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Introduction

The massive use of drugs in medicine and of pesticides in

agricultural systems since the 1950’s have led to the selec-

tion of highly adapted resistant biotypes in natural popu-

lations of microbes and pests (Georghiou 1986; Guillemot

1999; D’Alessandro and Buttiens 2001; Hastings 2004;

Levy and Marshall 2004). The evolution of resistance is a

serious issue worldwide and several experimental studies

have been carried out on resistant microbes and pests

collected from hospitals and agricultural fields. These

studies focused principally on the physiological mecha-

nisms of resistance (Powles and Holtum 1994; McGowan

and Tenover 1997; Raymond et al. 1998; Hakenbeck

1999; Caprio 2001; Gahan et al. 2001; Hsiou et al. 2001;

Morin et al. 2003; Courcambeck et al. 2006), the genetic

determinism and mode of inheritance of resistance (Edgar

and Bibi 1997; Gould et al. 1997; Tabashnik et al. 1997,

2000; Andow and Alstad 1998; Bourguet et al. 2000, 2003;

Ferré and Van Rie 2002; Tran and Jacoby 2002; Génissel

et al. 2003; Roux et al. 2004; Chen et al. 2007) and, to a

lesser extent, the relative fitness of resistant biotypes in

the absence of drugs or pesticides (Groeters et al. 1993;

Cohan et al. 1994; Bergelson and Purrington 1996; Frost

et al. 2000; Oppert et al. 2000; Purrington 2000; Carrière

et al. 2001; Gagneux 2009; Ward et al. 2009).

In addition to carrying out these experimental studies,

the scientific community has developed theoretical

approaches for investigating the way in which evolution-

ary forces – mutation, selection, migration and drift –

govern the speed and outcome of resistance evolution.

The resulting theoretical models, assessing the relative

influence of different evolutionary forces, constitute a

useful tool for comparing the efficacy of existing man-

agement strategies and for designing new strategies

(Tabashnik 1986). We previously highlighted the structure

of the scientific community developing these theoretical

models (REX Consortium, 2007). We analysed co-author-

ship and co-citation networks on the basis of 187 articles

published from 1977 to 2006 on models of the evolution

of resistance to all major classes of pesticides and

drugs. We identified two main groups of scientists that
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Abstract

Resistance to pesticides and drugs led to the development of theoretical models

aimed at identifying the main factors of resistance evolution and predicting the

efficiency of resistance management strategies. We investigated the various ways

in which the evolution of resistance has been modelled over the last three dec-

ades, by reviewing 187 articles published on models of the evolution of resis-

tance to all major classes of pesticides and drugs. We found that (i) the

technical properties of the model were most strongly influenced by the class of

pesticide or drug and the target organism, (ii) the resistance management strat-

egies studied were quite similar for the different classes of pesticides or drugs,

except that the refuge strategy was mostly used in models of the evolution of

resistance to insecticidal proteins, (iii) economic criteria were rarely used to

evaluate the evolution of resistance and (iv) the influence of mutation, migra-

tion and drift on the speed of resistance development has been poorly investi-

gated. We propose guidelines for the future development of theoretical models

of the evolution of resistance. For instance, we stress the potential need to give

more emphasis to the three evolutionary forces migration, mutation and

genetic drift rather than simply selection.
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collaborate very little: the first group consists of ecologists

or agronomists working on pesticide resistance, whereas

the second group includes medical scientists interested in

drug resistance. The two groups publish their research in

their own journals and have their own keystone references

(REX Consortium, 2007). This structure of the scientific

community may have led to marked differences between

the two groups in terms of the modelling approaches

developed for studies of the evolution of resistance to

pesticides and drugs.

Actually, four major nonmutually exclusive hypotheses

may account for differences in the approaches developed

for modelling resistance evolution: (1) there may be a

lack of exchange between the two main groups of scien-

tists, leading to the development of different lineages of

models; (2) the organism studied may affect the biologi-

cal parameters included in the model and the manage-

ment strategies tested. For example, the availability of a

specific means of control for any particular organism

may have influenced the choice of strategies assessed with

the model, even though a much broader array of resis-

tance management strategies (including those not appli-

cable for economic, technical or ethical reasons at the

time of the study) could be investigated with theoretical

models; (3) the mathematical approach (MT) chosen by

the modeller may constrain the resistance management

strategies and the underlying evolutionary forces that can

theoretically be explored. Indeed, two major MT have

been used in the modelling of resistance evolution (Levin

2001, 2002): (i) the population genetics approach, which

considers changes in the frequencies of resistant and sus-

ceptible individuals as a function of pesticide or drug

(PD) use; (ii) the epidemiological approach, which is

related to the compartment model tradition of the math-

ematical epidemiology of parasites (Anderson and May

1991) and (4) the features of the model may have chan-

ged over time, because of the accumulation of knowledge

about the evolution of resistance and increases in com-

puter power.

