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Abstract: Metal oxide (MOX) sensors are widely used for chemical sensing due to their low cost,
miniaturization, low power consumption and durability. Yet, getting instantaneous measurements of
fluctuating gas concentration in turbulent plumes is not possible due to their slow response time.
In this paper, we show that the slow response of MOX sensors can be compensated by deconvolution,
provided that an invertible, parametrized, sensor model is available. We consider a nonlinear,
first-order dynamic model that is mathematically tractable for MOX identification and deconvolution.
By transforming the sensor signal in the log-domain, the system becomes linear in the parameters
and these can be estimated by the least-squares techniques. Moreover, we use the MOX diversity in a
sensor array to avoid training with a supervised signal. The information provided by two (or more)
sensors, exposed to the same flow but responding with different dynamics, is exploited to recover the
ground truth signal (gas input). This approach is known as blind deconvolution. We demonstrate
its efficiency on MOX sensors recorded in turbulent plumes. The reconstructed signal is similar
to the one obtained with a fast photo-ionization detector (PID). The technique is thus relevant to
track a fast-changing gas concentration with MOX sensors, resulting in a compensated response time
comparable to that of a PID.

Keywords: MOX sensors; blind deconvolution; blind identification; least-squares; turbulent plumes

1. Introduction

Air pollution is a major problem affecting the health of people, leading to 4 million deaths each
year [1]. Moreover, half of the worldwide population lives in cities where pollutant emission sources
can vary sharply in location and time [2]. Mapping spatiotemporal air pollution in urban cities at a
fine scale is thus of crucial importance. The large number of vehicles circulating in city streets, e.g.,
garbage trucks, buses or taxis, could be used for this purpose if they were equipped with on-board
chemical sensors [3]. A prerequisite, however, is that low-cost and fast-response sensors are available.
When an air quality map is built from measurements acquired in motion, the sensor has to be very
fast or else the resulting map will be blurred [4]. This constraint is particularly true when the mobile
sensing platform is a fast moving vehicle.

Certainly, the fastest chemical sensors are biological sensors. The olfactory response of insect
antennae is recorded in the form of electroantennograms (EAGs) that have a response time of tens of
ms [5]. Previously, EAGs have been used as chemical sensors on mobile (robotic) platforms [6]. Yet,
the biological preparation is complex, and its lifetime is too limited to be used routinely. In contrast,
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artificial sensors are more robust and easy to use. Photo-ionization detectors (PIDs) can compete with
EAGs in terms of response time. Unfortunately, they are too bulky and expensive to be deployed on a
large fleet of existing vehicles or in platforms with limited payload such as nano-drones [7]. In contrast,
metal oxide (MOX) gas sensors are miniaturized and inexpensive, with a cost of ~10 USD, which is
compatible with a wide-scale deployment. They are also sensitive to the volatile organic compounds
(VOCs) relevant to environmental monitoring. Yet, they have a slow response time of tens of seconds,
which prevents their use on fast moving vehicles.

The slow response time of MOX sensors is a consequence of a slow rise time upon gas exposure
and an even slower recovery time upon gas removal. The slow recovery time can be compensated by
using a multi-chamber system [8]. Yet, the required additional electrovalves and fluidic components
increase the overall cost, size, weight and power consumption of the system. An alternative approach to
improve both the rise and recovery time without resorting to external components is by deconvolution.
The idea behind deconvolution is that if one is able to identify a parametrized, invertible, model of
the sensor dynamics, we could invert it to uncover the original fast-varying stimulus u(t) from the
slow-varying sensor signal y(t) (see Figure 1). Previous deconvolution approaches of MOX sensors [4,9]
suffer from some drawbacks however. First, they consider a linear sensor model without taking
into account the intrinsic nonlinearity of MOX sensors [10]. Second, the linear model is identified
and validated under unrealistic conditions with a large gas chamber affecting the sensor dynamics
and/or concentration steps of a long duration (several minutes) that are not representative of a real
turbulent plume.

