

TABLE 2 Association between the anion gap and in-hospital and ICU

mortalities.

Characteristics HR (95% CI) P value

In-hospital mortality

Model 1a 1.061 (1.022–1.102) 0.002

Model 2b 1.060 (1.015–1.105) 0.007

Model 3c 1.076 (1.021–1.292) 0.006

ICUmortalityb

Model 1a 1.078 (1.032–1.125) < 0.001

Model 2b 1.022 (1.007–1.037) 0.011

Model 3d 1.095 (1.030–1.164) 0.003

aAdjusting for nothing.
bAdjusting for age, heart rate, systolic blood pressure, diastolic blood pressure, respiratory

rate, temperature, SPO2 and SOFA score.
cAdjusting for age, systolic blood pressure, diastolic blood pressure, respiratory rate,

temperature, SPO2, mild liver disease, serve liver disease, renal disease, malignant cancer,

Charlson Comorbidity Index, SOFA score, bicarbonate, creatinine, glucose, hematocrit,

hemoglobin, platelets, potassium, BUN, WBC count, and calcium.
dAdjusting for age, heart rate, systolic blood pressure, diastolic blood pressure, respiratory

rate, temperature, SPO2, mild liver disease, serve liver disease, myocardial infarction,

paraplegia, renal disease, malignant cancer, Charlson Comorbidity Index, SOFA score,

bicarbonate, creatinine, glucose, hemoglobin, platelets, potassium, BUN, WBC count,

and calcium.
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FIGURE 2

Multivariable adjusted hazard ratios (HRs) for all-cause mortality according to levels of anion gap (AG) on a continuous scale (mmol/L). Solid

deep red lines are multivariable-adjusted HRs. Light red areas are the 95% confidence intervals derived from restricted cubic spline regressions

with 3 knots. Dashed black lines are reference lines for no association at a hazard ratio of 1.0. In general, in-hospital (A) and ICU (B), mortality are

increased as AG concentration increased. In-hospital mortality analysis is adjusted for age, systolic blood pressure, diastolic blood pressure,

respiratory rate, temperature, SPO2, mild liver disease, serve liver disease, renal disease, malignant cancer, Charlson Comorbidity Index, SOFA

score, bicarbonate, creatinine, glucose, hematocrit, hemoglobin, platelets, potassium, BUN, WBC count, and calcium. ICU mortality analysis is

adjusted for age, heart rate, systolic blood pressure, diastolic blood pressure, respiratory rate, temperature, SPO2, mild liver disease, serve liver

disease, myocardial infarction, paraplegia, renal disease, malignant cancer, Charlson Comorbidity Index, SOFA score, bicarbonate, creatinine,

glucose, hemoglobin, platelets, potassium, BUN, WBC count, and calcium.

TABLE 3 Multivariate Cox analysis for in-hospital and ICU mortalities

across anion gap groups.

Characteristics HR (95% CI) P value

In-hospital mortalitya

Category 1 Ref Ref

Category 2 1.961 (1.157–3.324) 0.012

Category 3 2.151 (1.198–3.864) 0.010

ICUmortalityb

Category 1 Ref Ref

Category 2 1.869 (1.007–3.467) 0.047

Category 3 2.553 (1.279–5.10) 0.008

aAdjusting for age, systolic blood pressure, diastolic blood pressure, respiratory rate,

temperature, SPO2, mild liver disease, serve liver disease, renal disease, malignant cancer,

Charlson Comorbidity Index, SOFA score, bicarbonate, creatinine, glucose, hematocrit,

hemoglobin, platelets, potassium, BUN, WBC count, and calcium.
bAdjusting for age, heart rate, systolic blood pressure, diastolic blood pressure, respiratory

rate, temperature, SPO2, mild liver disease, serve liver disease, myocardial infarction,

paraplegia, renal disease, malignant cancer, Charlson Comorbidity Index, SOFA score,

bicarbonate, creatinine, glucose, hemoglobin, platelets, potassium, BUN, WBC count,

and calcium.

Discussion

The relationship between serum AG and clinical outcomes

in patients with spontaneous SAH is still unknown. This study

found that patients with increased serum AG levels had worse

clinical outcomes and a greater probability of in-hospital and

ICU deaths.

Serum AG has been widely used to identify errors in

measuring serum electrolytes or to detect and evaluate various

acidotic conditions. Most recently, high AG levels were reported

to be associated with decreased clinical outcomes in several

diseases (5–13). Thus, serum AG, as a low-cost and easily

available clinical index, may have great potential for evaluating

prognosis. SAH accounts for 5–10% of strokes, but it occurs at a

younger age, resulting in more loss of productive life years. The

fatality rate ranges from 25 to 50%, owing to the consequences

of either original bleeding or serious complications (16). In

this study, the total in-hospital mortality rate was relatively

low (17.7%). This explains why we only collected data on the

first ICU admission, and this estimate did not fully account for

patients who died before receiving medical attention (17).

