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Abstract

Saccharopolyspora erythraea produces a large number of secondary metabolites with biological activities, including
erythromycin. Elucidation of the mechanisms through which the production of these secondary metabolites is
regulated may help to identify new strategies for improved biosynthesis of erythromycin. In this paper, we describe
the systematic prediction and analysis of small non-coding RNAs (sRNAs) in S. erythraea, with the aim to elucidate
sRNA-mediated regulation of secondary metabolite biosynthesis. In silico and deep-sequencing technologies were
applied to predict sRNAs in S. erythraea. Six hundred and forty-seven potential sRNA loci were identified, of which
382 cis-encoded antisense RNA are complementary to protein-coding regions and 265 predicted transcripts are
located in intergenic regions. Six candidate sRNAs (sernc292, sernc293, sernc350, sernc351, sernc361, and
sernc389) belong to four gene clusters (tpc3, pke, pks6, and nrps5) that are involved in secondary metabolite
biosynthesis. Deep-sequencing data showed that the expression of all sRNAs in the strain HL3168 E3 (E3) was
higher than that in NRRL23338 (M), except for sernc292 and sernc361 expression. The relative expression of six
sRNAs in strain M and E3 were validated by qRT-PCR at three different time points (24, 48, and 72 h). The results
showed that, at each time point, the transcription levels of sernc293, sernc350, sernc351, and sernc389 were higher
in E3 than in M, with the largest difference observed at 72 h, whereas no signals for sernc292 and sernc361 were
detected. sernc293, sernc350, sernc351, and sernc389 probably regulate iron transport, terpene metabolism,
geosmin synthesis, and polyketide biosynthesis, respectively. The major significance of this study is the successful
prediction and identification of sRNAs in genomic regions close to the secondary metabolism-related genes in S.
erythraea. A better understanding of the sRNA-target interaction would help to elucidate the complete range of
functions of sRNAs in S. erythraea, including sRNA-mediated regulation of erythromycin biosynthesis.
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Introduction

Saccharopolyspora erythraea is a gram-positive filamentous
bacterium that was originally identified as Streptomyces
erythraeus, but later assigned to the genus Saccharopolyspora
[1]. S. erythraea is a prolific producer of a large number of
secondary metabolites with biological activities, including
erythromycin, a property that is probably correlated to the
competitive environment in which the bacteria live. Studies
focused on secondary metabolites of S. erythraea may provide
a better understanding of the biosynthesis and regulation of
erythromycin.

The commercial importance of erythromycin has fostered
intensive research into its biosynthesis, and genetic
engineering of the pathways involved in its biosynthesis is a
promising approach for enhancing the production of potentially-
valuable analogs of polyketide secondary metabolites [2]. The
increasing interest in erythromycin production has revived
efforts to increase the productivity of bacterial strains.
Traditionally, wild-type actinomycete strains are subjected to
multiple rounds of random mutagenesis and selection to obtain
mutants that overproduce the desired secondary metabolite for
industrial production. In 2007, the genome of S. erythraea was
completely sequenced and annotated [3], thereby facilitating
the expedited optimization of such actinomycete strains for
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production. In 2008, with the establishment of the 454/Roche
GS FLX sequencing method, we completed, for the first time,
the whole genome sequencing of the industrial erythromycin-
producing Saccharopolyspora strain HL3168 E3 (hereafter
referred to as the E3 strain) by using traditional mutagenesis
methods. Annotation of the 8199523-bp genome was
completed in 2009. Thereafter, 7195 open reading frames
(ORFs) were predicted using the prediction software of
Glimmer and GeneMark [4,5] and 50 tRNAs and four groups of
rRNAs were predicted with the tRNA-scan software [6], adding
up to a total of 12 rRNAs. In addition, 186 mutations in the
protein-encoding genes were identified, thus building a solid
foundation for the assignment of S. erythraea gene functions.
The transcriptional regulation of metabolic processes and the
control of secondary metabolism have been studied extensively
to date; however, little is known about the extent and
importance of post-transcriptional regulation in this organism.
Within the last few years, small non-coding RNAs (sRNAs)
have been implicated as important post-transcriptional
regulators in a variety of adaptive cellular and developmental
processes, as well as during virulence in bacteria [7-10].
Studies have also suggested that sRNAs play an important role
in the regulation of secondary metabolites.

