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MiRNAs are short non-coding RNAs that regulate gene expression post-

transcriptionally contributing to the development of different diseases

including cancer. The miR-200 family consists of five members, miR-200a,

miR-200b, miR-200c, miR-141, and miR-429. Their expression is dysregulated

in cancer tissue and their level is altered in the body fluids of cancer patients.

Moreover, the levels of miR-200 family members correlate with clinical

parameters such as cancer patients’ survival which makes them potentially

useful as diagnostic and prognostic biomarkers. MiRNAs can act as either

oncomiRs or tumor suppressor miRNAs depending on the target genes and

their role in the regulation of key oncogenic signaling pathways. In most types

of cancer, the miR-200 family acts as tumor suppressor miRNA and regulates

all features of cancer. In this review, we summarized the expression pattern of

the miR-200 family in different types of cancer and their potential utility as

biomarkers. Moreover, we comprehensively described the role of miR-200

family members in the regulation of all hallmarks of cancer proposed by

Hanahan and Weinberg with the focus on the epithelial-mesenchymal

transition, invasiveness, and metastasis of tumor cells.

KEYWORDS

miR-200, miR-200 family, miRNA, hallmarks of cancer, tumor progression,
invasiveness, metastasis
Introduction

MiRNAs (microRNAs, miRs) are small non-coding RNAs that regulate gene

expression at the post-transcriptional level. They were discovered in 1993, when Lee

et al. described an antisense RNA-RNA interaction between lin-4 transcripts

complementary to the 3 ’ untranslated region (UTR) of lin-14 mRNA in
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Caenorhabditis elegans (1). Over the past 30 years, miRNAs have

become the subject of intense research, including in the field of

cancer research (2, 3). So far over 2000 human miRNAs have

been described (4, 5). Numerous studies have focused on the role

of miRNAs in cancer development in vitro and in vivo, as well as

their potential use as diagnostic and prognostic biomarkers and

therapeutic agents (6, 7).

MiRNA biogenesis is a multistep process resulting in the

formation of mature single-stranded miRNA (8). It begins in the

nucleus where pri-miRNA is transcribed with RNA polymerase

II. MiRNAs may be monocistronic (encoded individually) or

polycistronic (encoded in clusters). In the next step, pre-miRNA

is generated with the participation of the Drosha complex

(microprocessor) and transported to the cytoplasm where it is

further processed by the Dicer complex to miRNA duplex. Only

one strand of the miRNA duplex (mature miRNA) forms the

miRNA-induced silencing complex (RISC) (9–11).

MiRNAs bind with their seed region to complementary

sequences in the 3’ UTR of mRNAs (12). The seed region is a

sequence of 2-7 nucleotides at the 5’ end of the miRNA that is

responsible for mRNA binding (13). That leads to the

degradation of mRNA or inhibition of protein translation (14).

One miRNA may target several mRNAs, as well as an individual

mRNA may be regulated by numerous miRNAs. The are several

bioinformatical tools (e.g. TargetScan, Starbase) that enable the

prediction of the targets of miRNAs in silico, but the result must

be validated experimentally (15). Thus, miRNAs form a complex

miRNA-mRNA regulatory network that influences key
Frontiers in Oncology 02
pathways in cells and controls all biological processes

including carcinogenesis (2, 12).

The miR-200 family consists of five members, miR-200a,

miR-200b, miR-200c, miR-141, and miR-429. They are divided

into two clusters based on their seed sequence. MiR-200b, miR-

200a, and miR-429 (cluster I) are located on chromosome 1 and

have a common seed sequence (AAUACUG). While miR-200c

and miR-141 belong to cluster II and are located on

chromosome 11. Their seed sequence (AACACUG) differs

only by one nucleotide from the seed sequence of cluster I

(Figure 1) (16). Hence the members of the miR-200 family can

theoretically target similar mRNAs (13). This review aims to

comprehensively describe the role of the miR-200 family

members in regulating all hallmarks of cancer.
Expression of miR-200 family
in cancer

Dysregulation of the expression of
miRNAs in cancer

MiRNA expression is often dysregulated in cancer cells. New

technologies such as high-throughput RNA sequencing enable to

profile miRNAs expression (17). Several studies showed the

general repression of miRNAs in cancer tissues since

the majority of them are tumor suppressors (18–20). One of the

miRNA families that suppress cancer development and
FIGURE 1

The members of the miR-200 family. Genes encoding the miR-200 family form two clusters. One encoding miR-200b, miR-200a, and miR-
429 is located in chromosome 1 while miR-200c and miR-141 are encoded by genes located in chromosome 11. Members of the miR-200
family are characterized by AA(U/C)ACUG seed sequence.
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progression is the miR-200 family which is known for targeting

zinc-finger E-box binding homeobox (ZEB) and inhibiting

epithelial-mesenchymal transition (EMT) (21). In contrast, miR-

21 is a well-known oncomiR that targets mainly tumor

suppressors (22). Notably, the individual miRNA expression

and functions in cancer cells may be tissue-specific and differ

between different tumor types (23).
Mechanisms of miRNAs dysregulation
in cancer

The mechanisms of miRNAs expression regulation are

complex and multistep (24). They may be divided into

transcriptional mechanisms such as the influence of

transcription factors, DNA methylation, and histone

modifications (25). All of them control pri-miRNA

transcription. Among numerous transcription factors that

regulate miRNAs expression are p53, ZEB, Myc, and hormone

receptors, including estrogen receptors (26). The next

mechanism regulating miRNAs expression is DNA promoter

methylation. Hypermethylation was associated with decreased
Frontiers in Oncology 03
expression of miRNAs, while hypomethylation caused the

upregulation of miRNAs expression (27). Furthermore, there

are posttranscriptional mechanisms that regulate miRNA

expression by the regulation of pri-miRNA and pre-miRNA

processing (26). The genes involved in miRNAs biogenesis,

including DICER, are frequently dysregulated in cancer (28,

29). Downregulation of DICER is a prediction of poor prognosis

for overall and progression-free survival (30).
Expression of miR-200 family

In our review, we collected articles that determined the

expression of miR-200 family members in 25 cancer types in

the tumor tissue compared to corresponding healthy tissue using

the RT-qPCR (real-time quantitative PCR) method (Table 1).

MiR-200 family members were downregulated in 10 types of

cancer and upregulated in 2 cancer types. In 12 types of cancer

individual members of the miR-200 family had different levels of

expression (Table 1). MiRNAs from both miR-200b/miR-200a/

miR-429 and miR200c/miR-141 clusters are expressed together

as two different polycistronic pri-miRNA transcripts (133).
TABLE 1 The expression of miR-200 family members in different types of cancer compared to the healthy tissue.

Cancer miR-200a
expression

miR-200b
expression

miR-200c
expression

miR-141
expression

miR-429
expression

Ref.

Acute myeloid leukemia ↓ ↓ n/d n/d ↓ (31)

Acute lymphoblastic leukemia n/d n/d n/d ↓ ↑ (32, 33)

Bladder cancer ↓/↑ ↑ ↓/↑ ↑ ↑ (34–41)

Breast cancer ↓/↑ ↓/↑ ↓/↑ ↓/↑ n/d (42, 43)

Cervical carcinoma ↓ ↓ ↓/↑ ↑ ↓ (44–50)

Cholangiocarcinoma ↓ ↓ ↓ n/d n/d (51, 52)

Colorectal cancer ↑ ↑ ↑ ↑ ↑/↓ (53–59)

Endometrial cancer ↑ ↑ ↑ ↑ ↑ (60, 61)

Esophageal carcinoma ↓/↑ ↓ ↓ ↓ ↓ (62–70)

Gastric cancer ↓/↑ ↓/↑ ↓/↑ ↓ ↓/↑ (71–76)

Glioma ↓ ↓ ↓ ↓ ↑/↓ (77–83)

Head and neck carcinoma ↓ n/d n/d ↓ n/d (84–86)

Liver cancer ↓ ↓ ↓ ↓ ↓ (87–91)

Melanoma ↓ ↓ ↓ ↓ ↓ (92–94)

Nephroblastoma ↓ ↓ ↓ ↓ ↓ (95–98)

Neuroblastoma ↓ n/d n/d n/d n/d (99)

Non-small cell lung cancer ↓ ↓ ↓ ↑/↓ ↑ (100)

Oral squamous cell carcinoma ↓ ↓ ↓ ↓ ↓ (101, 102)

Osteosarcoma ↓ ↓ ↓ ↓ ↓ (103–107)

Ovarian cancer ↑ ↑ ↑ ↑ n/d (108–113)

Pancreatic cancer ↑ ↑ ↓ ↑/↓ ↓ (114–118)

Prostate cancer ↓/↑ ↑ ↓ ↑ n/d (119–122)

Renal cell carcinoma ↓ ↓ ↓ ↓ ↓ (123–128)

Small cell lung carcinoma n/d n/d n/d n/d n/d n/d

Thyroid cancer ↓/↑ ↓/↑ ↓/↑ ↓/↑ ↓/↑ (129–132)
front
↓ - downregulated expression; ↑ - upregulated expression; n/d – no data.
iersin.org
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Therefore, they have a similar pattern of expression (up- or

downregulation) in most cancer types. The expression of the

miR-200 family is regulated by different mechanisms, including

DNA methylation. miR-200b, miR-200c, and miR-141 were

described as epigenetically silenced by DNA methylation in

breast cancer (134). Moreover, the miR-200b/miR-200a/miR-

429 cluster was repressed in the mechanism of histone

modifications in this model (135).
miRNAs in body fluids

Circulating miRNAs can be detected in various body fluids

including serum, saliva, and urine. Thus, they are promising

diagnostic and prognostic biomarkers. MiR-200 family

members have been detected in different body fluids and

were dysregulated in 18 cancer types (Table 2). The level of

miR-200 family members in serum was increased in 7 cancer

types and decreased in serum in 3 cancer types. There are

inconsistent data concerning serum miRNAs expression in

bladder cancer, prostate cancer, and non-small lung

carcinoma. Notably, the expression patterns of miR-200
Frontiers in Oncology 04
family members in cancer tissue are consistent with their

level in body fluids only in 5 cancer types. The observation is

consistent with the studies that demonstrate that the miRNAs

expression profiles of patients’ serum and cancer tissue are

different (194, 195). Importantly, the levels of miR-200 family

in different types of body fluids vary in cancer patients and may

not correlate (196).