In this study, we analysed a panel of 187 articles pub-

lished over the last 30 years and involving the use of a

theoretical model to study the evolution of resistance to

pesticides or drugs. We described the 187 models, by

recording the parameters describing (i) the biology of the

target organism, (ii) the technical properties of the model,

(iii) the resistance management strategies tested and (iv)

the criteria used to evaluate the evolution of resistance.

We then determined which of the four hypotheses cited

above best accounted for variations in the features of the

model. We did this by assessing the relative effects of the

scientific community structure, the class of PD, the MT

and the year of publication on the variability of the mod-

el’s features. Based on our results, we propose guidelines

for the future development of theoretical models of the

evolution of resistance.

Materials and methods

Construction of the bibliographical database

The database of models of the evolution of resistance to

the most common classes of pesticides (insecticides, fun-

gicides, herbicides, miticides and insecticidal proteins,

such as Bacillus toxins) and drugs (antibiotics, antiviral,

antimalarial and antihelmintic drugs) has been described

in a previous study (REX Consortium, 2007). We used

a three-step process to select relevant articles. We first

searched for articles in three bibliographical databases

(CABs 1973–2006, Current Contents 1998–2006 and

Medline 1950–2006) with a formula containing the

words model* and resistan* (REX Consortium, 2007).

This first step identified 1894 articles. The summary

and keywords of each article were then carefully and

independently read by two of us, to select articles deal-

ing with a mathematical model or a computer simula-

tion of the evolution of resistance over time in response

to selective pressure exerted by a pesticide or a drug.

This second step identified 266 articles. In the third

step, the seven authors of this study, all familiar with

the field of resistance evolution, carefully read each of

these 266 articles. Each author was given a randomly

chosen set of 14 articles to be read by all the readers,

plus a randomly chosen set of 36 articles to be read by

that author alone. A reading grid of 34 questions was

filled in for each of the 187 articles finally considered

relevant for modelling the evolution of resistance to

pesticides or drugs.

Individual reader error rate

We evaluated the individual error rate by using the set of

14 articles read by the seven authors of the present study.

Only six of these 14 articles were considered relevant by

all of us. These six articles were used to assess the

agreement (congruence rate) between the answers to the

questions on the reading grid given by the seven readers.

For each question, the congruence rate was calculated as

the proportion of the six relevant articles for which all

the readers provided the same answer. This estimate of

the congruence rate was then used to calculate the

individual error rate, defined as the probability of a

reader giving an ‘incorrect’ answer to the question.

Assuming that the individual error rate P is identical for

all readers, the congruence rate is c = P7 + (1 ) P)7,

where P7 is the probability of all seven readers giving the

incorrect answer and (1 ) P)7 is the probability of all the

readers giving the correct answer.
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Characterization of the models

Thirty one of the 34 questions of the reading grid were

specifically used to characterize the range of diversity of

model features, from the genetic features of resistance to

the socio-economic criteria used to assess the efficiency of

resistance management strategies. Each of the 187 models

was characterized for these 31 parameters (further referred

to as ‘model parameters’ and described in Table 1), which

can be classified as follows: (i) parameters describing the

biology of the target organism and the genetics of resis-

tance, (ii) parameters describing the technical properties

of the models, (iii) parameters describing the manage-

ment strategies for delaying or preventing the evolution of

resistance studied and (iv) the output parameters used to

assess the evolution of resistance. All model parameters

had two levels (‘taken into account’ or ‘not taken into

account’; ‘yes’ or ‘no’). We ordered them according to

Table 1. The 31 model parameters used to describe the 187 articles.