Here, we propose a combined identification/deconvolution approach based on a nonlinear model
of MOX sensors and realistic stimulation conditions, i.e., natural odor plumes. We consider a nonlinear,
first-order dynamic model that is mathematically tractable for MOX identification and deconvolution.
By transforming the sensor signal in the log-domain, the system becomes linear in the parameters
and these can be estimated by the least-squares techniques. The identification can be performed
in a supervised way from a training signal; that is, a reference of the fluctuating gas concentration
in turbulent plumes provided by a fast photo-ionization detector (PID). However, this supervised
approach is unsuitable in certain applications as retraining with the PID must be performed regularly to
adapt to changing sensor characteristics (e.g., to overcome the drift due to contamination or poisoning
of the sensing material) and environmental conditions (e.g., changes in humidity and temperature).
In order to avoid the use of a PID, we exploit the information provided by two MOX sensors employed
in parallel and use each one as a reference of the other. This approach is known as blind deconvolution.
Blind deconvolution has been performed in the past for linear thermocouple sensors, see e.g., [11,12],
but not for nonlinear MOX sensors. Here, we demonstrate its efficiency in a challenging scenario in
which the goal is to track the fast concentration fluctuations of a turbulent plume (several kHz) by
using two MOX sensors with a nominal bandwidth below 1 Hz.
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Figure 1. Deconvolution of metal oxide (MOX) gas sensors sensors. The deconvolution operation
consists of reconstructing the fast-varying concentration u(t) encountered in turbulent plumes by
inverting the low-pass filtering effect of MOX sensors.

The rest of the paper is organized as follows. In Section 2, we propose a nonlinear first-order
dynamic model of MOX sensors that is tractable for identification and deconvolution. Although the
model has a limited number of parameters, identifying them directly leads to a difficult nonlinear
estimation problem. In Section 3, we derive a linearization technique so that ordinary least-squares
methods can be employed. The supervised method which requires prior training with a fast PID is
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presented in Section 4 and the blind method which exploits the information from two MOX sensors is
detailed in Section 5. This technique is generalized in Section 6 to more than two sensors and more
complex sensor dynamics. Finally, the main conclusions are presented in Section 7.

Throughout this paper, the following notation is used. Scalar variables are indicated by lowercase
letters, e.g., x, and vectors as boldface lowercase letters, e.g., x. Matrices are denoted by boldface
uppercase letters, e.g., X. The prime notation denotes the logarithm of a variable or parameter, e.g.,
x′ is log x, and a hat denotes an estimate of a parameter, e.g., x̂.

2. A Simple Nonlinear Model of MOX Sensors

The objective of this section is to develop a simple model of a MOX sensor that allows for
identification and deconvolution. We first consider a MOX sensor as a linear dynamical system with
impulse response h(t). The response x(t) to any input signal—fluctuating odor concentration u(t)—is
given by the convolution x(t) = h(t) ∗ u(t), where ∗ is the convolution operator. The main purpose of
the deconvolution is to uncover the incoming signal u(t) by inverting the convolution process; i.e.,
U( f ) = X( f )H( f )−1 in the frequency domain. Identifying the impulse response is thus a prerequisite
to deconvolution. Although finding the response to an impulse may be possible for some particular
sensors—e.g., by exciting a visual sensor with a pulse-laser—it is experimentally difficult to stimulate
a gas sensor with a brief chemical input. Rather, we estimate the dynamics of the sensor from its
response to step-like stimuli (Figure 2A and Appendix A). The impulse response is then obtained as
the derivative of the step response.