MiRNAs may be loaded into small vesicles, including

exosomes. Exosomal miRNAs are distributed to body fluids

where they play important role in the pathogenesis of cancer

by regulating all hallmarks of cancer (197). The level of exosomal

miR-200 family members may serve as prognostic or diagnostic

markers in various tumor types. The level of exosomal miR-200

is upregulated in ovarian cancer patients’ serum (198) and in

pleural effusion of patients diagnosed with lung adenocarcinoma

(199). Moreover, the level of exosomal miR-200 correlates with

the invasiveness of ovarian cancer (200). Exosomal miR-200b

and miR-200c may serve as independent prognostic factors in

pancreatic ductal adenocarcinoma as they correlate with overall

survival of patients (180). Lower expression of exosomal miR-

200c and miR-141 is associated with longer overall survival of

colon cancer patients (201). Moreover, miR-200 family members
TABLE 2 The level of miR-200 family members in the serum, urine or saliva of patients with different types of cancer.

Cancer miR-200a level miR-200b level miR-200c level miR-141 level miR-429 level Ref.

Acute myeloid leukemia n/d n/d n/d n/d n/d n/d

Acute lymphoblastic leukemia n/d n/d n/d n/d n/d n/d

Bladder cancer ↓ (urine) ↓ (urine) ↓ (urine) ↑/↓ (urine) ↓ (urine) (136–139)

Breast cancer n/d n/d ↓ n/d n/d (140, 141)

Cervical carcinoma ↑ n/d ↑ ↓ n/d (48, 142, 143)

Cholangiocarcinoma ↑ ↑ ↑ ↑ n/d (144)

Colorectal cancer n/d ↑ ↑ ↑ n/d (145–150)

Endometrial cancer ↑ n/d n/d ↑ n/d (61)

Esophageal carcinoma n/d n/d ↑ n/d n/d (151, 152)

Gastric cancer ↑ n/d ↑ ↓ n/d (153–158)

Glioma ↓ n/d n/d n/d n/d (81)

Head and neck carcinoma n/d n/d n/d n/d n/d n/d

Liver cancer ↓ n/d n/d n/d ↑ (159–162)

Melanoma n/d n/d ↓ n/d n/d (163)

Nephroblastoma n/d n/d n/d n/d n/d n/d

Neuroblastoma n/d n/d n/d n/d n/d n/d

Non-small cell lung cancer n/d ↑/↓ n/d ↑ ↑/↓ (164–169)

Oral squamous cell carcinoma ↓ (saliva) ↑ n/d n/d n/d (170, 171)

Osteosarcoma n/d n/d n/d n/d n/d n/d

Ovarian cancer ↑ ↑ ↑ ↑ ↑ (172–178)

Pancreatic cancer ↑ ↑ ↑ n/d n/d (179, 180)

Prostate cancer ↑ ↑/↓ ↑/↓ ↑ n/d (181–189)

Renal cell carcinoma ↓ n/d n/d ↓ ↑ (190–192)

Small cell lung carcinoma n/d n/d n/d ↑ n/d (193)

Thyroid cancer n/d n/d n/d n/d n/d n/d
fr
↓ - decreased level; ↑ - increased level; n/d – no data. Arrows refer to serum miRNA level unless otherwise indicated.
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may play role as biomarker of cholangiocarcinoma, in particular

miR-200a/c correlates with tumor stage (144).
miRNAs as diagnostic and prognostic
biomarkers

miRNAs may not only serve as diagnostic biomarkers that

enable to distinguish between cancer and healthy tissue but also

their levels correlate with clinical parameters and thus may have

potential prognostic value (202). The combination of miRNAs

may discriminate cancerous from healthy tissues with high

accuracy (203, 204). The meta-analysis shows that miR-200c

expression has a moderate diagnostic value in gastric cancer

(205) and miR-141 may be a diagnostic marker of colorectal

cancer (206). Notably, a meta-analysis of 58 articles with 8107

cancer patients revealed that in general higher expression of miR-

200 family members is associated with worse survival (207, 208).

Moreover, miR-200a expression was associated with unfavorable

prognosis in breast cancer patients, and miR-429 correlated with

shorter survival in liver cancer patients (207). Higher miR-200c

expression was correlated with shorter overall survival in gastric

cancer and non-small cell lung carcinoma (205, 209). However, in

another meta-analysis, the expression of miR-200 family members

was associated with a better prognosis in bladder cancer as it

correlated with longer overall survival, recurrence-free survival,
Frontiers in Oncology 05
and cancer-specific survival (210). Moreover, miR-200c correlated

with a better prognosis in ovarian cancer (211). Notably, it was

found that serum miR-200c may be used as a marker of colorectal

cancer tumor recurrence after surgery (147). Similarly, urine miR-

200a was identified as marker the recurrence of non-muscle-

invasive bladder cancer (137). In addition to miRNAs in the body

fluids, it was found that the level of miR-141 in prostate cancer

tissue may be associated with the tumor recurrence (212). Thus,

more prospective clinical trials are required to determine the

utility of miR-200 family members as biomarkers.
Hallmarks of cancer

Hallmarks of cancer have been first described in 2000 (213).

In the updated version of their review, 14 features of human

tumor development were proposed: sustaining proliferative

signaling, evading tumor growth suppressors, enabling

replicative immortality, activating invasion and metastasis,

resisting cell death, inducing angiogenesis, avoiding immune

destruction, tumor-promoting inflammation, genome instability

and mutation, deregulating cellular energetics, unlocking

phenotypic plasticity, polymorphic microbiomes, nonmutational

epigenetic reprogramming, and senescence (214). All of them are

regulated by miRNAs, including miR-200 family members

(Figure 2) (215, 216).
FIGURE 2

Hallmarks of cancer regulated by miR-200 family members.
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Regulation of cell proliferation by
miR-200 family

The proliferation of cancer cells is one of the most important

hallmarks of cancer. It is sustained by growth factors,

constitutive activation of oncogenic signaling pathways,

evading growth repressors like p53 or RB, and enabled

replicative immortality (217). Proliferation is regulated by

numerous pathways including PI3K/AKT, MEK/ERK, JAK/

STAT, and b-Catenin/Wnt signaling, and by cell cycle

regulators such as cyclin-dependent kinases (CDKs). The

members of those pathways are regulated by miRNAs that

may either promote or inhibit cancer cell proliferation. MiR-

200 family has different effects on tumor cell proliferation in

vitro depending on the cancer type (Table 3). Based on our

literature review, miR-200a increases the proliferation of 5

cancer types and inhibits the proliferation of 13 cancer types,

and there are inconsistent results concerning colorectal cancer,

non-small cell lung cancer, and renal cell carcinoma. In vivo,

miR-200a inhibits tumor growth of gastric cancer, glioma,

melanoma, neuroblastoma, and prostate cancer. Furthermore,

miR-200b stimulates the proliferation of 4 cancer types, and

inhibits 13 cancer types, and there are inconsistent results

concerning colorectal and non-small cell lung, and ovarian cell

carcinoma. In vivo studies show miR-200b increases tumor

growth of cervical and ovarian cancer and decreases tumor

growth of breast cancer, glioma, head and neck cancer, non-

small lung cancer, prostate cancer, and thyroid cancer. MiR-

200c acts as oncomiR in 3 cancer types and as tumor suppressor

miR in 13 cancer types and there are inconsistent results

concerning colorectal, endometrial, and renal cell carcinoma.