Category Name Description

Biological

parameter

Diploidy Concerns diploid organisms in which heterozygotes are identified or can be identified; excludes

haploid models or models for which genetics is not trivial

Quantitative resistance Concerns cases in which resistance is a continuous trait (with a polygenic inheritance). Excludes

situations where there is a single or a few resistance phenotypes

Distance of migration Distance of migration of the target individuals

Mutation rate Mutation rate of S fi R and/or of S fi R

Resistance dominance Rate of resistance dominance, i.e. difference in survival of resistant homozygotes and

heterozygotes after treatment

Initial resistance Initial presence of resistant individuals

Resistance cost Fitness penalty linked to the resistance trait

Migration Migration or transmission rate of the target organism. A parameter specifically corresponding

to the proportion of target organisms moving from one spatial unit to another (migration)

or from one host to another (transmission)

Cross-resistance Cross-resistance between molecules

Recombination Recombination between loci

Modelling

parameter

Model specificity Specificity of the model, applied to one (or a few) species or diseases

Simulation Numerical simulation: the state of the system at time t or at equilibrium is obtained by

successive iterations

Stochasticity Stochastic model (if the simulation is run at another time, the result is different)

Resource dynamics Resource dynamics over time: the model has parameters that are not linked to the target

organism and that describe changes in the size or density of the resource over time

Population dynamics Population dynamics of the target organisms: models integrate equation parameters that take

into account size or density variation of the target organism)

Discrete time Model in discrete time: time is divided into distinct units, often calculated as years or

generations; equations give the state of the system at time t + 1, as a function of the state

at time t

Strategies No. of molecules One or more than one active molecules

Refuge Spatial distribution of xenobiotics (refuge, reservoir): the model includes a spatial area in

which the target is not treated

Temporal distribution Temporal distribution of xenobiotics: the model includes cases in which treatment is not

continuously applied over time

Mixture Mixture of molecules, including associations, combinations, pyramiding, gene-stacking

Rotation Temporal distribution of treatments, including cycling, alternation, rotation

Mosaic Spatial distribution of treatments, including mosaic

Alternative methods Alternative methods of control, not using the xenobiotics, but having a direct or indirect impact

on resistance

Output No. of pests Quantifies the size of the target organism population

Resource Quantity and quality of healthy resource (yields, patients…)

Frequency of resistance Frequency of resistant target organisms

Economics Economic gain. Follows an economic criterion

Graph A graph shows changes in resistance over time

Finite time Threshold is based upon a finite delay

Frequency threshold Threshold is based upon frequency

Equilibrium Comparison is based upon the situation at equilibrium (either analytical situation or stabilization

of the resistance allele)
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whether they were frequently (more than 80%) or rarely

(lower than 20%) considered in the 187 models.

Characterization of the explanatory factors

We hypothesized that differences between the features of

the models described in the 187 different articles could be

accounted for by four factors (Table 2). The three

remaining questions on the reading grid made it possible

to define three of these factors: the class of PD studied,

the year of publication and the MT used (population

genetics model or epidemiological model). The last factor

corresponds to the citation group (CG) to which the

articles belonged. These CG were defined from the co-

citation analysis performed in our previous study

(REX Consortium, 2007).

We investigated whether these explanatory factors

accounted for variations among the 187 models based on

(i) the total number of model parameters taken into

account, (ii) the nature of each model parameter taken

into account and (iii) the combination of model parame-

ters taken into account.

Identification of the factors accounting for the total

number of model parameters

The total number of model parameters taken into

account was counted for each model. Kruskal–Wallis rank

sum tests were carried out with the kruskal.test function

of r (R_Development_Core_Team 2006), to assess the

effects of the various explanatory factors on the total

number of model parameters.

Identification of the factors best accounting for the use

of each model parameter

Then we performed a set of statistical analyses to identify

the factor best accounting for the use of each model param-

eter. We first tested the null hypothesis of independence

between the various explanatory factors and each of the

model parameters, using Fisher’s pseudo-exact tests on

contingency tables (with 10 000 permutations of the

chisq.test function of r). False discovery rate correction was

used to correct for multiple testing (Benjamini and Hoch-

berg 1995). We then fitted generalized linear models to

each model parameter, using binomial error and logit link

(Venables and Ripley 2002). For each model parameter, we

calculated the Akaike Information Criterion (AIC) of both

the full model (model parameter = CG + PD + MT + year

of publication) and each of the four linear models

including only three of the four explanatory factors. We

calculated the difference in AIC (DAIC) between the full

model and each of the four linear models containing three

factors each. A positive DAIC indicates that the three-factor

model gives a worse fit (in terms of deviance explained and

number of parameters used) than the full model. The

three-factor model with the largest positive DAIC

was selected and the factor excluded from this model was

Table 2. Distribution of the four explanatory factors among the 187 models analysed.