We stimulate three MOX sensors (2 × TGS2602, 1 × TGS2610) in several steps, using ethanol at
various concentrations (10, 30, 60 and 100 ppm) (see Appendix A for experimental details). These sensors
are commercialized with a cap that has a flame-proof stainless steel gauze. The sensor cap introduces
an additional low-pass filtering in the response due to the time required for the gas to diffuse through
the gauze and reach the MOX surface. We therefore removed the cap to improve the MOX response
time, e.g., as in [13]. The sensing elements are then encased in miniaturized gas chambers (volume
of 0.32 mL per sensor) acting as protective shells. The 3D-printed fluidic design is described in [14].
The individual chambers are filled by the inlet flow in 75 ms.

The step response of these modified MOX sensors is shown in Figure 2B (top). It is well fitted
using exponential models with a limited number of terms; merely one or two in agreement with
previous studies [15]. With two exponential terms, the deconvolution filter in the time domain requires
second-order derivatives of the signal (see Appendix A). As these high-order derivatives are extremely
noisy to compute numerically, we chose to model the response to a unit step as a single exponential;
that is 1 − e

−t
τ with τ the time constant of the sensor. This model is reasonable given that the time

constant depends on the sensor type but not on the ethanol concentration, at least in the range tested
(Figure 2B, bottom). The continuous-time deconvolution filter obeys the linear differential equation
(Appendix A):

u(t) = x(t) + τ
dx
dt

(1)

The original signal u(t) can be reconstructed from Equation (1) if the time constant τ of the sensor
is known and the derivative of the sensor output is available. In practice, the sensor output is noisy and
the derivative is difficult to estimate accurately. To avoid computing signal derivatives, we integrate
Equation (1) within the sampling interval ∆t. This allows us to provide a discrete-time implementation
of the deconvolution filter as

xk+1 = a xk + (1− a) uk (2)

with a = e
−∆t
τ . Typically, for MOX sensors we have τ � ∆t (τ and ∆t are in the order of second

and millisecond, respectively) so that a→ 1 . In our experimental data (Figure 1B, bottom), the time
constant was τ (in s) = 10.4 ± 0.46 and 6.1 ± 0.47 for the two TGS2602, and τ = 1.7 ± 0.19 for the
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TGS2610. Given that ∆t =1 ms, we have a = 0.9999 and 0.9998 for the two TGS2602, and a = 0.9994 for
the TGS2610.

So far, we have considered a MOX sensor as a linear time-invariant system. If it is a linear system,
it should obey the principle of homogeneity, that is, the steady state response should be proportional
to the input intensity. Yet, the steady state of MOX sensors follows a power law [10], that is

yk = α xk
r (3)

where α the r are parameters that depend on the sensor type (see Figure 2C). Thus, MOX sensors are
not linear and cannot be identified uniquely by an impulse response. Here, we model MOX sensors
as a linear–nonlinear (LN) system (Figure 3A), which consists of a nonlinear cascade of a 1st-order
low-pass filter given by Equation (2) and a static nonlinearity given by Equation (3).
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Figure 2. A The step response of MOX sensors. The sensor conductance G is measured over time in
response to ethanol steps at different concentrations. See Appendix A for details of the experimental
setup. B Transient response analysis. Top) The conductance change ∆G over time in response to a
step-like stimulus. The transient is well-fitted by a sum of two exponential functions that represent
the adsorption process of the chemical compound onto the sensing element. Here, the time constant
corresponds to the time at which the MOX reaches (1 − 1/e) × 100% ≈ 63.2% of the steady state
value. Bottom) The time constant (10.4 ± 0.46 and 6.1 ± 0.47 for the 2 × TGS2602, 1.7 ± 0.19 for the
TGS2610 in sec.) depends on the sensor type but is relatively independent on input intensity (ethanol
concentration). C Steady state response analysis. The steady-state conductance is well-described by a
power law function.