It decreases tumor growth in vivo of 9 cancer types in vivo and

increases tumor growth of head and neck carcinoma. Moreover,

miR-141 increases the proliferation of 6 cancer types, and

decreases in 12 cancer types, and there are discrepancies

regarding the role of miR-141 in the regulation of colorectal,

non-small cell lung, and ovarian carcinoma cell proliferation. In

vivo, miR-141 acts mainly as tumor suppressor miR and inhibits

the tumor growth of numerous cancer types including colorectal,

gastric, and pancreatic cancer. miR-141 increases the tumor

growth of cervical and non-small cell lung cancer. Furthermore,

it increases the proliferation of 5 and decreases the proliferation

of 14 cancer types. In vivo, miR-429 inhibits tumor growth of 7

cancer types and increases tumor growth of bladder cancer only.

Based on that information, miR-200 family members are

suppressive miRNAs in most cancer types, however, they

might also stimulate the proliferation of some types of

cancer cells.

MiR-200 family members exert their effects by targeting

several mRNAs associated with cancer cell proliferation. MiR-

200a targets Cyclin-Dependent Kinase 6 (CDK6) in melanoma

and thus causes cell-cycle arrest and decreases cancer cell
Frontiers in Oncology 06
proliferation (93). MiR-429 targets p27Kip1, an inhibitor of

the cell cycle, and its overexpression promotes the

proliferation of prostate cancer cells (311). Furthermore, the

miR-200 family targets the members of key pathways regulating

cancer cell proliferation. PI3K/AKT pathway promotes

proliferation, migration, invasion, and EMT (epithelial-

mesenchymal transition) (313). AKT1/2 is targeted by miR-

200c in osteosarcoma (105), and by miR-429 in melanoma (306)

and renal cell carcinoma (312). Downregulation of AKT1/2 by

miRNAs inhibits cancer cell proliferation in vitro and tumor

growth in vivo. Moreover, the miR-200 family targets PTEN, a

key suppressor of the PI3K/AKT pathway (314). It is targeted by

miR-200a in endometrial cancer (223) and esophageal

carcinoma (70), miR-200b in endometrial cancer (223), miR-

200c in endometrial cancer (273) and head and neck carcinoma

(276), and miR-429 in non-small cell lung cancer (308) resulting

in increased of cancer cells proliferation in vitro.

The second most important pathway regulating cell

proliferation is MEK/ERK pathway. KRAS which activates

MEK/ERK is targeted by miR-200c in breast cancer. MiR-200c

thus has an inhibitory effect on breast cancer cell proliferation

and tumor growth (265). Moreover, miR-200b targets p70S6K1

and inhibits lung cancer cell proliferation in vitro and tumor

growth in vivo (256). Whereas, miR-429 targets RAB23 in

esophageal and liver carcinomas resulting in the suppression

of cell proliferation, migration, and invasion (69, 305). On the

contrary, MEK/ERK inhibitor Ras Association Domain Family

Member 2 (RASSF2) is targeted by miR-200a, miR-200c, miR-

141 in colorectal cancer, and Ras Association Domain-

Containing Protein 8 (RASSF8) by miR-429 in non-small lung

carcinoma which results in increased proliferation (56, 308).

Similarly, other signaling pathways regulating cell proliferation

are targeted by miRNAs. MiR-200a binds STAT4 in bladder and

liver cancer and decreases cell proliferation in vitro (162, 218). In

esophageal carcinoma, however, miR-200a acts as oncomiR and

targets APC, an inhibitor of b-Catenin/Wnt signaling (70).
Regulation of cell migration and
invasiveness by miR-200 family

Cancer cell migration and invasion are multistep processes

that involve cytoskeleton remodeling, interaction with

extracellular matrix (ECM), and then its digestion. All these

steps are regulated by miRNAs that suppress or promote cancer

progression (7).

In this study, we summarized the knowledge about miR-

200 family regulation of cancer cell migration and invasion in

vitro (Table 4). MiR-200 family members suppress cell

migration and invasiveness in most types of cancer. MiR-

200a increases the migration of 2 cancer types and the

invasion of 3 cancer types and it decreases the migration of
frontiersin.org
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TABLE 3 The role of the miR-200 family in proliferation and tumor growth.

miRNAs Cancer Target Cell
proliferation

in vitro

Tumor
growth
in vivo

Ref.

miR-200a Acute myeloid leu-kemia n/d n/d n/d n/d

Acute lymphoblastic
leukemia

n/d n/d n/d n/d

Bladder cancer STAT4 ↓ n/d (218)

Breast cancer TFAM ↓ n/d (219)

Cervical cancer EGLN1 ↑ n/d (220)

Cholangiocarcinoma n/d ↓ n/d (52)

Colorectal cancer FOXA1, RASSF2 ↓/↑ n/d (56, 221, 222)

Endometrial cancer PTEN ↑ n/d (60, 223)

Esophageal carcinoma CTNNB1, CDH1, APC, PTEN, CTNNA1, CRMP1 and
SOD2

↑ n/d (70, 224)

Gastric cancer n/d ↓ ↓ (225)

Glioma FOXA1, SIM2-s ↓ ↓ (83, 226)

Head and neck carcinoma CD47 ↓ n/d (86)

Liver cancer STAT4, FOXA2 ↓ n/d (161, 162, 227)

Melanoma CDK6, GOLM1 ↓ ↓ (93, 228)

Nephroblastoma n/d n/d n/d n/d

Neuroblastoma AP-2g ↓ ↓ (99)

Non-small cell lung cancer RHPN2 ↑/↓ n/d (229, 230)

Oral squamous cell
carcinoma

n/d n/d n/d n/d

Osteosarcoma ZEB1 ↓ n/d (104)

Ovarian cancer PDCH9 ↑ n/d (111, 113)

Pancreatic cancer DEK ↓ n/d (231, 232)

Prostate cancer BRD4 ↓ ↓ (233, 234)

Renal cell carcinoma CBL, SIRT1, SPAG9, TGFb2 ↓/↑ n/d (124, 126, 127, 235,
236)

Small cell lung carcinoma n/d n/d n/d n/d

Thyroid cancer FOXA1 ↓ n/d (130)

miR-200b Acute myeloid leu-kemia n/d ↓ n/d (237)

Acute lymphoblastic
leukemia

n/d n/d n/d n/d

Bladder cancer FSCN1 ↓ n/d (238)

Breast cancer IKBKB, FUT4, radixin, SP1 ↓ ↓ (239–242)

Cervical cancer FOXG1 ↑ ↑ (243)

Cholangiocarcinoma n/d ↑ n/d (244)

Colorectal cancer RECK, TUBB3, Wnt1 ↑/↓ n/d (245–247)

Endometrial cancer PTEN ↑ n/d (60, 223)

Esophageal carcinoma n/d n/d n/d n/d

Gastric cancer ZEB2 ↓ n/d (248)

Glioma CD133, CREB1, ERK5 ↓ ↓ (249–251)

Head and neck carcinoma Notch1 ↓ ↓ (252)

Liver cancer HMGB3 ↓ n/d (90)

Melanoma n/d ↓ n/d (253)

Nephroblastoma IKK-b ↓ n/d (98)

Neuroblastoma n/d n/d n/d n/d

Non-small cell lung cancer ABCA1, p70S6K1, RhoE ↑/↓ ↓ (254–256)

Kindlin-2, ZEB2 ↓ n/d (257)

(Continued)
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TABLE 3 Continued

miRNAs Cancer Target Cell
proliferation

in vitro

Tumor
growth
in vivo

Ref.

Oral squamous cell
carcinoma

Osteosarcoma ZEB1 ↓ n/d

Ovarian cancer ATAD2, ING5 ↑/↓ ↑ (258, 259)

Pancreatic cancer n/d n/d n/d n/d

Prostate cancer n/d ↓ ↓ (233, 260–262)

Renal cell carcinoma n/d ↑ n/d (124)

Small cell lung carcinoma n/d n/d n/d n/d

Thyroid cancer RAP1B ↓ ↓ (132)

miR-200c Acute myeloid leu-kemia n/d n/d n/d n/d

Acute lymphoblastic
leukemia

n/d n/d n/d n/d

Bladder cancer BMI-1, E2F3, LDHA ↓ n/d (36, 263)

Breast cancer BMI-1, KRAS, PDE7B, XIAP ↓ ↓ (264–269)

Cervical cancer MAP4K4 ↓ n/d (270)

Cholangiocarcinoma n/d n/d n/d n/d

Colorectal cancer CDK2, RASSF2 ↑/↓ n/d (56, 271)

Endometrial cancer PTEN, PTENP1, MALAT1 ↑/↓ ↓ (60, 272; 273)

Esophageal carcinoma n/d n/d n/d n/d

Gastric cancer EDNRA, FN1 ↓ n/d (274, 275)

Glioma MSN ↓ ↓ (79)

Head and neck carcinoma PTEN ↑ ↑ (276)

Liver cancer MAD2L1 ↓ n/d (88)

Melanoma n/d ↓ ↓ (277)

Nephroblastoma FRS2, IKK-b ↓ n/d (97, 98, 278)

Neuroblastoma n/d n/d n/d n/d

Non-small cell lung cancer LDHA ↓ ↓ (279, 280)

Oral squamous cell
carcinoma

n/d ↓ n/d (102)

Osteosarcoma AKT2 ↓ ↓ (105)

Ovarian cancer n/d ↑ ↓ (281, 282)

Pancreatic cancer n/d ↑ n/d (283)