sRNAs have been known to be present in bacteria since the
early 1970s, but a full appreciation of their prevalence and
impact on various biological regulatory processes has only
been revealed in recent systematic genome-wide searches for
these molecules and their genes [11-13]. sRNAs are non-
coding, functional, or regulatory RNAs, which are different from
messenger (mRNA), transfer (tRNA) or ribosomal (rRNA)
RNAs. Although they cannot be translated into proteins, they
can regulate gene expression at more than one level, (such as
at the RNA processing, modification, and stability steps, or at
the transcriptional and translational levels) and can also
influence protein stability and transfer effects [14]. sRNAs vary
in their size (from ~50- to 600 nt long), structure, and function,
and they are usually not translated into proteins (there are
some exceptions). In bacterial metabolism, sRNAs are involved
in a growing number of regulatory pathways in response to
environmental changes [15].

In recent years, sRNAs have attracted great interest as
ubiquitous regulators in all kingdoms of life. However, a smaller
number of sRNAs have been identified and characterized in
bacteria than in eukaryotes. Since the first report on a fully
sequenced bacterial genome, an increasing number of
genome-wide computational screens for sRNAs in
microorganisms have been conducted [16]. In some cases, the
mode of action and the mechanisms employed by bacterial
sRNAs are fairly well understood [17,18]. These previous
studies have suggested that a few sRNAs regulate target
genes by binding to (regulatory) proteins, but most other
sRNAs act as antisense RNAs on cis-encoded or trans-
encoded mRNAs. Functional studies reveal that a large subset
of these sRNAs act by an antisense mechanism, usually
around the translation start sites of the corresponding targets,
to modulate gene expression at the post-transcriptional level.

To date, many in silico strategies have been used to identify
a wealth of sRNA candidates in various organisms, from

bacteria [19] to humans [20], some of which were subsequently
validated experimentally and considered as novel sRNAs [21].
On the basis of previous research, Herbig et al. [22] developed
the nocoRNAc software, which, together with the RNAz
software used in sRNA prediction in Streptomyces coelicolor,
has been used to detect more than 800 sRNAs.

Deep sequencing has recently emerged as a powerful tool
for the identification of sRNAs [23-27]. Vockenhuber et al. [28]
presented the analysis of the primary transcriptome of S.
coelicolor M145 by using a differential RNA-sequencing
(dRNA-seq) approach and the 454 sequencing technology. For
S. erythraea, Marcellin et al. [29] used a combination of small
RNA sequencing and long RNA-seq data and identified 190
putative ncRNA in intergenic genomic regions.

sRNA gene identification and functional studies have been
conducted in model organisms, including E. coli and
Salmonella Typhimurium [8,18,19,30]. In addition, prediction
and partial validation of the existence of sRNAs in
Streptomyces have been described in several reports
[16,28,29,31-33]. In particular, Davide [16] showed that
reversal of the overexpression of a cis-encoded antisense
sRNA in the glutamine synthetase I gene of S. coelicolor
resulted in a decrease in growth, protein synthesis, and
antibiotic production. S. erythraea is closely related to S.
coelicolor. Therefore, the study of sRNA in S. erythraea will
help elucidate the regulatory mechanisms operative in
secondary metabolite biosynthesis, which in turn, will enable
the use of genetic engineering methods to regulate and
increase the production of erythromycin, the major secondary
metabolite.

In this study, we focused on the identification of sRNAs
associated with secondary metabolite regulation in S.
erythraea. Using a variety of bioinformatics tools and deep-
sequencing technology, sRNAs in S. erythraea were
systematically screened and analyzed. We believe that the
findings of this study will add to our current knowledge of the
regulatory network of secondary metabolism, which can be
applied to improve the production and activity of erythromycin.