Figure 3B compares the LN model to real data (TGS2610) in response to step-like stimuli of ethanol.
We note that our non-linear model with a single time constant fits reasonably well, no matter if the
conductance increases or decreases. Thus, in our study there is no need to have separate models for
the two phases. Yet, there is a mismatch during the transient that increases with concentration (see at
60 and 100 ppm). This discrepancy comes from the simple dynamics parametrized by a single time
constant (Equation (1)). A better match would have been obtained by fitting the transient with two
exponential terms (Figure 2B top). Yet, Equation (1) would then involve additional parameters as well
as the second-order derivative of the signal, which is extremely noisy to compute numerically. To limit
the number of parameters and the noise, we made the model as simple as possible, but not simpler.
As shown later, this model is quite effective in its goals of identification and deconvolution.
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3. A Linearization Technique from Logarithmic Transformation

Our LN model of MOX sensors can be seen as a state-space system, with Equations (2) and
(3) being respectively the state transition and observation equations. Note that both equations are
non-linear due to the product a xk between the parameter and the state in the state transition equation,
and due to the power law α xk

r in the observation equation. The extended Kalman filter (EKF) could
potentially be applied to estimate the three parameters (a, α, r) and state xk from a known input uk.
The EKF is the nonlinear version of the Kalman filter, which linearizes the model around the current
estimate. Yet, it turned out that the EKF suffers from convergence problems owing to its linearization
when the initial estimate of the state is wrong. In the following, we propose a technique of linearization
so that the state variable xk can be eliminated and the system becomes linear in the parameters (a, α, r)
and these can be identified by ordinary least squares techniques.

First we note that a logarithm transformation of the sensor output allows us to linearize the power
law (Equation (3)) in our LN model, such that

log[yk] = log[α] + r log[xk] (4)

This logarithm transformation of the steady state is illustrated in Figure 2C. Moreover, because
the logarithm is a concave function, we have

log[a x + (1− a) u] ≥ a log[x] + (1 − a ) log[u] (5)

for any a ∈ [0, 1]. Figure 4 compares the lower bound given by Equation (5) for different values of a.
We note that the inequality in (5) becomes an equality when a→ 1 , which is a condition typical of
MOX sensors (e.g., a = 0.999 when τ = 1 s and ∆t = 1 ms). We can therefore rewrite (Equation (2)) as

log[xk+1] ≈ a log[xk] + (1− a) log[uk] (6)

and our model of MOX sensors (Equations (2) and (3)) becomes

x′k+1 = a x′k + (1− a) u′k (7)
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y′k = α′ + rx′k

with the change of variables x′ = log[x], u′ = log[u], y′ = log[y] and α′ = log[α]. In the sequel, the
prime notation denotes the logarithm of variables or parameters. The transformed state variable x′ can
be further eliminated by rewriting Equation (7) as

y′k+1 = a y′k + b u′k +c (8)

with b = r(1− a) and c = α′(1− a). Note that Equation (8) is now linear in the parameters and these
can be identified by ordinary least squares techniques.
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in the graphs corresponds to equality (Equation (6)). For a given value of a, the variables x and u are
sampled randomly in the unit interval, each point corresponding to a particular realization.

4. Supervised Identification/Deconvolution in the Log-Domain

Figure 5 summarizes the deconvolution operation which consists of taking the logarithm of the
MOX signal, processing this log signal with a linear filter, and recovering the output via an exponential
function. The deconvolution filter in the log-domain follows from Equation (8) as

u′k = w1 y′k+1 + w2 y′k + w3 (9)

with filter coefficients w1 = 1/[r(1− a)], w2 = −a/[r(1− a)] and w3 = −α′/r.
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Figure 5. Deconvolution in the log-domain based on the sensor model Equations (2) and (3).
The deconvolution operation consists of taking the logarithm of the MOX signal, processing this
log signal with a linear filter (Equation (9)), and recovering the output via an exponential function.
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The original signal uk = eu′k can be reconstructed from Equation (9) if the filter coefficients
are known.

We consider that samples of uk are available as a supervised signal for estimating w1, w2, w3.
Let us denote U′ =(u′1, u′2, · · · , u′n)T the n × 1 training vector. Equation (9) can be rewritten in matrix
form as

U′ = Y′ w (10)

with w =(w1, w2, w3)
T the 3 × 1 vector of filter coefficients and Y′ the following n × 3 matrix

Y′ =



y′2 y′1 1
...