Prostate cancer AMACR, ZEB2 ↓ ↓ (122, 284, 285)

Renal cell carcinoma SLC6A1 ↑/↓ n/d (124, 128)

Small cell lung carcinoma n/d n/d n/d n/d

Thyroid cancer RAP1B ↓ ↓ (132)

miR-141 Acute myeloid leu-kemia RAB32 ↓ ↓ (286)

Acute lymphoblastic
leukemia

TRAF5 ↓ n/d (32)

Bladder cancer n/d n/d n/d n/d

Breast cancer ANP32E, HMGB1 ↓ ↓ (287, 288)

Cervical cancer FOXA2 ↑ ↑ (289)

Cholangiocarcinoma n/d ↑ n/d (244)

Colorectal cancer PHLPP2, RASSF2 ↑/↓ ↓ (56, 58, 290, 291)

Endometrial cancer n/d ↑ n/d (60)

Esophageal carcinoma n/d ↓ n/d (67)

Gastric cancer YAP1, TAZ ↓ ↓ (75, 292)

Glioma SKA2 ↓ ↓ (77)

(Continued)
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12 and invasion of 13 cancer types. MiR-200b increases the

migration of renal cell cancer and decreases the migration of

16 cancer types and invasion of 15 cancer types. Furthermore,

miR-200c promotes the migration and invasion of head and

neck carcinoma. On the other hand, miR-200c inhibits the
Frontiers in Oncology 09
migration of 15 and invasion of 13 types of cancers. MiR-141

decreases the migration of 13 types of cancer cells and

invasion of 13 cancer types. However, it increases the

migration of bladder and renal cell carcinoma, and it

stimulates the invasion of bladder, cervical, and non-small
TABLE 3 Continued

miRNAs Cancer Target Cell
proliferation

in vitro

Tumor
growth
in vivo

Ref.

Head and neck carcinoma EGFR ↓ ↓ (85)

Liver cancer TGFbR1 ↓ n/d (91)

Melanoma n/d n/d n/d n/d

Nephroblastoma n/d n/d n/d n/d

Neuroblastoma FUS ↓ ↓ (293)

Non-small cell lung cancer HOXC13, KLF9 ↑/↓ ↑ (193, 294, 295)

Oral squamous cell
carcinoma

n/d n/d n/d n/d

Osteosarcoma GLI2 ↓ n/d (106, 296)

Ovarian cancer n/d ↑/↓ n/d (112, 297)

Pancreatic cancer MAP4K4 ↓ ↓ (298)

Prostate cancer KLF9, RUNX1 ↑ n/d (299, 300)

Renal cell carcinoma n/d ↑ n/d (124)

Small cell lung carcinoma n/d n/d n/d n/d

Thyroid cancer IRS2 ↓ ↓ (129)

miR-429 Acute myeloid leukemia n/d n/d n/d n/d

Acute lymphoblastic
leukemia

n/d n/d n/d n/d

Bladder cancer CDKN2B ↑ ↑ (39)

Breast cancer FN1 ↓ n/d (301)

Cervical cancer IKK-b, ZEB1 ↓ ↓ (46, 302)

Cholangiocarcinoma n/d n/d n/d n/d

Colorectal cancer HMGB3, Onecut2 ↓ ↓ (55, 59)

Endometrial cancer n/d ↑ n/d (60)

Esophageal carcinoma Bcl-2, SP1, Slug, RAB23 ↓ ↓ (65, 68, 69)

Gastric cancer FSCN1, c-MYC ↓ ↓ (71, 74, 303)

Glioma SOX2 ↓ n/d (82)

Head and neck carcinoma n/d ↓ n/d (304)

Liver cancer RAB23 ↓ n/d (305)

Melanoma AKT1 n/d ↓ (306)

Nephroblastoma c-MYC, IKK-b ↓ n/d (96, 98)

Neuroblastoma IKK-b ↓ ↓ (307)

Non-small cell lung cancer DLC−1, PTEN, RASSF8, TIMP2 ↑ n/d (308, 309)

Oral squamous cell
carcinoma

ZEB1 ↓ n/d (310)

Osteosarcoma ZEB1, HOXA9 ↓ n/d (103, 107)

Ovarian cancer n/d n/d n/d n/d

Pancreatic cancer NT-3 ↓ n/d (117)

Prostate cancer p27Kip1 ↑ n/d (311)

Renal cell carcinoma AKT1 ↑ ↓ (124, 312)

Small cell lung carcinoma n/d n/d n/d n/d

Thyroid cancer ZEB1 ↓ n/d (131)
↓ - suppression by miRNA; ↑ - promotion by miRNA; n/d – no data.
frontiersin.org

https://doi.org/10.3389/fonc.2022.965231
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Klicka et al. 10.3389/fonc.2022.965231
TABLE 4 Members of the miR-200 family regulating cancer cell migration and invasion.

miRNAs Cancer Target Cell
migration
in vitro

Cell invasion
in vitro

Ref.

miR-200a Acute myeloid leukemia n/d n/d n/d n/d

Acute lymphoblastic
leukemia

n/d n/d n/d n/d

Bladder cancer DICER n/d ↑ (41)

Breast cancer ELK3, EPHA2 ↓ ↓ (315, 316)

Cervical cancer n/d n/d n/d n/d

Cholangiocarcinoma n/d n/d ↓ (52)

Colorectal cancer FOXA1 ↓ ↓ (221, 222)

Endometrial cancer n/d n/d n/d n/d

Esophageal carcinoma CTNNB1, CDH1, APC, PTEN, CTNNA1 and
SOD2

↑ ↑ (70)

Gastric cancer n/d ↓ ↓ (225)

Glioma FOXA1, SIM2-s ↓ ↓ (83, 226)

Head and neck carcinoma CD47 ↓ ↓ (86)

Liver cancer STAT4, Foxa2 ↓ ↓ (161, 162, 227)

Melanoma GOLM1 ↓ ↓ (228)

Nephroblastoma n/d n/d n/d n/d

Neuroblastoma n/d n/d n/d n/d

Non-small cell lung cancer HGF ↓ ↓ (100)

Oral squamous cell
carcinoma

n/d n/d n/d n/d

Osteosarcoma ZEB1 ↓ n/d (104)

Ovarian cancer PDCH9 ↑ ↑ (111, 113)

Pancreatic cancer DEK ↓ ↓ (231, 232, 317)

Prostate cancer n/d n/d ↓ (233)

Renal cell carcinoma TGFb2 ↓ ↓ (235)

Small cell lung carcinoma n/d n/d n/d n/d

Thyroid cancer FOXA1 ↓ ↓ (130)

miR-200b Acute myeloid leukemia n/d n/d ↓ (237)

Acute lymphoblastic
leukemia

n/d n/d n/d n/d

Bladder cancer FSCN1 ↓ ↓ (238)

Breast cancer IKBKB, FUT4, PKCa, radixin, ↓ ↓ (240–242, 318,
319)

Cervical cancer FoxG1, RhoE ↓/↑ ↓/↑ (45, 243, 320)

Cholangiocarcinoma SUZ12 and ROCK2 ↓ ↓ (51)

Colorectal cancer TUBB3 ↓ ↓ (247)

Endometrial cancer TIMP2 ↓ n/d (321)

Esophageal carcinoma Kindlin-2 ↓ ↓ (322)

Gastric cancer ZEB2 ↓ ↓ (248)

Glioma CD133, ERK5 ↓ ↓ (250, 251)

Head and neck carcinoma Notch1 ↓ ↓ (252)

Liver cancer HMGB3 ↓ n/d (90)

Melanoma n/d ↓ ↓ (253)

Nephroblastoma IKK-b ↓ ↓ (98)

Neuroblastoma n/d n/d n/d n/d

Non-small cell lung cancer ABCA1, p70S6K1, RhoE, TIF1g ↑/↓ ↑/↓ (255, 256, 323,
324)

(Continued)
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TABLE 4 Continued

miRNAs Cancer Target Cell
migration
in vitro

Cell invasion
in vitro

Ref.