Materials and Methods

Multi-sequence alignment using MAUVE
Genome-wide prediction of sRNA by RNAz is based on the

structure conservation index (SCI). Consequently, a genome
comparison method named progressive MAUVE [34], which
identifies conserved genomic regions, rearrangements and
inversions in conserved regions, and the exact sequence
breakpoints of such rearrangements across multiple genomes,
was used to perform the multi-sequence alignment. In order to
obtain the conserved genomic regions for RNAz analysis, the
genomes of actinomycetes, including Mycobacterium
tuberculosis [RefSeq: NC_000962], Nocardia farcinica
[RefSeq: NC_006361], and the model actinomycete
Streptomyces coelicolor A3 (2) [RefSeq: NC_003888.3], and
Saccharopolyspora erythraea [RefSeq: NC_009142], were
aligned with MAUVE, and then the resultant MAF file was used
as the input for RNAz.

Prediction sRNA in Saccharopolyspora erythraea
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Prediction of sRNAs in silico
The RNAz program was used for the genome-wide

prediction of sRNA loci [35]. In this program, a sequence
alignment was used as input and classified as “structural RNA”
or “OTHER”. The prediction approach of RNAz is based mainly
on the following premises: First, the structure of functional
sRNA sequences is much more stable than that of non-
functional sRNA sequences. Second, a lower SCI is
considered as an indicator for non-coding RNAs. The structure
of functional RNAs is usually more conserved among related
species than that of other sequences.

The multiple sequence alignment processed by MAUVE was
input into the RNAz software package. To detect sRNAs of
different sizes, several runs of RNAz were performed with
different settings for the window size, i.e., 60, 80, 100, 120, and
160 nt. The step size was set to 20 nt. After application of
RNAz, overlapping windows that had been classified as
“structural RNA” were joined to predict sRNA loci. The
predicted sRNA loci were then used as input for nocoRNAc
[22]. In brief, the nocoRNAc package calculated the Stress
Induced Duplex Destabilization (SIDD) profile to predict the
SIDD sites along with the results of the terminator predicted by
TransTermHP, which were assigned to the sRNA regions.
Furthermore, the nocoRNAc package predicted sRNA
transcripts based on the results of RNAz, in combination the
SIDD profile and terminator information. Analysis of the sRNA
target and RNA-RNA interaction prediction were processed
with the Vienna RNA package [36].

Cultivation of S. erythraea
S. erythraea NRRL2338 (ATCC11635) (hereafter referred to

as the M strain) was used as the reference wild-type strain, and
the E3 strain, which is used in the industrial production of
erythromycin, was used as the contrast or test strain. Both
strains were cultivated under the following conditions: 108

spores/50 mL of medium were pre-germinated and cultured in
YEME medium (3 g yeast extract, 5 g tryptone, 3 g malt
extract, 10 g glucose, and 2.5 M MgCl2-6H2O per liter of
distilled H2O) with glass beads (2 g/50 mL) at 30°C under
continuous shaking (200 rpm) to the end of the exponential
phase (72 h). One milliliter of the culture was harvested by
centrifugation at 8,500 rpm at 4°C for RNA extraction.

RNA isolation
Total RNA was isolated after culturing for times (24, 48, and

72 h) by using the RNeasy Mini Kit (QIAGEN) according to the
manufacturer’s instructions. The RNA sample harvested at the
72-h time-point was used for deep-sequencing analysis. One
hundred micrograms of total RNA was incubated with 30 U of
Turbo DNase (Ambion) for 1 h to remove residual DNA, and
then subsequently precipitated and suspended in 50 μL of
water. The average concentration obtained was 1-1.5 μg/μL,
and the quality of the recovered RNA was assessed by
electrophoresis on 1% agarose gel followed by GoldView
staining and UV transillumination.

Preparation of cDNA library and sequencing
Total RNA that was harvested from S. erythraea (strains E3

and M) grown in a liquid-rich medium (YEME) for 72 h until the
end of the exponential growth phase, at which time secondary
metabolism is usually initiated, was analyzed by deep
sequencing according to Ovation Prokaryotic RNA-Seq System
kit protocol (NuGEN Technologies, Inc., San Carlos, CA, USA).
Two independent replicates of RNA samples collected from
each strain were analyzed. Briefly, first- and second-strand
cDNA synthesis were performed with selective priming to
enrich non-rRNA transcripts from bacterial total RNA inputs.
cDNA was purified using the QIAquick PCR Purification Kit
(Cat. # 28104, 28204; QIAGEN), according to the
manufacturer’s protocol. Following end repair, the double-
stranded cDNA was found to be compatible with NuGEN’s
Encore™ NGS Library Systems that allow easy sample
multiplexing within a single-end, transcriptome sequencing
format.