Factors of article

classification Classes n (%)

Mean no. of parameters

per model (SD)

Kruskal–Wallis

rank sum test

Year of publication 1976–1985 10 (5.3) 12.4 (2.4) v2 = 1.257

d.f. = 4

P = 0.869

1986–1990 29 (15.5) 13.3 (2.8)

1991–1995 27 (14.4) 13.5 (3.0)

1996–2000 51 (27.3) 13.4 (3.2)

2000–2006 70 (37.4) 13.1 (3.1)

Citation group Ecologists and

agronomists

44 (23.5) 13.7 (3.0) v2 = 17.588

d.f. = 2

P < 0.001Medical scientists 138 (73.8) 11.9 (2.3)

Isolated 5 (2.7) 10.4 (3.8)

Pesticide or drug Insecticidal protein 39 (20.9) 14.8 (3.0) v2 = 33.138

d.f. = 7

P < 0.001

Insecticide 30 (16) 14.4 (2.4)

Antibiotic drug 29 (15.5) 11.5 (2.8)

Others 25 (13.3) 13.7 (2.4)

Herbicide 18 (9.6) 13.6 (3.2)

Unspecific pesticide 17 (9.1) 11.4 (3.5)

Fungicide 15 (8) 12.0 (2.9)

Antiviral drug 14 (7.5) 12.4 (1.6)

Mathematical approach Population genetics 110 (58.8) 14.2 (2.9) v2 = 35.536

d.f. = 2

P < 0.001

Epidemiology 41 (21.9) 12.9 (2.5)

Other 36 (19.3) 10.8 (2.5)
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considered to be the most explanatory according to the

AIC. The best explanatory factor was the most explanatory

according to the AIC if it was also significant according to

Fisher’s exact test. Finally, we determined the proportion of

the total deviance accounted for by each of the four models

including only one of the explanatory factors.

Identification of the factors accounting for the combina-

tion of model parameters

We assessed the effects of the various explanatory factors

on the combination of model parameters, by hierarchical

clustering of the 187 articles on the basis of pairwise

‘Manhattan’ distance (i.e. the sum of the differences for

each of the model parameters) under the ‘complete’

clustering option of the hclust function of r. Bootstrap

values were estimated for the nodes of the tree, with the

pvclust function available in the pvclust library of r. The

correspondence between this clustering and the classifica-

tion of articles as a function of the four factors consid-

ered was assessed by reporting these factors on the leaves

of the tree.

Results

Individual error rates for parameter assignment

Individual error rates were <2.6% for each of the three

explanatory factors: PD, MT and Year of publication.

They were also low for most model parameters. Mean

error rates were 2.5%, 3.2%, 3.7% and 6.5% for the bio-

logical parameters, the modelling parameters, strategies

and outputs respectively. Error rates exceeded 5% for

seven model parameters (Resource dynamics, Discrete

time, Resistance cost, Migration, Temporal distribution,

Number of pests and Resource). Some of these reading

errors could be as a result of the lack of clarity with

which some models were described. These errors may

have decreased the statistical power of some of our analy-

ses, but they probably had too weak an effect to change

our conclusions significantly.

Frequently considered versus poorly investigated model

parameters

Out of the thirty-one model parameters (Table 1), four

were frequently taken into account whereas six parameters

were poorly investigated (Fig. 1). Of the 11 model param-

eters describing the biology of the organism and the genet-

ics of the resistance, Initial resistance was frequently

considered (88%). Conversely, Cross-resistance, Quantita-

tive resistance, Recombination and Distance of migration

were seldom considered (5%, 7%, 9% and 11% respec-

tively). All the parameters describing the technical proper-

ties of the models were used in more than 20% of models.