Oral squamous cell
carcinoma

Kindlin-2, ZEB2 ↓ ↓ (257)

Osteosarcoma ZEB1 ↓ ↓

Ovarian cancer n/d n/d n/d n/d

Pancreatic cancer n/d n/d n/d n/d

Prostate cancer n/d ↓ ↓ (233, 261, 262)

Renal cell carcinoma n/d ↑ n/d (124)

Small cell lung carcinoma n/d n/d n/d n/d

Thyroid cancer RAP1B ↓ ↓ (132, 325)

miR-200c Acute myeloid leukemia n/d n/d n/d n/d

Acute lymphoblastic
leukemia

n/d n/d n/d n/d

Bladder cancer BMI-1, E2F3, LDHA, RECK ↑/↓ ↑/↓ (36, 38, 263)

Breast cancer n/d ↓ ↓ (267, 268, 326)

Cervical cancer MAP4K4 ↓ n/d (270)

Cholangiocarcinoma SUZ12 and ROCK2 ↓ ↓ (51)

Colorectal cancer n/d ↓ ↓ (327)

Endometrial cancer PTEN, PTENP1 ↑/↓ ↑/↓ (272, 328; 273)

Esophageal carcinoma n/d n/d n/d n/d

Gastric cancer EDNRA, FN1 ↓ ↓ (274, 275)

Glioma MSN ↓ ↓ (79)

Head and neck carcinoma PTEN ↑ ↑ (276)

Liver cancer MAD2L1 ↓ ↓ (88)

Melanoma n/d ↓ n/d (277)

Nephroblastoma FRS2, IKK-b ↓ ↓ (97, 98)

Neuroblastoma n/d n/d n/d n/d

Non-small cell lung cancer LDHA ↓ n/d (280)

Oral squamous cell
carcinoma

ZEB1 ↓ ↓ (329)

Osteosarcoma AKT2 ↓ n/d (105)

Ovarian cancer n/d ↓ ↓ (281, 282)

Pancreatic cancer n/d n/d ↓ (283, 330)

Prostate cancer AMACR, ZEB2 ↓ ↓ (122, 284, 285)

Renal cell carcinoma SLC6A1 ↑/↓ ↓ (124, 128)

Small cell lung carcinoma n/d n/d n/d n/d

Thyroid cancer RAP1B ↓ ↓ (132)

miR-141 Acute myeloid leukemia n/d n/d n/d n/d

Acute lymphoblastic
leukemia

n/d n/d n/d n/d

Bladder cancer n/d n/d n/d n/d

Breast cancer ANP32E, ZEB1/2 ↓ ↓ (287, 331)

Cervical cancer FOXA2 n/d ↑ (289)

Cholangiocarcinoma n/d n/d n/d n/d

Colorectal cancer EGFR ↓ ↓ (332)

Endometrial cancer n/d n/d n/d n/d

Esophageal carcinoma n/d ↓ ↓ (67)

Gastric cancer TAZ ↓ ↓ (292)

Glioma SKA2 ↓ ↓ (77)

(Continued)
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lung cancer. Likewise, miR-429 decreases the migration and

invasion of 15 cancer types, while it increases the migration of

renal cell carcinoma and migration and invasion of non-small

lung carcinoma.
Frontiers in Oncology 12
The epithelial-mesenchymal process (EMT) is one of the

crucial cellular processes in cancer cell invasion. During this

process, epithelial cells gain mesenchymal capabilities including

migration. The regulation of EMT is complex and is modulated
TABLE 4 Continued

miRNAs Cancer Target Cell
migration
in vitro

Cell invasion
in vitro

Ref.

Head and neck carcinoma EGFR ↓ ↓ (85)

Liver cancer TGFbR1 ↓ ↓ (91)

Melanoma n/d n/d n/d n/d

Nephroblastoma n/d n/d n/d n/d

Neuroblastoma FUS ↓ ↓ (293)

Non-small cell lung cancer KLF9 n/d ↑ (295)

Oral squamous cell
carcinoma

n/d n/d n/d n/d

Osteosarcoma FUS ↓ ↓ (296)

Ovarian cancer n/d ↓ ↓ (297)

Pancreatic cancer MAP4K4, TM4SF1 ↓ ↓ (298, 333)

Prostate cancer RUNX1 ↓ ↓ (300)

Renal cell carcinoma n/d ↑ n/d (124)

Small cell lung carcinoma n/d n/d n/d n/d

Thyroid cancer IRS2 ↓ ↓ (129)

miR-429 Acute myeloid leukemia n/d n/d n/d n/d

Acute lymphoblastic
leukemia

n/d n/d n/d n/d

Bladder cancer n/d ↓ ↓ (334)

Breast cancer FN1 ↓ ↓ (301)

Cervical cancer ZEB1 ↓ ↓ (302)

Cholangiocarcinoma n/d n/d n/d n/d

Colorectal cancer Onecut2, PAK6 ↓ ↓ (55, 335)

Endometrial cancer n/d n/d n/d n/d

Esophageal carcinoma Bcl-2, Slug, SP1 ↓ ↓ (65, 68)

Gastric cancer Sp1, Notch1 ↓ ↓ (336, 337)

Glioma BMK1, SOX2 ↓ ↓ (82, 338)

Head and neck carcinoma n/d ↓ ↓ (304)

Liver cancer CRKL, RAB23 ↓ ↓ (89, 305)

Melanoma LIMK1 ↓ ↓ (94)

Nephroblastoma IKK-b ↓ ↓ (98)

Neuroblastoma IKKb ↓ ↓ (307)

Non-small cell lung cancer PTEN, RASSF8, TIF1g and TIMP2, ↑ ↑ (308, 323)

Oral squamous cell
carcinoma

n/d n/d n/d n/d

Osteosarcoma ZEB1, HOXA9 ↓ ↓ (103, 107)

Ovarian cancer p15PAF ↓ n/d (339)

Pancreatic cancer NT-3 n/d ↓ (117)

Prostate cancer n/d n/d n/d n/d

Renal cell carcinoma n/d ↑ n/d (124)

Small cell lung carcinoma n/d n/d n/d n/d

Thyroid cancer ZEB1 ↓ ↓ (131)
↓ - suppression by miRNA; ↑ - promotion by miRNA; n/d – no data.
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by numerous signaling pathways including TGFb and Wnt/b-
catenin and transcription factors such as Snail, Slug, ZEB1/2,

and TWIST1/2 (7, 340). MiR-200 family is a well-known

regulator of EMT because of targeting ZEB1 and ZEB2 (341)

which are key inducers of this process (342). ZEB1/2 is targeted

by miR-200a [osteosarcoma (104)], 200b [gastric cancer, oral

squamous cell carcinoma, osteosarcoma (248, 257)], miR-200c

[oral squamous cell carcinoma, prostate cancer (285, 329)], miR-

141 [breast cancer (331)], and miR-429 [cervical cancer,

osteosarcoma, thyroid cancer (103, 131, 302)]. Moreover, the

miR-200 family targets other regulators of EMT. MiR-200a

targets TGFb2 in renal cell carcinoma and inhibits the

invasion and migration of cancer cells (235). MiR-141

suppresses liver cancer cell invasion and migration by

targeting TGFbR1 (91). Moreover, miR-429 targets Slug, a

transcription factor that belongs to the Snail family and

activates EMT. Thus, miR-429 inhibits the migration and

invasion of esophageal cancer cells (68). On the contrary,

miR-200a targets Catenin Beta 1 (CTNNB1), the member of

the Wnt/b-catenin pathway, and promotes the invasion and

migration of esophageal cancer cells (70).

Cytoskeleton remodeling is a vital step in cells motility. It

leads to the formation of cell membrane protrusions, then to cell

contraction and retraction of rear-end (343). Moesin and radixin

belong to ERM (ezrin-radixin-moesin) protein family that is

responsible for cytoskeleton structure and cell migration (344).

MiR-200c targets moesin in glioma (79) and miR-200b targets

radixin in breast cancer cells (242). By targeting them, miR-200b

and miR-200c suppress cancer progression (70). Fascin 1

(FSCN1) is an actin-bundling protein involved in the

formation of protrusions. It is targeted by miR-200b leading to

the decrease of cancer cell migration and invasion in bladder

cancer (238). RhoE is a member of Ras superfamily and is

responsible for actin reorganization. Both, miR-200b and miR-

200c are described to target RhoE and inhibit the invasion of non

−small cell lung cancer cells (344). Kindlin-2 is another protein

involved in extracellular matrix regulation. It is reported to be

directly targeted by miR-200b in esophageal carcinoma and in

oral squamous cell carcinoma which causes the inhibition of

cancer cell migration and invasion (79). TUBB3 (Tubulin Beta 3

Class III), a main cytoskeletal microtubule protein engaged in

various processes including cancer invasion and migration, is

targeted by miR-200b in colorectal cancer leading to the

suppression of migration and invasion of cancer cells (247).

The ECM proteolysis and interactions with the cancer cell

cytoskeleton play a crucial role in the migration and invasion of

tumor cells (345). MiRNA-200c targets fibronectin (FN1), the

component of the extracellular matrix, in gastric cancer cells and

acts as a suppressor of invasion and migration (274). On the

contrary, miR-200 family members also promote cancer

progression by targeting the inhibitors of metalloproteinases

that digest ECM. miR-200c targets RECK in bladder cancer (38),

whereas TIMP2 is targeted by miR-200b in endometrial cancer
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cells (66, 257). Moreover, miR-200a regulates cell-to-cell

adhesion by targeting CDH1 (cadherin 1) (70).
Regulation of apoptosis by
miR-200 family

Apoptosis is so-called programmed cell death, essential for

maintaining tissue homeostasis. The mechanism of apoptosis is

complex and involves several steps. Each of these steps can be

impaired, thus leading to carcinogenesis (346). The major role in

apoptosis belongs to caspases, which may be both initiators and

executioners of apoptosis (347). Numerous studies have

reported the influence of miRNAs on the regulation of both

the intrinsic and the extrinsic apoptosis pathways (348).