Double-stranded cDNA was processed for RNA-Seq by
using the Illumina Genomic DNA Sample Prep Kit (Illumina)
according to the manufacturer’s instructions. Sequencing was
carried out by running 2 × 100 cycles on Hi-Seq 2000, and the
deep sequencing data are available in the NCBI GEO database
(accession number: GSE48887).

For evaluating the differential expression of the same sRNA
candidate in the M and E3 strains, the results of RNA-Seq of
every sRNA candidate was normalized and compared in M and
E3 with the Reads per Kilobase per Million mapped reads
(RPKM) index [37], where RPKM is calculated as follows:

RPKM= transcription_reads
transcription_length×total_assembly_reads_in_run ×109

Where “transcription_reads” are the reads that cover the
whole unique transcript; “transcription_length” is the whole
unique transcript length; and the
“total_assembly_reads_in_run” are the number of reads
covering all reads involved in the splitting joint.

qRT-PCR
Total RNA was harvested at different stages of cell growth.

cDNA synthesis was carried out using the PrimeScript RT
reagent Kit (TAKARA Biotechnology [Dalian]). First, residual
genomic DNA was eliminated from the sample with a gDNA
eraser at 42°C for 2 min, followed by reverse transcription at
37°C for 15 min and 85°C for 5 s. cDNA was used to analyze
sRNA expression by real-time quantitative PCR (qPCR) in a
Bio-Rad cfs 96 by using SsoAdvanced SYBR Green Supermix
(Bio-Rad, USA). PCR reaction mixtures were denatured at
95°C for 30 s, followed by 42 cycles at 95°C for 5 s and 57°C
for 30 s, with data collection at 57°C. Amplification of the
appropriate product was confirmed by melting curve analysis
following amplification. Raw threshold cycle (Ct) values were
calculated using the Bio-Rad CFX Manager software v1.6
using automatic baseline settings. Thresholds were set in the
linear phase of the amplification plots. The primers are listed in
Table 1. Expression of the sRNA genes at different growth
phases (24, 48, and 72 h) were calculated relative to the
calibration sample and an endogenous control (16S rRNA) to
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normalize the sample input amount by using the formula 2-ΔΔCt

(ΔCt = Ct gene of interest-Ct endogenous control) [38]. The
experiment was repeated at least 3 times.

Results

In silico prediction of sRNA of S. erythraea
sRNA candidates were predicted using the following strategy

(Figure 1). Alignment of the genomes of S. erythraea, M.
tuberculosis, N. farcinica, and S. coelicolor was generated
using MAUVE, which included all conserved genomic regions
in the four genomes. The results were then used as input for
the RNAz package, which calculated the minimum free energy
(MFE) and SCI. RNAz predicted 788 sRNA loci for the
reference organism S. erythraea. Finally, combining the SIDD
and TransTermHP data, nocoRNAc was used for the transcript
models to generate the final list of candidates. Of the 788 loci
analyzed, nocoRNAc predicted 647 sRNA transcripts, of which
382 are complementary to protein-coding regions (Table S1).
Two hundred and sixty-five predicted transcripts are located in
intergenic regions (Table S2). The length of the predicted
sRNAs ranged from 30 to 837 nt, with an average length of 293
nt. Six candidate sRNAs were found to be associated with 3
gene clusters (tpc3, pks6, and nrps5) that are involved in
secondary metabolite biosynthesis (Table 2). The four cis-
encoded antisense sRNAs sernc293, sernc350, sernc351, and
sernc389 were complementary to their targets SACE_3034,
SACE_3976, SACE_3977, and SACE_4573, respectively. The
targets (trans-antisense) of two sRNAs (sernc292 and
sernc361) were predicted with RNApredator [39] to be
SACE_7209, which encodes heat shock protein (HSP-70
cofactor) and SACE_4129, which encodes a tetracycline-
repressor (TetR) family transcriptional regulator, respectively.