The most frequently used parameters were Simulation

(89%) and Stochasticity (80%). None of the strategies for

delaying or preventing the evolution of resistance was

investigated in more than 80% of the models. The man-

agement strategy was not specified in 15% of the models

and the Mosaic strategy was studied in only 13 articles

(7%). Last, among the eight parameters describing the

output criteria used to assess the evolution of resistance,

the final Frequency of resistance was considered in 80% of

the articles, whereas the Economic criterion was rarely

Figure 1 Frequency of the 31 model parameters of the reading grid in the articles. Light grey: biological parameters; black: modelling

parameters; white: modelling strategies; dark grey: model output. The dotted lines indicate frequencies of 20% and 80%.
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used (6%). These findings, especially the identification of

poorly investigated parameters, are useful for deriving

guidelines for future modelling efforts (see Discussion).

Factors accounting for the total number of model

parameters

The number of model parameters taken into account ran-

ged from 7 to 20 in the 187 articles. Among the four

explanatory factors, three had a significant effect on the

total number of parameters per model: CG, PD and the

MT (Table 2). It is noteworthy that the number of model

parameters was similar (13.2 ± 3.0) in all publication

years. Hence, the complexity of the models did not

increase over time through the addition of model param-

eters.

Factors best accounting for the use of each model

parameter

The nature of the model parameters taken into account

did not change over time, since Year of publication was

never found to be the best explanatory factor for the use

of each of the 31 model parameters. According to both

Fisher’s exact tests and the AIC, the factors PD, MT and

CG were the best explanatory factors for ten, five and one

model parameters respectively (Table 3; Fig. 2). These 16

parameters included five biological parameters, three

parameters describing the technical properties of models,

three parameters describing the resistance management

strategies and five parameters related to the output of the

models. They are presented in detail below.

Five of the 11 factors describing the biology of the tar-

get organism and the genetics of resistance were signifi-

cantly influenced by at least one of the four explanatory

factors, according to both Fisher’s exact tests and AIC.

The PD factor best accounted for Diploidy (65% of the

total deviance), Resistance dominance (58%), Initial resis-

tance (18%) and Mutation rate (10%). Initial resistance

was included in almost all the models, but to a lesser

extent in those dealing with resistance to fungicides, anti-

biotics and antiviral drugs. About 50% of the models

dealing with resistance to herbicides, antibiotics and

antiviral drugs included Mutation rate, whereas this

parameter was rarely considered in models dealing with

fungicide resistance. The MT factor best accounted for

Migration (19%) and Distance of migration (18%).

Migration was more often taken into account in epidemi-

ological (ca. 90%) than in population genetics (60%)

models. The Distance of migration was considered in only

20% of population genetics models dealing with resis-

tance to insecticides (including insecticidal proteins) and

herbicides.

Half of the parameters describing the technical prop-

erties of the models were significantly influenced by at

least one of the four explanatory factors, according to

both Fisher’s exact tests and AIC. The PD factor best

accounted for Discrete time (31% of the total deviance)

and Model specificity (18%). Discrete time was mostly

used for modelling resistance of countable organisms,

such as weeds or insects (90% of the corresponding

articles). Conversely, this parameter was considered by

<50% of the articles modelling resistance to fungicides

or to antibiotics and antiviral drugs. As expected,

general models of resistance to pesticides almost never

specified a target organism, whereas most models of

the evolution of resistance to antiviral drugs were spe-

cific (85% of the articles). The Resource dynamics

parameter was best accounted for by the MT factor

(13%).

Only three of the seven parameters describing the

resistance management strategies were significantly influ-

enced by at least one of the four explanatory factors,

according to both Fisher’s exact tests and AIC. Refuge,

Rotation and Alternative methods were all largely

accounted for by the PD factor (29%, 11% and 10% of

the total deviance respectively). The Temporal distribu-

tion of a given molecule, and the Mixture and Mosaic

strategies were not structured according to any of the

four explanatory factors. The Refuge strategy was typi-

cally considered when modelling resistance to insecticidal

proteins (>95% of the articles) or to insecticides (45%).

The Rotation strategy was never considered in models

dealing with the evolution of antiviral drug resistance.

This strategy was also ignored in most models of the

evolution of resistance to insecticidal proteins. Con-

versely, Rotation was frequently taken into account in

models dealing with resistance to fungicides (60% of the

articles dealing with fungicide treatments). Finally, more

than half of the articles modelling the evolution of her-

bicide resistance considered strategies based on Alterna-

tive methods, such as crop rotation or the mechanical

control of weeds.