...
...

y′k y′k−1 1
...

...
...

...
...

...
y′n+1 y′n 1


(11)

The filter coefficients are estimated so as to minimize the least square error defined by

E = ‖Y′ w−U′‖2 (12)

The solution is given by the pseudo-inverse, that is

ŵ =
(
Y′TY′)−1Y′T U′ (13)

and the model parameters are identified from the filter coefficients as
â = −ŵ2/ŵ1(τ̂ = −∆t/ log â)

r̂ = 1/(ŵ1 + ŵ2)

α̂ = e−r̂ŵ3

(14)

To validate the identification method, we recorded the response of a PID (miniPiD 201 A from
Aurora Scientific with a response time of a few ms) in a turbulent plume of ethanol. The PID was
previously calibrated with ethanol in the range 0–100 ppm, so that its output over time is a good
approximation of fluctuating ethanol concentration. We therefore consider the PID signal as uk (ground
truth). We first performed experiments on a simulated MOX sensor based on Equations (2) and (3) with
different parameter values (τ, r, α) randomly generated. Figure 6A compares the estimated parameters
(τ̂, r̂, α̂) obtained from Equations (13) and (14) to the true values used to simulate the MOX sensor.
We found that our least-squares approach generates biased parameter estimates: τ̂ = 0.97 τ, α̂ = 0.99 α
and r̂ = 0.84 r. The bias results from the approximation (Equation (6)) was used to linearize the
model. Although it would be easy to compensate the estimation bias as it is systematic and linear (see
Figure 6A), it is not necessary because (i) the bias is relatively small and (ii) it does not prevent recovery
of the original PID signal uk (see Figure 6B).

We further tested our least-squares method on a real MOX sensor (TGS2610) mounted with the
miniPID in a small housing chamber (volume of 0.32 mL). Given the close proximity between the two
sensors, we can reasonably assume that the MOX and the PID observe the same signal uk. We generated
ethanol plumes in an open environment as described in [14] and recorded the MOX and the PID at
15 cm and 105 cm from the source (Figure 7). The MOX output was filtered prior to identification to
eliminate noise (5th-order Butterworth low-pass filter with 20 Hz cutting frequency). Figure 8A,B
shows the deconvolved output of the MOX. We note that the deconvolution process leads to a signal
that is similar to the PID in the two conditions (close and far from the source). The time constant
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estimated for the MOX is τ̂ = 2.47 s, irrespective of the recording location (15 or 105 cm). Moreover,
the deconvolution approach is not limited to ethanol (see result with acetone in Figure 8C).
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Figure 6. Supervised identification/deconvolution with a simulated MOX sensor. A Least-squares
identification using Equations (13) and (14) (n = 30 trials). For each trial, the model parameters τ, r, α are
randomly generated within (0,10 s), (0,1) and (0,10), respectively. B Deconvolution of the MOX output
in the worst-case scenario: τ = 10s, r = 1, α = 10 (maximum estimation bias in A).
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Figure 7. Generation of ethanol plumes in an open environment. The test bench uses a pressurized air
outlet (6.3 mm radius, 20 L/min) and a vessel (5 cm radius) filled with 200 mL of ethanol (gas source).
The sensing board, which consists of MOX sensors and a fast PID, was placed at 15 cm and 105 cm
from the gas source.
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Figure 8. Supervised deconvolution experiments with a real MOX sensor. A Deconvolved MOX at 105
cm from the gas source (ethanol). B Deconvolved MOX at 15 cm from the gas source (ethanol). C Same
as in B but with acetone as the gas source.