Deep sequencing and characterization of sRNAs
RNA-Seq analyses were performed on two independent

replicate RNA samples collected from S. erythraea strains M

Table 1. Primers used for RT-PCR to amplify six sRNA.

Primer ID Sequence Primer length (nt) Products
sernc292F TCTTTTTGTCCTCGGTTGCC 20 103
sernc292R ATCCTCACGCGACGCAATG 19  
sernc293F TGGTGCAACACAGGTACGG 19 115
sernc293R ACACCGACCGGCTTGATG 18  
sernc350F ACGGGAAGGTCAACAAGATCG 21 130
sernc350R TTGATGGTGTACTCCCAGTCG 21  
sernc351F TGGACAACCTGATCCAGAACC 21 148
sernc351R ATTTCCGGCGTGTCGAACAC 20  
sernc361F TGGCTTCGGCTTTCTGAATC 20 134
sernc361R CGGATGTCGTTACCAAAGCAC 21  
sernc389F ACCTTGTTCTTGGCTTTGCG 20 118
sernc389R AGAAGATCGCGAACCCGAAG 20  
16srRNAF CATTGCTGCGGTGAATAC 18 151
16srRNAR GGCTACCTTGTTACGACTT 19  

doi: 10.1371/journal.pone.0080676.t001

and E3 that were grown to stationary phase. cDNA was
generated from mRNA-enriched total RNA preparations from
each strain and sequenced using the Illumina Hi-Seq 2000. All
data are available at GEO (GSE48887). In accordance with the
in silico prediction, the deep-sequencing information of sRNA
candidates was explored (Tables S1 and S2). Several
sequences were duplicated, since every transcript was
sequenced several times. The duplicates were filtered using
bioinformatics software; the largest number of unique reads of
sRNA candidate in E3 was for sernc350 (1063 reads), while in
M, it was for sernc113 (743 reads). To evaluate the difference
in expression of the same sRNA candidate in E3 and M, the
RPKM index was calculated. The results indicate that the
greatest ratio for a sRNA candidate was obtained for sernc350,
whose expression in strain E3 is up to 30-times higher than
that in strain M.

Extraction of candidate sRNAs related to secondary
metabolism of S. erythraea

In S. erythraea, 202 genes in 25 gene clusters are directly
associated with secondary metabolites (Table 2). Six candidate
sRNAs associated with secondary metabolism genes were
identified in the present study, of which four candidate sRNAs
(sernc293, sernc350, sernc351, and sernc389) were predicted
to interact with secondary metabolism genes by base-pairing.
Two sRNAs (sernc292 and sernc361) were located in the
intergenic regions between SACE_4129 and SACE_4130 and
SACE_3032 and SACE_3033, respectively (Figure 2). The
corresponding targets are SACE_7029 and SACE_4129,
respectively. MFE-based predictions of the secondary
structures of the six sRNAs were performed using the Vienna
RNA package [40] (Figure S1). Accessibility of the sRNA with
its corresponding target region was also analyzed (Figure 3).

Experimental validation of candidate sRNAs
QRT-PCR was performed to assess the expression of the six

novel sRNA (from candidate sRNAs sernc292, sernc293,
sernc350, sernc351, sernc361, and sernc389) related to
secondary metabolism, which were predicted and identified in
this study, and the results were standardized to the 16s rRNA
gene (SACE_8101). Total RNA was isolated from S. erythraea
after 24, 48, and 72 h of culture, representing the three growth
phases. Samples with a Ct > 40 were considered negative. The
results indicated that differential expression of sernc293,
sernc350, sernc351, and sernc389 at the three time points
were detected in both M and E3 strains, in which, the four
sRNAs showed higher differential expression at 72 h with 249-,
344-, 44.94-, and 7.59-fold change than that observed at 24 h
(5.98-, 6.93-, 2.25-, and 0.80-fold change, respectively) and at
48 h (73.01-, 118.88-, 4.53-, and 1.64-fold change,
respectively; Figure 4). In contrast, no expression was detected
in the other two sRNAs sernc292 and sernc361.