Finally, five of the eight parameters related to the out-

put of the models were significantly influenced by at least

one of the four explanatory factors according to both

Fisher’s exact tests and AIC. The Resource and Frequency

of resistance parameters were best accounted for by the

MT factor (37% and 11% of the total deviance respec-

tively). The proportion of articles including a Frequency

of resistance parameter was slightly higher for population

genetics (90%) than for epidemiological (72%) models.

The Frequency threshold and Finite time parameters were

best accounted for by the Pesticides or drug used (16%

and 10% of the total deviance respectively). None of the

articles used these two output criteria simultaneously to
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evaluate the evolution of resistance. More than 50% of

the articles dealing with insecticide resistance (sensu lato)

used the Frequency threshold criterion, while articles

dealing with resistance to fungicides and herbicides were

more likely to use the Finite time to reach a threshold

criterion. Most articles modelling the evolution of drug

resistance considered none of these criteria, focusing

instead on the Equilibrium output criterion. This model

parameter was best accounted for by the CG factor (9%

of the total deviance).

Factors best accounting for the combination of model

parameters

Finally, our analyses reveal that all 187 articles used

different combinations of model parameters. Globally, the

Table 3. Effect of the four explanatory factors on the variation in the use of the 31 model parameters.

Model parameters Citation group

Explanatory factors

Year of

publication Largest DAIC

Pesticide

or drug

Mathematical

approach

Biological

Diploidy 0.00* (0.41) 0.00* (0.65) 0.00* (0.53) 0.01 (0.03) Pesticide or drug

Mutation rate 0.01* (0.05) 0.00* (0.10) 0.08 (0.02) 0.43 (0.00) Mathematical approach

Distance of migration 0.03 (0.09) 0.00* (0.23) 0.00* (0.18) 0.44 (0.00) Mathematical approach

Resistance cost 0.07 (0.02) 0.36 (0.03) 0.24 (0.01) 0.04 (0.00) Citation group

Resistance dominance 0.00* (0.30) 0.00* (0.58) 0.00* (0.51) 0.00 (0.03) Pesticide or drug

Initial resistance 0.00* (0.10) 0.00* (0.18) 0.00* (0.09) 0.18 (0.04) Pesticide or drug

Migration 0.00* (0.06) 0.00* (0.12) 0.00* (0.19) 0.01 (0.02) Mathematical approach

Cross-resistance 0.37 (0.03) 0.08 (0.16) 0.60 (0.02) 0.42 (0.00) Pesticide or drug

Recombination 0.29 (0.02) 0.05 (0.12) 0.94 (0.00) 0.29 (0.01) Pesticide or drug

Quantitative resistance 0.25 (0.04) 0.07 (0.13) 0.03 (0.06) 0.44 (0.01) Mathematical approach

Modelling

Model specificity 0.30 (0.01) 0.00* (0.18) 0.01* (0.03) 0.29 (0.01) Pesticide or drug

Population dynamics 0.02* (0.03) 0.30 (0.05) 0.14 (0.02) 0.92 (0.00) Mathematical approach

Resource dynamics 0.00* (0.06) 0.00* (0.09) 0.00* (0.13) 0.01 (0.06) Mathematical approach

Discrete time 0.00* (0.10) 0.00* (0.31) 0.00* (0.27) 0.46 (0.01) Pesticide or drug

Stochasticity 0.38 (0.02) 0.46 (0.03) 0.76 (0.00) 0.23 (0.03) Year

Simulation 0.85 (0.01) 0.01* (0.14) 0.01* (0.06) 0.23 (0.03) Year

Strategies

No. of molecules 0.82 (0.00) 0.09 (0.05) 0.21 (0.01) 0.29 (0.00) Year

Refuge 0.00* (0.04) 0.00* (0.29) 0.00* (0.09) 0.56 (0.00) Pesticide or drug

Temporal distribution 1.00 (0.00) 0.30 (0.04) 0.25 (0.01) 0.36 (0.01) Mathematical approach

Mixture 0.11 (0.03) 0.00* (0.10) 0.21 (0.02) 0.11 (0.02) Citation group

Rotation 0.21 (0.02) 0.00* (0.11) 0.08 (0.02) 0.11 (0.01) Pesticide or drug

Mosaic 0.52 (0.01) 0.44 (0.10) 0.19 (0.06) 0.76 (0.00) Mathematical approach

Alternative methods 0.04 (0.04) 0.00* (0.10) 0.63 (0.01) 0.47 (0.00) Pesticide or drug