5. Blind Deconvolution Using Two Sensors

In the previous section, the system was identified by using a training sequence uk (PID signal)
so as to have the deconvolved MOX as close as possible to the PID. In this section, we provide a
blind technique for estimating the filter coefficients directly from the response of two MOX sensors,
thereby avoiding the cost of training the system with a PID. In blind deconvolution, we consider that
uk is unknown (the PID signal is not used). Instead, we exploit the information provided by two
MOX sensors. The MOX sensors are both assumed to follow the NL model (Equations (2) and (3))
with unknown but different parameters. Denoting subscript 1 and 2 for sensor 1 and 2, respectively,
the deconvolution filters in the log-domain follow from Equation (9) as

u′1,k = w11 y′1,k+1 + w12 y′1,k + w13 (15)
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u′2,k = w21 y′2,k+1 + w22 y′2,k + w23

with filter coefficients w11 = 1/[r1(1− a1)], w12 = −a1/[r1(1− a1)] and w13 = −α1
′/r1 for sensor 1 and

w21 = 1/[r2(1− a2)], w22 = −a2/[r2(1− a2)] and w23 = −α2
′/r2 for sensor 2.

As both sensors are excited by the same input uk, the deconvolved outputs u′1,k and u′2,k should
be similar (see Figure 9). Thus, we performed blind identification of the system (Equation (15)) by
minimizing the difference between u′1,k and u′2,k given by the least-squares error

E =
∑n

k=1

[
u′1,k − u′2,k

]2
= ‖Y′1w1 − Y′2w2‖

2 (16)

with, for sensor i = 1 and 2,
wi =

(
wi1, wi2, wi3)

T (17)

Y′i =



y′i,2 y′i,1 1
...

...
...

y′i,k y′i,k−1 1

...
...

...
y′i,n+1 y′i,n 1


Equation (16) can be written in a more compact form as

E = wTRw (18)

with w = (wT
1 , wT

2 )
T and

R =

(
Y1
′TY1

′
−Y1

′TY2
′

−Y2
′TY1

′ Y2
′TY2

′

)
(19)

As w = 0 minimizes Equation (18), a constraint on the norm of the filters is added to avoid the
trivial zero-solution. The solution minimizing Equation (18) subject to ‖w‖2 = 1 is obtained by solving
the following eigenvalue problem

Rŵ = ρŵ (20)

in which ŵ is the eigenvector corresponding to the smallest eigenvalue ρ so that from Equations (18)
and (20), we have E = ŵTRŵ = ŵTρŵ = ρ.

The deconvolved output
(
eu′1 + eu′2

)
/2 is then obtained from ŵ and Equation (15). Note however

that the unknown source signal u can only be retrieved up to a scaling factor. Also from ŵ, the sensors’
parameters can be identified with Equation (14).Sensors 2018, 18, x FOR PEER REVIEW  11 of 16 
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Figure 9. Blind deconvolution with two MOX sensors. The deconvolved outputs u′1 and u′2 should be
similar as both sensors are excited by the same input u. The original input can be reconstructed as(
eu′1 + eu′2

)
/2.

To validate our blind identification method, we repeated the same experiments as in the previous
section but with two MOX sensors. First, when tested it on two simulated MOX sensors. We note in
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Figure 10 that the blind identification method leads to a valid (although biased) estimate, for the time
constants; that is τ̂ = 1.1 τ. Such a blind estimation is possible because the parameter â is obtained
from Equation (14) via the ratio −ŵ2/ŵ1 and this ratio is insensitive to the scale ambiguity inherent
to the blind procedure. Second, when tested on real data using two MOX sensors, the time constant
estimated for the TGS2610 is τ̂ = 2.83 s with the blind procedure versus 2.47 s with the supervised
procedure (see previous section). Yet, these time constants are comparable after compensation of the
estimation bias. Figure 11 shows the output