The miR-200 family members act mainly as apoptosis

promoters (Table 5). miR-200a promotes apoptosis in 6 cancer

types and inhibits apoptosis only in cervical cancer. There are

discordant results concerning the role of miR-200a in the

regulation of non-small cell lung cancer. MiR-200b promotes

apoptosis in 5 cancer types and miR-200c promotes apoptosis in

6 cancer types. miR-141 promotes apoptosis in 6 cancer types,

and inhibits apoptosis in pancreatic cancer, but its role in

prostate cancer is inconsistent. miR-429 promotes apoptosis in

9 cancer types and inhibits apoptosis only in colorectal cancer.

MiR-200a enhances TRAIL-triggered apoptosis in gastric

cancer cells by targeting TNFa-induced protein 3 (A20) (349).

Moreover, miR-200a shows pro-apoptotic activity in the

human hepatocellular carcinoma cell line (227). In Wilms

tumor cells, miR-200a promotes apoptosis by targeting CDC7

(350). Similarly, miR-200a can promote apoptosis in prostate

cancer cells through BRD4/AR signaling pathway (234), by

directly targeting SIRT1 (236) or by targeting Sperm-

associated antigen 9 (SPAG9) (100). The last-mentioned

protein, SPAG9, is an oncogene protein that regulates renal

cell carcinoma progression. Accordingly, its regulation by

miR-200 also has a stimulatory effect on apoptosis in renal

cell carcinoma (126). Moreover, miR-200a has been shown to

promote apoptosis of renal cell carcinoma cells by targeting

CBL (127). Furthermore, by targeting FOXA1, miR-200a also

promotes cell apoptosis in anaplastic thyroid carcinoma (130).

In contrast, miR-200a suppresses apoptosis and promotes the

proliferation of cervical cancer cells by targeting EGLN1 (220).

In the case of NSCLC, miR-200 demonstrates a two-fold

action. It promotes apoptosis by downregulation of the

hepatocyte growth factor (HGF) (100).

MiR-200b has been shown to have pro-apoptotic effects

among all the studied types of cancer. In breast cancer, miR-

200b induces apoptosis and inhibits cell proliferation by directly

targeting Sp1 (239). Moreover, high expression of miR-200b

appeared to be an independent prognostic factor for patients

with breast cancer (239). Moreover, miR-200b-3p shows pro-

apoptotic effects in colorectal cancer by inactivating the Wnt/b-
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catenin signaling pathway (246). Likewise, the same occurs in

esophageal squamous cell carcinoma where miR-200b also

modulates the Wnt/b-catenin signaling pathway by targeting

CDK2 and PAF. Therefore, by inducing cell cycle arrest and

apoptosis, miR-200b alleviates cancer cell growth (246). In

ovarian cancer, miR-200b significantly increases the apoptosis

rate of the cancer cells by targeting ATAD2 and regulating PI3K/

AKT signaling pathway (259). miR-200b inhibited cancer

growth and induced cell apoptosis in the oxaliplatin-resistant

colorectal cancer cells through suppression of bIII-tubulin
protein expression (247).
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MiR-200c also has a pro-apoptotic effect in all studied types

of cancer. In triple-negative breast cancer cells, microRNA-200c

was found to downregulate XIAP expression and thus suppress

proliferation and promote apoptosis of cancer (264). In gastric

cancer, miR-200c promotes apoptosis of the tumor cells by

downregulation of endothelin receptor A (EDNRA) expression

(275). Similarly, in human hepatocellular carcinoma miR-200c

induces apoptos is v ia suppress ing MAD2L1 (88) .

Overexpression of miR-200c has been proven to promote

apoptosis in Wilms tumors via downregulation of the Akt/

GLUT1 signaling pathway (278). Furthermore, the high
TABLE 5 Members of the miR-200 family regulating apoptosis.

miRNAs Cancer Target Apoptosis in vitro Ref.

miR-200a Cervical cancer EGLN1 ↓ (220)

Gastric cancer A20 ↑ (349)

Liver cancer n/d ↑ (227)

Nephroblastoma CDC7 ↑ (350)

Non-small cell lung cancer HGF, RHPN2 ↓/↑ (100, 351)

Prostate cancer BRD4, SIRT1, SPAG9 ↑ (126, 234, 236)

Renal cell carcinoma CBL, SPAG9 ↑ (126, 127)

Thyroid cancer FOXA1 ↑ (130)

miR-200b Acute myeloid leukemia n/d ↑ (237)

Breast cancer Sp1 ↑ (239)

Colorectal cancer TUBB3, Wnt1 ↑ (246, 247)

Oral squamous cell carcinoma CDK2, PAF ↑ (352)

Ovarian cancer ATAD2 ↑ (259)

miR-200c Breast cancer XIAP ↑ (264)

Colorectal cancer CDK2 ↑ (271)

Gastric cancer EDNRA ↑ (275)

Liver carcinoma MAD2L1 ↑ (88)

Nephroblastoma n/d ↑ (278)

Non-small cell lung cancer n/d ↑ (279)

miR-141 Acute lymphoblastic leukemia TRAF5 ↑ (32)

Colorectal cancer EGFR ↑ (332)

Gastric cancer YAP1 ↑ (75)

Head and neck carcinoma EGFR ↑ (85)

Osteosarcoma GLI2 ↑ (106)

Pancreatic cancer MAP4K4 ↓ (298)

Prostate cancer KLF9 ↓/↑ (299, 300)

Thyroid cancer IRS2 ↑ (129)

miR-429 Gastric carcinoma Bcl-2 ↑ (303, 353)

Glioblastoma Bcl-2 ↑

Nephroblastoma c-MYC ↑ (96)

Colorectal cancer HMGB3 ↑ (59)

Osteosarcoma ZEB1 ↑ (103)

Glioblastoma SOX2 ↑ (82)

Esophageal carcinoma Bcl-2, SP1 ↑ (65)

Thyroid cancer ZEB1 ↑ (131)

Colorectal cancer SOX2 ↓ (53)

Cervical carcinoma IKKb ↑ (46)
f

↓ - suppression by miRNA; ↑ - promotion by miRNA; n/d – no data
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expression of miR-200c was also reported to enhance apoptosis

in lung cancer tissues, where it caused activation of the JNK

signaling pathway and upregulation of an ER stress-related

protein, RECK.

MiR-141 demonstrates apoptosis-promoting activity in the

majority of cancer types. However, miR-141 appears to

modulate apoptosis in a bidirectional manner in prostate

cancer. miR-141 induces prostate cancer cell apoptosis via

targeting Runt-related transcription factor 1 (RUNX1) (300).

However, another study reported that miR141 significantly

reduced cell apoptosis, thus appearing to be a novel oncogene

miRNA, which promotes prostate tumorigenesis via suppressing

a key transcription factor kruppel-like factor-9 (KLF9) (299).

Therefore, it remains to define the role that miR-141 plays in the

apoptosis of prostate cancer cells. In T-cell acute lymphoblastic

leukemia cells the upregulation of miR-141-3p significantly

decreased cancer cell proliferation and promoted its apoptosis

by direct targeting tumor necrosis factor receptor-associated

factor 5 (TRAF5) (32). Furthermore, among colorectal cancer

cells, miR-141- has been proven to reduce cell growth and

induce apoptosis and differentiation of colorectal cancer cells

by targeting EGFR (332). Similarly, in head and neck squamous

cell carcinoma, where miR-141, also by suppressing EGFR

signaling, inhibits tumor growth, and promotes apoptosis in

cancer (85). Moreover, in pancreatic cancer cells, miR-141 acts

as a tumor suppressor by targeting MAP4K4, which knockdown

inhibits cell proliferation and induces G1 arrest and apoptosis

(298). Moreover, since insulin receptor substrate 2 (IRS2), a

known oncogene, was confirmed to be a direct target of miR-

141, its overexpression blocks cell proliferation and induces cell

apoptosis of thyroid cancer (129).