Discussion

S. erythraea is a gram-positive, spore-forming bacterium.
The molecular mechanisms that are altered with the traditional
mutation and screening approaches during the improvement of
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antibiotic-producing microorganisms are still poorly understood
in this bacterium, although this information is essential to the
design of rational strategies for industrial strain improvement.
Delineation of the regulatory network of secondary metabolites
could facilitate the understanding of the regulatory mechanism
of secondary metabolism, including the biosynthesis of
erythromycin. In this study, a systematic method for the
prediction and analysis of sRNAs of S. erythraea has been
reported, with the objective of providing a better understanding
of the sRNA-mediated regulatory network of secondary
metabolites.

This study utilizes in silico and deep-sequencing
technologies to predict sRNAs of S. erythraea. Through in silico
prediction methods, the RNAz software package was used to

perform a genome-wide search for sRNA and the MFE and SCI
of every transcript were evaluated. Most bacterial sRNAs are
transcribed from their own promoters, and transcription most
often terminates at a strong Rho-independent terminator. This
property was also considered for the prediction/identification of
sRNAs. On the basis of the RNAz results, in combination with
the promoter and terminator information, the nocoRNAc
package was used to filter and analyze the sRNAs predicted by
RNAz. These profiles have been applied successfully in the
model actinomycete Streptomyces coelicolor A3(2) [22]. In the
present study, we used deep-sequencing to analyze the
difference of sRNAs predicted in silico in strains S. erythraea M
and E3, which could facilitate the prediction of sRNA related to
secondary metabolism.

Figure 1.  Flowchart of the procedures for identifying sRNA genes.  
doi: 10.1371/journal.pone.0080676.g001
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Most previous studies mainly predicted and analyzed sRNAs
only in intergenic regions (IGRs) [41-43]. However, several
recent studies have demonstrated that the sRNAs partially
encoded on the non-coding strands of ORFs play an important
role in regulating metabolic pathways at the post-transcriptional
level [44,45]. Similar results were observed in this study.
Through RNAz and nocoRNAc modeling, 647 candidate
sRNAs were predicted, in which 382 (approximately 59%)
sRNAs were antisense to mRNA through base-pairing and 265
(approximately 41%) candidate sRNAs were found in intergenic
regions. In the trans-encoded antisense sRNA, 14 sRNAs
overlapped with previous study [29] of other S. erythraea
mutant (Table S2, Figure 2), but all of them were not related to
secondary metabolism.

A remarkable feature of the E3 strain is its ability to
biosynthesize secondary metabolites more efficiently than that
of strain M. This enhanced biosynthesis requires the regulation
of bacterial gene expression to adapt to environmental
fluctuations. To identify sRNAs that are directly related to

Table 2. Gene clusters for secondary metabolites
production and the number of regions predicted sRNA.

Clusters Gene number   Probeset SACE ID
Regions
predicted sRNA

Terpenes    
tpc1 (geo1) 1 3187  
tpc2 3 3721–3723  
tpc3 (geo2) 4 3976–3979 3976; 3977
hop 5 4327–4331  
tpc4 10 4645–4654  
tpc5 (geo3) 4 4906–4909  

Polyketides    
pfa 11 0018–0028  

ery 21
0712–0721, 0723–
0734

 

rpp 4 1241–1244  
pks1 6 2342–2347  
pks2 4 2628–2631  
pks3 16 2864–2879  
pke 18 4128–4145 4129-4130
pks4 6 4302–4307  
pks5 8 4471–4478  
pks6 12 4567–4578 4573
pks7 4 5306–5309  
pks8 1 5532  

Non-ribosomal
peptides

   

nrps1 7 1304–1310  
nrps2-pks 4 2618–1622  
nrps3 12 2692–2703  
nrps4 5 3013–3017  
nrps5 11 3029–3039 3032-3033; 3034
nrps6 7 3223–3229  
nrps7 18 4275–4292  
Total 202 Targeted  

doi: 10.1371/journal.pone.0080676.t002

secondary metabolism, we focused on the sRNAs that were
associated with the secondary metabolism gene clusters. From
the results of the in silico prediction and deep-sequencing
analysis, six sRNAs associated with secondary metabolism
genes were identified, of which sernc293, sernc350, sernc351,
and sernc389 were encoded on the complementary DNA
strands of annotated ORFs (cis-antisense). Antisense RNAs
are diffusible regulatory RNAs that bind to the complementary
sequences of mRNAs and regulate their biological functions at
the post-transcriptional level [46].