(
eu′1 + eu′2

)
/2 obtained after the blind deconvolution of

two MOX sensors with Equation 15. We note that the output is similar to the PID signal despite the
fact that the PID was not used for deconvolution (blind method). The result obtained is also very close
to the one obtained with the related supervised method (compare Figures 11 and 8A).
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Figure 10. Blind identification of the time constants τ1 and τ2 for two simulated MOX sensors.
Experiments with simulated MOX sensors (same conditions as in Figure 6). The blind identification
method leads to a valid, but biased, estimate: τ̂1 = 1.1 τ1 and τ̂2 = 1.1 τ2.
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Figure 11. Blind deconvolution, experiments with two real MOX sensors. In blue, the signals y1 and y2

of the two MOX sensors within an ethanol plume (recording at 15 cm from the releasing source). In red,
the signal (u1 + u2)/2 obtained from the deconvolution of the two MOX sensors. In black, the signal
u recorded by the PID at the same location as the MOX sensors. Note that u was not used for the
deconvolution (blind) and is shown here for comparison only. Moreover, for comparison, the signals
are normalized between 0 and 1 as the blind procedure can only provide u up to a scaling factor.
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6. Extensions

6.1. More Than Two Sensors

Our blind identification method can readily be extended to P > 2 sensors as follows. Collecting
all possible pairs of sensors gives the cost function

E =
P∑

i, j = 1
i , j

‖Y′iwi − Y′jwj‖
2 (21)

with the wi and Y′i defined as in Equation (17). Written in matrix form, Equation (21) reads as follows

E = wTRw (22)

with w = (wT
1 , · · · , wT

P)
T and

R =


(P− 1)Y′T1 Y′1 −Y′T1 Y′2 · · · −Y′T1 Y′P
−Y′T2 Y′1 (P− 1)Y′T2 Y′2 · · · −Y′T2 Y′P

...
. . .

−Y′TPY′1 −Y′TPY′2 · · · (P− 1)Y′TP Y′P


The solution minimizing Equation (22) subject to ‖w‖2 = 1 is obtained by solving an eigenvalue

problem similar to Equation (20).

6.2. Different Time Constants for Rise and Decay

Our deconvolution approach can be extended to a sensor model that switches between two
modes of operation with two different time constants depending on whether the sensor conductance
increases or decreases. Yet, finding the optimal mode switching as well as the deconvolution filter
is a hard combinatorial problem. Thus, we propose a suboptimal procedure in which the switches
between the two modes of operation are provided by the slope of the sensor output (rising or decaying
conductance). In that case, the deconvolution filter (Equation (9)) writes

u′k =

 w1+ y′k+1 + w2+ y′k + w3+ if mode + (rise : yk+1 − yk ≥ 0)
w1− y′k+1 + w2− y′k + w3− if mode− (decay : yk+1 − yk < 0)

(23)

Let us denote w =(w1+, w2+, w3+, w1−, w2−, w3−)
T as the 6 × 1 vector of the concatenated filter

coefficients and Y′ as the extended n × 6 matrix similar to Equation (11), but with entries in the lines of
the matrix being either (y′k+1, y′k, 1, 0, 0, 0) or (0, 0, 0, y′k+1, y′k, 1) depending on the mode of operation.
Then, Equation (23) can be written in matrix form just as Equation (10)

U′ = Y′ w (24)

Consequently, our least-squares approach also applies to a switching model of MOX sensors and
the vector w of filter coefficients can be obtained by the pseudo-inverse solution (Equation (13)).

7. Conclusions

In gas plumes, the challenge is to detect intermittent filaments of low concentration. To this aim,
the slowness of MOX sensors was compensated by deconvolution based on a non-linear model of
MOX sensors. To limit the number of parameters and the noise, we made the model as simple as
possible, but not simpler. Our non-linear sensor model contrasts with [4,9]. These previous studies
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consider a linear model but with two different time constants for the rise and the decay. Despite a single
time constant, our model fitted the MOX response reasonably well at low concentration (<100 ppm),
see Figure 3B. This may be explained by the fact that our MOX sensors exhibit faster dynamics (due
to the miniaturized housing chamber and sensor cap removal) and that the sensor non-linearity is
explicitly taken into account in our model.