MiR-429 acts in a pro-apoptotic manner in the majority of

cancer types. In colorectal cancer, miR-429 has been

demonstrated to exert a two-fold effect. By mediating high

mobility group box 3 (HMGB3) miR-429 promotes apoptosis

in colorectal cancer cells (59). However, directly targeting SOX2

may prevent cell death (53). Therefore, it is unclear whether
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miR-429 plays an oncogenic or tumor-suppressive role in

colorectal cancer. Remarkably, SOX2 is also directly targeted

by miR-429 in glioblastoma multiforme, but in this cancer

downregulation of SOX2 inhibits cell proliferation and induces

apoptosis (82). Moreover, in glioblastoma miR-429 induces

apoptos i s a l so by ta rge t ing Bc l -2 . Fur the rmore ,

downregulation of Bcl-2 by miR-429 induces apoptosis in

gastric carcinoma (303, 353). In both types of cancers,

overexpression of miR-429 inhibits Bcl-2-mediated cell

survival (303, 353). In esophageal carcinoma upregulation of

miR-429, by targeting both Bcl-2 and SP1, promotes apoptosis in

cancer cells (65). Another direct target for miR-429 is ZEB1

which inhibition results in the induction of apoptosis in

osteosarcoma (103) and thyroid cancer cells (131). Moreover,

miR-429 enhances apoptosis in nephroblastoma, by targeting c-

myc (96) and also in cervical carcinoma, through the NF-kB
pathway by targeting IKKb (46).
Regulation of angiogenesis by
miR-200 family

Angiogenesis is the process of formation of new capillaries

from a pre-existing vasculature, which is a crucial factor

affecting tumor formation, progression, and metastasis

(217). Malignant tumors create an environment that favors

the predominance o f proang iogen ic f ac tor s over

antiangiogenic factors, resulting in inappropriate vessel

growth towards the neoplastic lesion. Many proangiogenic

and antiangiogenic agents have been identified. They may be

secreted by endothelial cells, tumor cells, or by the

surrounding stroma. MiRNAs may target genes involved in

angiogenesis, but on the other hand, their expression can

be modulated via pro-angiogenic or anti-angiogenic

factors (354).

miR-200 family members act both as angiogenesis inhibitors

and promoters (Table 6). miR-200a, miR-200b and miR-429
TABLE 6 Regulation of angiogenesis by miR-200 family members.

miRNAs Cancer Target Angiogenesis Ref.

miR-200a n/d n/d ↓ (355)

miR-200b n/d n/d ↓ (355)

Prostate cancer n/d ↓ (261)

miR-200c n/d n/d ↓ (355)

Pancreatic cancer n/d ↑ (356)

miR-141 Small cell lung cancer KLF12 ↑ (193)

Ovarian cancer n/d ↑ (357)

n/d CXCL12b,
GAB1, GATA6, NRP1, TGFb2

↓ (355)

miR-429 n/d n/d ↓ (355)
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inhibit angiogenesis. miR-200c is described as an angiogenesis

inhibitor, but it promotes angiogenesis in pancreatic cancer.

Similarly, miR-141 is described to inhibit angiogenesis, but it

also promotes angiogenesis in small-cell lung cancer and

ovarian cancer.

In 2011, Chan et al. first described the effect of miR-200b on

the suppression of angiogenesis, thus identifying the first member

of the miR-200 family to have an inhibitory effect on this process

(358). Several years after this finding, it was confirmed that all

members of the miR-200 family suppress angiogenesis (193). In

prostate cancer cells, miR-200b reverses the angiogenic switch

(261). Nevertheless, some members of the miR-200 family, more

specifically miR-200c and miR-141, may demonstrate pro-

angiogenic effects as well. For instance, increased expression of

miR-200c in pancreatic cancer endothelial cells is observed and

its inhibition significantly reduces cancer cell migration and

angiogenesis, confirming the pro-angiogenic effects of miR-200c

in pancreatic cancer (356). MiR-141 is another member of the

miR-200 family that, in addition to its anti-angiogenic effects

(355), also demonstrates angiogenesis-promoting activity in

ovarian cancer. The ovarian cancer-secreted miR141-3p

promotes endothelial cell angiogenesis by activating the JAK/

STAT3 and NF-kB signaling pathways (357). Likewise, in small

cell lung cancer (SCLC), miR-141 promotes angiogenesis via the

KLF12 pathway (193).
Regulation of drug resistance by
miR-200 family

Drug resistance in cancer cells, resulting in reduced or no

response to the administered therapy and poorer overall survival

of cancer patients is a limiting factor for this treatment approach.

Furthermore, residual cancer cells surviving therapy gradually

divide, thereby initiating recurrence of the disease, often having

worse responses to treatment and a poorer prognosis.

Chemoresistance can develop through various mechanisms,

such as gene mutation, DNA methylation, and histone

modification (359). Numerous studies focus on identifying and

understanding the role that miRNAs play in the development of

chemotherapy resistance. Members of the miR-200 family

appear to be critical of this phenomenon. Depending on

cancer and the miR-200 family member, the underlying

mechanism and the effect they have on modulating the

resistance are different.

miR-200 family members reduce drug resistance in most

cases (Table 7). miR-200a enhances drug resistance in breast and

liver cancer, and it reduces drug resistance in glioma. miR-200b

reduces drug resistance in 7 cancer types. miR-200c reduces drug

resistance in 7 cancer types but it enhances chemoresistance in

esophageal carcinoma. miR-141 increases drug resistance

in breast cancer and glioma and it decreases drug resistance in

neuroblastoma, colorectal and pancreatic cancer. miR-141
Frontiers in Oncology 16
increases the resistance to cisplatin in non-small cell lung

cancer and ovarian cancer. However, it reduces the resistance

to other drugs in those cancer types. miR-429 reduces drug

resistance in colorectal and ovarian cancers and increases drug

resistance in endometrial cancer.

MiR-200a demonstrates various effects on the modulation of

drug resistance among different types of cancer. In breast cancer

cells, Mir-200a, via antagonizing TP53INP1 and YAP1,

contributes to increased resistance to chemotherapeutics (360).

Moreover, inhibition of miR-200a enhances gemcitabine

chemosensitivity in cancer cells (360). In human hepatocellular

carcinoma, miR-200a-3p targets dual-specificity phosphatase 6

(DUSP6) to augment cancer cell resistance to 5-fluorouracil,

doxorubicin, and cisplatin (361). In contrast, miR-200a has

opposite effects on drug resistance in glioma. Moreover,

downregulation of miR-200a is associated with decreased

chemotherapeutic treatment efficacy (81).

MiR-200b appears to reduce the chemoresistance of all

cancers. In cholangiocarcinoma, it was demonstrated that

miR-200b, as well as miR-200c, reduces resistance to

chemotherapeutics by directly targeting SUZ12 and ROCK2

(51). The same effect, but in a different mechanism, was

reported with miR-200b-3p in colorectal cancer, where, via

targeting TUBB3, it reduced resistance to oxaliplatin and

promoted apoptosis and growth inhibition in resistant cancer

cells (247). In bladder cancer cells, methylation of miR-200b was

associated with resistance of this cancer to cisplatin (134).

Moreover, it was suggested that epigenetic silencing of miR-

200b might be a marker of cisplatin resistance in this tumor. In

addition, miR-200b seems to play an essential role in the

response of non-small lung cancer to treatment. It has been

evidenced that induction of miR-200b, but also miR-141,

increased sensitivity to nintedanib in nintedanib-resistant cells

(365). Moreover, miR-200b increases the chemosensitivity of the

docetaxel-resistant lung cancer cells by directly targeting

autophagy-associated gene 12 (ATG12) (364). A further study

revealed that expression of miR-200b, by direct targeting SUZ12

and through histone deacetylase 1/Sp1/miR-200b signaling

pathway might lead to the formation of chemoresistant

phenotype in docetaxel-resistant cancer cells. Moreover,

histone deacetylase-mediated silencing of miR-200b increased

chemoresistance in lung adenocarcinoma cells (254, 363).

Furthermore, miR-200b in lung cancer cells inhibits

chemoresistance and increased sensitivity to cisplatin via

targeting p70S6K1 (256). This miRNA was also found to

reverse the chemoresistance of docetaxel-resistant lung

adenocarcinoma cells via targeting E2F3 (362). Moreover, also

in small cell lung cancer, miR-200b reduces drug resistance

namely by modulating ZEB2, which in small cell lung cancer

leads to multidrug resistance of the tumor (366). By regulating

B-cell-specific Moloney murine leukemia virus insertion site 1

(Bmi-1), miR-200b has been shown to enhance the

chemosensitivity of prostate cancer cells to docetaxel (262).
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Besides, in ovarian cancer, miR-200b and miR-200c have been

reported to be able to reverse cisplatin resistance by directly

targeting DNMT3A/DNMT3B (367).

In most cases, miR-200c decreases drug resistance. In breast

cancer, miR-200c increases sensitivity to chemotherapy as well as

sensitizes HER2+ cancer cells to trastuzumab (368). Moreover,

miR-200c, by directly targeting and thus downregulating ZEB2,

increases the sensitivity of gastric cancer tissues to cisplatin (369).

In melanoma cells, overexpression of miR-200c significantly

reduces resistance to chemotherapy via downregulation of Bmi-

1 (277). This miRNA was also revealed to enhance osteosarcoma

chemosensitivity to cisplatin by targeting AKT2 (105). In

pancreatic cells, miR-200c sensitizes cancer cells to

chemotherapy (330). In contrast, overexpression of miR-200c in

esophageal cancer induces chemoresistance to cisplatin by

activation of the Akt signaling pathway (370).

Similarly, miR-141 has been reported to have significant

effects on the modulation of drug resistance. In neuroblastoma

cells, miR-141 increases cancer cell sensitivity to cisplatin
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(293). Also in pancreatic cancer, miR-141, by directly

targeting MAP4K4, increases the chemosensitivity of the

cancer cells (298). However, in breast cancer upregulation of

miR-141 has been found to exacerbate docetaxel resistance of

cancer cells (371). In non-small cell lung carcinoma, the

function of miR-141 is more complex as, on the one hand, it

increases sensitivity to nintedanib in nintedanib-resistant

cancer cells (365), but on the other hand, via upregulation of

PDCD4, it reverses cisplatin resistance (373). Moreover, in

ovarian cancer, the action of miR-141 is also bidirectional.