To validate the function of the predicted sRNAs, differences
in the expression of the six sRNAs identified in strains M and
E3 at three different time points (24, 48, and 72 h) were
analyzed using qRT-PCR. Previous studies have shown that
approximately 40% of the genes exhibited an expression profile
that strongly correlated with the time course in S. erythraea
[47]. Our experimental results show that the expression of four
antisense transcripts (sernc293, sernc350, sernc351, and
sernc389) was detected using qRT-PCR at all the three time
points in strain E3 and M, but the expression was higher in E3
than that in M.. No significant expression of sernc292 and
sernc361 was detected at these three time points in either
strain. However, we were not able to determine whether these
are false-positive predictions or whether they are or can be
expressed under different conditions.

The genomic location and synteny of sRNAs might help
elucidate the target genes and functions of these sRNAs. The
results show that sernc293, sernc350, sernc351, and sernc389
are complementary to SACE_3034, SACE_3976, SACE_3977,
and SACE_4573, respectively. The coding product of
SACE_3034 is an ABC Fe3+ transporter-binding protein.
Ferrous ions are essential micronutrients for almost all living
organisms. Iron is present in the active site of several enzymes
involved in major biological processes such as respiration,
DNA biosynthesis, tricarboxylic acid (TCA) cycle, gene
regulation, and production of metabolites. However, iron also
becomes toxic at high concentrations by reacting with
hydrogen peroxide to generate highly reactive oxygen species
(ROS). These ROS damage nucleic acids, proteins, and
cellular membranes. Mainly for this reason, many organisms
have developed strong homeostatic systems that maintain
intracellular Fe2+ concentrations [48]. Recent studies have
demonstrated that sRNAs have key roles in the bacterial
response to stress. For example, a small RNA in E. coli, RyhB,
was found to down-regulate a set of iron-storage and iron-
utilizing proteins under limited iron availability; RyhB was
negatively regulated by the ferric uptake repressor (Fur) protein
[49]. sernc293 is located at the 5’-end and around the
translation start site of SACE_3034, and it likely participates in
the regulation of iron transport by pairing with target mRNA.
The results of deep-sequencing demonstrated that the
expression of sernc293 in strain E3 was higher (approximately
six-fold) than that in strain M; similarly, qRT-PCR analysis
results demonstrated that the expression of sernc293 in strain
E3 was higher (up to 249-fold) than that in strain M, at the 72-h
time point. These data suggest that sernc293 may plays an
important role in strain E3 in the regulation of secondary
metabolism.