As shown in the experiments with MOX sensors in turbulent plumes, the model was quite
effective in its goals of identification and deconvolution. By applying a logarithmic transformation
to the sensor data, we obtained a linearized estimation problem that can be solved efficiently
by least-squares techniques. We proposed two practical methods for combined identification/

deconvolution: a supervised method that requires prior training with a fast sensor such as a photo-
ionization detector and a blind or unsupervised method that exploits merely the information provided
by two MOX sensors employed in parallel. One advantage of the blind method is that it allows
us to retrain the system on the fly, in the gas plume, in case of sensor replacement or changes in
sensor characteristics.

Several lines of research that may prove beneficial and ought to be considered as future work
have been detailed in the previous section. These include the extension of our work to multiple sensors
and different time constants for rise and decay. The work presented here will certainly foster future
applications. Because it allows the tracking of fast-changing gas concentrations, perhaps the most direct
implication is in field measurements with olfactory robots or moving vehicles [16]. This task requires
fast sensors for two reasons. First, mobile sensing platforms navigate in turbulent environments with
a very heterogeneous and discontinuous sensory landscape and, second, when an air quality map
is built from measurements acquired in motion, the sensor has to respond quickly or otherwise the
resulting map will be blurred [4].
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Appendix A

Step response of MOX sensors and deconvolution. To generate fast concentration steps, we designed
a test bench as shown in Figure A1. We used high quality pressurized gases in cylinders (Linde group),
mass flow controllers (EL-FLOW Select, Bronkhorst), fast electrovalves (MHJ10-S-2,5-QS-6-HF/ LP,
Festo Group) with a switching time lower than 1 ms and the necessary fluidic tubes. The two inner
valves are mutually exclusive (when one is open the other is closed) so that either synthetic air (99.995%
purity and 21 ± 1% O2) or ethanol diluted in synthetic air is delivered to the sensors. The two outer
valves are used to send the flow that is not being delivered to the sensors (i.e., the one corresponding
to the inner valve, which is currently closed) to the exhaust in order to avoid overpressure in the
system. The ethanol gas cylinder contained 100 ppm of ethanol diluted in synthetic air with 21 ± 1%
O2, which was further diluted with synthetic air to reach concentrations below 100 ppm. Three mass
flow controllers (MFCs), which had full-scale flow rates of 1000 mL/min, were used to control the rate
of dilution of the ethanol gas stream and to fix the flow rate of the final gas stream delivered to the
sensors at 1 L/min to match the input flow rate of the pump inside the miniPID.

The response of the MOX to a unit step is modeled with a mono-exponential term as 1 − e
−t
τ

for t ≥ 0. The impulse response is given by the derivative of the step response, that is h(t) = 1
τ e
−t
τ .

In response to fluctuating odor concentration u(t), the MOX output is given by the convolution
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integral x(t) = h(t) ∗ u(t). Deconvolution is simply obtained by the inverse of the system; that is
U( f ) = X( f )/H( f ) in the frequency domain. Then, U( f ) = X( f )+ τ2πi f X( f ) as the Fourier transform
of the impulse response is H( f ) = 1/( 1 + τ2πi f ). Going back in the time domain, the deconvolution
filter writes u(t) = x(t) + τ dx

dt .

For a bi-exponential step response in the form 1 −
(

τ1
τ1−τ2

e
−t
τ1 −

τ2
τ1−τ2

e
−t
τ2

)
for t ≥ 0, it can be

shown that the deconvolution in the frequency domain writes U( f ) = X( f ) + (τ1 − τ2)2πi f X( f ) +
(τ1τ2)(2πi f )2X( f ). Thus, in the time domain, the deconvolution filter is u(t) = x(t) + (τ1 − τ2)

dx
dt +

(τ1τ2)
d2x
dt2 .
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