Previous studies have also reported that case fatality rates

have decreased with the introduction of improved management

strategies (16). We found that the risk of mortality increased

with increasing AG levels. This result may be partly explained

by a decrease in bicarbonate levels. Increased plasma AG often

reflected an acid imbalance due to inadequate tissue perfusion

and renal excretion function disorders in the current study.

Acid-base balance is critical for optimal physiological functions

and cell metabolism (18). Categories 1, 2, and 3 had mean

bicarbonate concentrations of 23.23 ± 3.32, 22.68 ± 3.31, and

20.57 ± 3.18 mmol/L (p < 0.001), respectively, and 5.3, 2.7, and

8.1% (p = 0.008) of patients had renal disorders, respectively.

Cerebral vasospasm to extravascular blood cells and delayed

cerebral ischemia are two of the most important and common

complications in SAH (19).
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FIGURE 3

Kaplan–Meier survival curve of mortality among quartile groups of serum anion gap. In-hospital mortality (A). ICU mortality (B).

Cerebral vasospasm and delayed cerebral ischemia may

lead to cerebral ischemia or brain hypoxia. These could be

direct or indirectly cause by excess lactate production in the

tissue, causing hyperventilation and hypocapnia (20) that could

increase vasoconstriction and decrease intracranial pressure

(21). Although the mechanism by which hypocapnia affects

the prognosis of brain injury remains unclear, several studies

have reported that hypocapnia is associated with poor outcomes

in patients with brain injury. Solaiman et al. found that

the duration of hypocapnia was associated with symptomatic

vasospasm and unfavorable outcomes in aneurysmal SAH

patients (22). Cai et al. also reported that both hypercapnia

and hypocapnia were associated with a higher mortality risk

in patients with SAH or other craniocerebral diseases (23).

However, high AG levels may reflect renal excretion function

disorders. In a large consecutive series of prospective cohort

studies, Zacharia et al. found that renal dysfunction was an

independent predictor of worse outcomes in patients with

aneurysmal SAH patients (24).

Another explanation might be that the increase in AG levels

partly reflects the increase in sodium concentration in SAH

patients (25). Previous studies have reported that hypernatremia

is associated with poor outcomes in SAH patients (26–32). In

a clinical trial conducted at 54 neurosurgical centers in North

America, Qureshi et al. found that although hypernatremia

was not associated with the risk of symptomatic vasospasm,

it was independently associated with poor outcomes after

adjusting for previously identified outcome predictors (30).

Fisher et al. found that hypernatremia was associated with

adverse cardiovascular and neurological outcomes (26). Kumar

et al. also found that hypernatremia was a significant risk factor

for acute kidney injury in a patient with SAH (32). These results

support that in addition to hypernatremia, AG levels may also

further increase.

Compared to established indicators such as blood gas

analysis or lactate, plasma AG is less costly and more frequently

available in low-resource settings (33). As an alternative to assess

acid-base imbalances, blood gas analysis may be used to predict

prognosis in critically ill patients. However, blood gas analysis

can indeed be influenced by compensatory respiratory alkalosis.

Plasma AG is a sensitive tool for the treatment of metabolic

diseases. Plasma AG is straightforward and does not require

arterial puncture. In this study, plasma AG was found to be

an independent predictor of in-hospital and ICU mortalities in

patients with SAH.

Limitations

Our study has a few limitations that should be mentioned.

First, the retrospective design may have introduced patient

selection and analysis bias. However, we used real-world data

from two large databases with patients from more than 200

hospitals to improve the generalizability of the results as

much as possible. Second, patients with SAH were diagnosed

using administrative diagnostic codes. Although we only

selected the primary diagnosis sequence, there was still a

chance of misclassification, leading to faulty connections. Third,

hypoalbuminemia was prevalent in critically ill patients, which

might have led to AG underestimation. Consequently, we only

collected the minimum result for AG in the first 24 h to

evaluate the relationship between AG increase and mortality.

Third, the MIMIC-IV and eICU databases did not include long-

term follow-up events. Thus, the association between long-term

functional results and AG levels in patients was unclear. Given

the small window of time for therapy following symptom onset

of cerebral hemorrhage and the increase in cerebral hemorrhage

severity, some patients with SAH may not have been referred to
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other institutions. Therefore, our study may not have included

high-risk patients. Furthermore, individuals with mild cerebral

hemorrhage may have been admitted to the general ward

and excluded from our study. Further research is needed to

evaluate the external generalizability of our findings. Additional

prospective case-control data are also needed to demonstrate the

relevance of AG as a clinical marker for predicting the outcomes

of SAH.

Conclusions

This large population-based study shows that the risk of

mortality increases as AG concentration increases in patients

with SAH. AG is an independent risk factor for all-cause in-

hospital and ICU mortalities and is associated with poor clinical

outcomes in these patients. Therefore, plasma AG could be a

valuable marker for evaluating the prognosis of critically ill

patients with SAH.
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