Output

No. of pests 0.23 (0.02) 0.43 (0.03) 0.90 (0.00) 0.97 (0.00) Citation group

Resource 0.00* (0.14) 0.00* (0.22) 0.00* (0.37) 0.47 (0.00) Mathematical approach

Frequency of resistance 0.74 (0.00) 0.01* (0.11) 0.00* (0.11) 0.41 (0.00) Mathematical approach

Economics 0.10 (0.09) 0.06 (0.16) 0.10 (0.05) 0.03 (0.02) Mathematical approach

Graph 0.12 (0.02) 0.28 (0.03) 0.04 (0.03) 0.83 (0.00) Mathematical approach

Finite time 0.15 (0.02) 0.00* (0.10) 0.53 (0.01) 0.44 (0.00) Pesticide or drug

Frequency threshold 0.00* (0.08) 0.00* (0.16) 0.00* (0.06) 0.84 (0.00) Pesticide or drug

Equilibrium 0.00* (0.09) 0.00* (0.09) 0.00* (0.05) 0.15 (0.01) Citation group

No. of max. dev. 0 28 3 0

No. of best DAIC 4 12 12 3

No. of significant tests 12 19 14 0

P-values for Fisher’s exact tests of the effect of the four explanatory factors on the variation in the use of the 31 model parameters, deviance (%)

accounted for by the factor (in brackets), and factor best accounting for article classification according to the Akaike Information Criterion (AIC).

The asterisks indicate significant Fisher’s exact tests on contingency tables after false discovery rate correction (calculated on the basis of 31 tests

and at the 5% level). Characters in bold typeface indicate that the best explanatory factor according to the AIC was significant in Fisher’s exact

test.
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Figure 2 Frequencies of articles considered positive for the various model parameters. Data are presented as a function of the explanatory factor

giving the best D Akaike Information Criterion (light grey: Pesticide and drug; medium grey: Mathematical approach; dark grey: Citation group).

Details of the model parameters are presented in Table 1 and the per cent in brackets are the proportion of the deviance accounted for by the

most explanatory factor (Table 3).
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hierarchical clustering tree did not reveal any clear struc-

turing of the articles based on the combinations of model

parameters they used (Fig. 3). The deep nodes of the tree

were supported by very low bootstrap values, suggesting

that the information supplied by the 31 model parameters

was highly heterogeneous. However, many intermediate

and superficial nodes were supported by bootstrap values

above 50%. The correspondence of this clustering as a

function of the four explanatory factors was also assessed.

Our findings suggest that the factors CG, MT and PD were

not randomly distributed among the leaves of the tree,

indicating that these factors account for the clustering.

Discussion

In this study, we describe the state-of-the-art for model-

ling of the evolution of resistance to pesticides and drugs,

based on a bibliographical analysis of 187 models. In this

discussion, we will begin with identifying and discussing

the model parameters which were either rarely or fre-

quently taken into account in the 187 models considered.

We will then present and discuss the parameters for

which none of the four factors potentially accounting for

variability in the features of the models (scientific com-

munity structure, class of PD, MT and year of publica-

tion) actually accounted for the observed heterogeneity.

Finally, we will discuss the extent to which each factor

accounted for the use of the remaining model parameters.

Based on our results, we propose in conclusion guidelines

for the future development of theoretical models of the

evolution of pesticide resistance.

Poorly investigated model parameters

A small number of models simulated quantitative resis-

tance, recombination and cross-resistance between mole-

cules. When more than one molecule was considered (35%

of the models), the resistance mechanisms considered

tended to be monogenic, independent and nonepistatic.

This may be a reasonable assumption, because there is

considerable evidence to suggest that resistance to

pesticides and drugs mostly evolves through the selection

of alleles with a major effect, and this view is supported by

theoretical models (Roush and McKenzie 1987; Neve

2007). However, in some cases, resistance is clearly because

of genes located on several chromosomes (Denholm and

Rowland 1992) or has emerged from the addition of

several mechanisms of small effect such as limited detoxifi-

cation, sequestration and/or translocation (Park and

Brown 2002), thus evolving as a quantitative genetic trait.