Transfection with inhibitors of miR141, as well as of inhibitors

of miR-200c, in ovarian cancer cell lines induced cell resistance

to paclitaxel and carboplatin (375); however, it has been

described that expression of miR-141, via regulating KEAP1,

can increase resistance to cisplatin chemotherapy in ovarian

cancer cells (374). In glioma cells, miR-141 renders resistance

to temozolomide therapy by targeting TP53 (372).

The last member of the miR-200 family is miR-429, whose

effect on the modulation of drug resistance has been observed in
TABLE 7 Regulation of drug resistance by miR-200 family members.

miRNAs Cancer Target Drug resistance Ref.

miR-200a Breast cancer TP53INP1 ↑ (360)

Glioma n/d ↓ (81)

Liver cancer DUSP6 ↑ (361)

miR-200b Bladder cancer n/d ↓ (134)

Cholangiocarcinoma SUZ12 and ROCK2 ↓ (51)

Colorectal cancer TUBB3 ↓ (247)

Non-small cell lung cancer ATG12, E2F3, p70S6K1, SUZ12 ↓ (254, 256, 362–365)

Prostate cancer n/d ↓ (262)

Small cell lung cancer ZEB2 ↓ (366)

Ovarian cancer DNMT3A/DNMT3B ↓ (367)

miR-200c Breast cancer ↓ (368)

Gastric carcinoma ZEB2 ↓ (369)

Melanoma n/d ↓ (277)

Osteosarcoma AKT2 ↓ (105)

Ovarian cancer DNMT3A/DNMT3B ↓ (367)

Pancreatic cancer n/d ↓ (330)

Cholangiocarcinoma SUZ12 and ROCK2 ↓ (51)

Esophageal carcinoma n/d ↑ (370)

miR-141 Colorectal cancer EGFR ↓ (291)

Breast cancer EIF4E ↑ (371)

Glioma TP53 ↑ (372)

Neuroblastoma FUS ↓ (293)

Non-small cell lung cancer PDCD4 ↑/↓ (365, 373)

Ovarian cancer KEAP1 ↑/↓ (374, 375)

Pancreatic cancer MAP4K4 ↓ (298)

miR-429 Colorectal cancer DUSP4 ↓ (376)

Endometrial cancer n/d ↑ (60)

Ovarian cancer ZEB1 ↓ (377)
↓ - suppression by miRNA; ↑ - promotion by miRNA; n/d – no data.
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colorectal, endometrial, and ovarian cancers. In colorectal

cancer, overexpression of miR-429 has been found to target

DUSP4, block the JNK pathway, and thereby increase cancer cell

sensitivity to nintedanib (376). Also in ovarian cancer,

overexpression of miR-429 appears to sensitize cancer cells to

cisplatin by targeting ZEB1 (377). However, in endometrial

cancer, the effect of miR-429 on drug resistance of this tumor

is the opposite, as transfection with anti-miR-429 increased the

cytotoxic effect of cisplatin in cancer cells, thus improving

treatment efficacy (60).
Regulation of immune response by
miR-200 family

Tumor cells evade immune response via multiple

mechanisms. Programmed Cell Death Protein 1 (PD-1) and its

ligand, PD-L1, are key immune checkpoint molecules

suppressing anti-tumor immune response (378). Several

miRNAs were identified to regulate the PD-1/PD-L1 axis,

including miR-200 (379). By targeting PD-L1, miR-200

enhances CD8+ cytotoxic T-cells activity in the tumor

microenvironment and regulates the metastatic potential of

tumor cells (379). Moreover, PD-L1 is targeted by miR-429 in

gastric cancer (380).

MiR-200 family regulates also myeloid cells in the tumor

microenvironment. MiR-200c by targeting PTEN and FOG2

induces the expansion and enhances the immunoregulatory

properties of myeloid-derived suppressor cells (MDSCs) (381).

It induces, among others, the expression of arginase 1, a key

immunoregulatory enzyme of MDSCs (382), potentiating

suppressive effects on T-cells (381). Moreover, miR-200c

suppresses the expression of multiple cytokines by tumor-

associated macrophages (383). Restoration of miR-200c

upregulates cytokines and promotes M1 polarization of

macrophages (383). Notably, cytokines suppressed by miR-

200c predict favorable survival of TNBC patients (383).

Similarly, miR-200a promotes phagocytosis of tumor cells by

macrophages by targeting CD47, a “do not eat me” signal protein

overexpressed in tumor cells (86). Nonetheless, more research is

required to dissect the role of the miR-200 family in the

antitumor immune response as well as patients’ response

to immunotherapy.
Genome instability and mutations

Various miRNAs regulate the expression of DNA damage

proteins leading to genomic instability (384). However, little is

known regarding the role of the miR-200 family in the regulation

of genomic instability and mutations. It was demonstrated that

miR-200a regulates DNA repair in aging keratinocytes (385),
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nonetheless, its role in genome instability in cancer requires

further studies.
Novel hallmarks of cancer

Recently, five emerging hallmarks of cancer have been

suggested, including dysregulation of cellular energetic,

unlocking phenotypic plasticity, dysregulation of the

microbiome, nonmutational epigenetic reprogramming, and

senescence (214). Despite little being known about the role of

the miR-200 family in novel hallmarks of cancer, some studies

suggested that they may be important regulators of these features.

MiRNAs, including the miR-200 family, are involved in the

reprogramming of cancer cell metabolism. For instance, miR-

200b suppresses lactate dehydrogenase A which suppresses

glycolysis leading to the inhibited proliferation and invasion of

glioma cells (386). Moreover, miR-200b/miR-200c regulates

EMT differentiation and proliferation by modulation of

metabolic properties of colorectal cancer cells (387). Notably,

the miR-200 family also regulates the cellular senescence of

cancer cells. It was demonstrated that suppression or loss of the

miR-200 family in cancer cells induces morphological changes,

cell cycle arrest, and induces cell senescence (388).

Recently, more and more studies have stated that the

multifactorial impact of polymorphic microbiomes on cancer

regulation is linked to their bidirectional interference with

miRNAs in which those two factors interact resulting in

apoptosis or proliferation of tumor cells (389, 390). A

prominent example is an ovarian cancer where tissue-specific

bacteria, L. lactis, seem to be in control of miR-200b and TLR-4

downregulation, which is connected to the progression of

ovarian cancer (389). Another example of miRNA-microbiome

interaction is exosomal miR-200c which was identified as a

tumor suppressor of colorectal cancer cells, but only after it came

in contact with lipopolysaccharide (LPS) that is a component of

the bacterial outer membrane (391). Nonetheless, more research

is required to determine the role of the miR-200 family in the

regulation of these hallmarks of cancer.
Conclusions

Members of the miR-200 family are crucial regulators of

hallmarks of cancer. Several studies described alterations in their

expression in human tumors and determined their utility as

biomarkers in cancer. Our literature review summarized known

functions and biological targets of the miR-200 family in

different types of cancer. Furthermore, it identified gaps and

limitations in current knowledge indicating the directions of

further research. More studies are necessary to determine the

role of members of the miR-200 family in the regulation of

recently added hallmarks of cancer. Additionally, preclinical
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studies are required to determine the therapeutic potential of the

miR-200 family.
Author contributions

KK and TG are co-first authors. All authors listed have

made a substantial, direct, and intellectual contribution to the

work, and approved it for publication.
Funding

This research was funded by the Medical University

of Warsaw, grant number 1MN/1/M/MBM/N/21. The

APC was funded by the Medical University of Warsaw.

TG is supported by the PRELUDIUM grant funded

by the National Center of Science (UMO-2021/41/

N/NZ6/02774) and by the Foundat ion for Pol i sh

Science (FNP).
Frontiers in Oncology 19
Acknowledgments

Figures were created with BioRender.com.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. Lee RC, Feinbaum RL, Ambros V. The c. elegans heterochronic gene lin-4
encodes small RNAs with antisense complementarity to lin-14. Cell (1993) 75:843–
54. doi: 10.1016/0092-8674(93)90529-Y

2. Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer
(2015) 15:321–33. doi: 10.1038/nrc3932

3. Shi Y, Liu Z, Lin Q, Luo Q, Cen Y, Li J, et al. MiRNAs and cancer: Key link in
diagnosis and therapy. Genes (Basel) (2021) 12. doi: 10.3390/genes12081289

4. Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev (2015)
87:3–14. doi: 10.1016/j.addr.2015.05.001

5. Alles J, Fehlmann T, Fischer U, Backes C, Galata V, Minet M, et al. An
estimate of the total number of true human miRNAs. Nucleic Acids Res (2019)
47:3353–64. doi: 10.1093/nar/gkz097

6. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the
management of cancer and other diseases. Nat Rev Drug Discov (2017) 16:203–22.
doi: 10.1038/nrd.2016.246

7. Grzywa TM, Klicka K, Włodarski PK. Regulators at every step-how
microRNAs drive tumor cell invasiveness and metastasis. Cancers (Basel) (2020)
12. doi: 10.3390/cancers12123709

8. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev
Mol Cell Biol (2005) 6:376–85. doi: 10.1038/nrm1644
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