Prediction sRNA in Saccharopolyspora erythraea
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Figure 2.  Schematic representation of the genomic positions of sRNA genes.  Circles 1 and 2 (from the outside in), all genes
represented through reverse and forward strand, respectively; circle 3, the core (red) and noncore (blue) genome regions; circle 4,
cis-encoded antisense sRNA predicted in this study, in which, the sRNA related to secondary metabolism colored by red; circle 5,
trans-encoded antisense sRNA predicted in this work, in which, the sRNA overlapped with previous study (Marcellin et al., 2013)
colored by yellow, and the sRNA related to secondary metabolism colored by red; circle 6, gene clusters correlated with the sRNA
correlated with secondary metabolism.
doi: 10.1371/journal.pone.0080676.g002
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Figure 3.  RNA-RNA interactions of the six sRNAs and their targets.  The sRNA and its corresponding target are shown for the
following sRNA-target pairs: (A) sernc292 and SACE_7029, (B) sernc293 and SACE_3034, (C) sernc350 and SACE_3976, (D)
sernc351 and SACE_3977, (E) sernc361 and SACE_4129, and (F) sernc389 and SACE_4573. Black line indicates the local
opening energies for both molecules and the red line shows interaction energies. The best interaction site of two molecules could be
analyzed by computing the interaction energies.
doi: 10.1371/journal.pone.0080676.g003
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SACE_3976 encodes cyclic nucleotide-binding-domain
protein that usually binds to secondary messengers. Since the
discovery of cAMP in the 1950s, the role of these secondary
messengers in mediating cellular function has become a major
theme of research in biology. Sernc350 regulates SACE_3976
by base-pairing to the 5’-end and around the translational start
site. SACE_3976 encodes a catabolite activator protein (CAP)
family transcription factor that is associated with the tpc3 gene
cluster, and regulate terpene metabolites. Deep-sequencing
results shows that the expression of sernc350 in strain E3 was
higher (up to 30-fold) than that in strain M. In addition, qRT-
PCR analysis showed that high differential expression of
sernc350 was detected between strain E3 and M at all the
three time points. These data indicate that sernc350 is vital for
terpene metabolic regulation in strain E3.

SACE_3977, similar to SACE_3976, also belongs to the tpc3
cluster, although it encodes terpene synthase. In the last 5-10
years, it has become evident that terpenes are produced by
numerous bacteria, especially by soil-dwelling gram-positive
organisms such as Streptomyces spp. and other
actinomycetes. Some microbial terpenes, such as geosmin,
have been known for over 100 years [50]. Previous studies
have suggested that geosmin synthesis is directed by the tpc3
cluster [47]. Consequently, sernc350 and sernc351 may be
correlated to the regulation of geosmin synthesis.

The target of sernc389 is SACE_4573, which encodes an
IS200 transposases. IS200 transposases originally identified in
Salmonella Typhimurium LT2, are present in many bacteria
and archaea, and are distinct from other groups of
transposases [51]. Meanwhile, SACE_4573 belongs to pks6
cluster, which encodes genes for polyketide biosynthesis. In a
previous study, Peano et al. [52] analyzed the difference of S.
erythraea NRRL2338 and an erythromycin over-producing
strain (Px) at the genomic and transcriptional levels. The
results indicate the pks6 cluster was up-regulated in Px strain,
which is consistent with the results obtained in this study.
Accordingly, sernc389 may improve erythromycin biosynthesis
through its role as the metabolic regulator of polyketide
biosynthesis, but the actual mechanism is still unclear.

A previous study demonstrated that S. erythraea undergoes
a metabolic switch in its lifecycle, followed by a secondary
growth phase [29]. In the present work, S. erythraea exhibited
a distinct high differential expression of the four cis-encoded
antisense RNA at 72 h, which is probably because of the time
point behind the metabolic switch.

The principal findings of this study is that sRNAs in the
regions close to the genes related to secondary metabolism in
S. erythraea were successfully predicted and identified in this
study. Nonetheless, our understanding of the targets and
regulatory functions of sRNAs is still limited. In addition,
experimental validation of the candidate sRNAs is needed.

Figure 4.  Relative expression analysis of sRNAs by real-time RT-PCR.  The differential expression of the six sRNAs was
analyzed using qRT-PCR in strains M and E3 at 24 (blue), 48 (yellow), and 72 h (gray).
doi: 10.1371/journal.pone.0080676.g004
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Therefore, our future work will focus on revealing the regulatory
network of sRNAs in S. erythraea. We believe that a better
understanding of the sRNA-target interaction will help elucidate
the complete range of functions of sRNAs in S. erythraea,
including the mechanism(s) through which sRNAs regulate the
biosynthesis of erythromycin.

Supporting Information

Figure S1.  The MFE-based predicted secondary structures
of the six sRNAs. The MFE stem-loop secondary structure of
the six sRNAs of S. erythraea, as predicted by the Vienna
package.
(TIF)

Table S1.  Overview of cis-encoded antisense RNAs.

(XLS)

Table S2.  Overview of trans-encoded antisense RNAs. The
sRNA overlapped with previous study (Marcellin et al., 2013) to
be highlight by yellow color.
(XLS)
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