The assumption that resistance is monogenic may thus

reflect a reluctance to increase model complexity.

Whatever the reason, quantitative multiple gene resistance

has not been the subject of any modelling approach by the

187 articles selected. Furthermore, although multi-drug

resistance is frequent and despite the fact that many

pesticide programs use a combination of nonindependent

chemicals, cross-resistance is seldom considered into the

models.

The distance of migration has also been largely ignored

in models. In epidemiological models, microbes or viruses

are considered to be transmitted from host to host. In

these models, the distance over which the microbes are

able to disperse depends on the hosts’ movements and is

therefore not a relevant parameter. The very small num-

ber of spatially explicit models is more surprising for

population genetics models. Indeed, the distance of

migration of pests is a key parameter determining the

speed with which resistance spreads. It is a key factor in

the management of Bt crops as part of an High-Dose-

Refuge strategy (Peck et al. 1999; Caprio 2001; Ives and

Andow 2002; Vacher et al. 2003; Cerda and Wright 2004;

Sisterson et al. 2005; Tyutyunov et al. 2008).

The least studied of the basic strategies commonly used

to delay the evolution of resistance was the mosaic strat-

egy. Conversely, rotation was considered in about 25% of

the models. Thus, when two molecules were considered,

their distribution was more often considered over time,

with nonoverlapping treatments, than over space,

although these two dimensions could be symmetrically

and even simultaneously explored. One reason for this

lack of consideration of the mosaic strategy may be the

greater complexity the introduction of this parameter

would induce as such models are spatially explicit. More-

over, the mosaic strategy does not necessarily reflect cur-

rent practices in agronomy or human health. Indeed, this

strategy requires spatial management extending beyond

the level of a single producer or a single hospital. Further-

more, as molecules often differ in efficacy, it is ethically

unthinkable to adopt a strategy in which a proportion of

human patients are not given the most effective cure.

However, it would be possible and pertinent to evaluate

the effect or consequences that an unequal access to

medical care has on the evolution of resistance in human

parasite.

The last model parameter poorly considered to date is

the economic criterion for the comparison of efficiency

between strategies. This absence is puzzling, because eco-

nomics is one of the most important criteria, particularly

in agronomy. One potential explanation for this is the

selection of articles from life sciences databases, without

considering articles referenced only in social sciences data-

bases. It is also difficult to estimate both yield losses from

pest densities (but see Ojiambo et al. 2002) and indirect

economic costs, such as medical care, and their variability

over a long-time period (Fleßa and Marschall 2009).

REX Consortium Modelling resistance evolution

ª 2010 Blackwell Publishing Ltd 3 (2010) 375–390 383



Figure 3 Tree of the 187 articles, showing their similarities based on the grid parameter values and their classification according to the four fac-

tors used for article classification. ‘CG’ is the citation group (the ‘ecologists and agronomists’ group in white, the ‘medical scientists’ group in red,

and ‘isolated’ in green), ‘MT’ is the mathematical approach (population genetics in white, epidemiology in red and other in green), ‘PD’ is pesti-

cide or drug (antiviral drugs in orange, antibiotics in pink, unspecified pesticides or drugs in green, fungicides in black, insecticides in grey, Bt toxin

in red, herbicides in blue, others in yellow) and ‘PY’ is the publication year class (from light to dark blue, before 1986, 1986–1990, 1991–1995,

1995–2000 and 2001–2006). Red dots on the nodes indicate bootstrap values above 50%.
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The use of an economic criterion for the management of

drug resistance is also clearly limited by ethical consider-

ations. Conversely, the introduction of economic criteria

into models focusing on the development of pesticide resis-

tance would favour the emergence of more sophisticated

strategies. For example, the definition of an economic

threshold below which the cost of treatment exceeds direct

yield losses and other indirect side effects could prohibit

treatment. The use of conditional treatments based on

economic criteria each year could affect the dynamics

of resistance evolution and might lead to the selection of

different best strategies. Finally, we believe that the lack of

reference to economic criteria highlights the contradiction

between short-term return and long-term benefit. Calcula-

tions of the economic loss associated with the evolution of

resistance would provide a clearer long-term view.

Frequently considered model parameters

Almost all the models used simulations. We expected the

proportion of simulations to increase over time with

increases in both the complexity of the models and the

power of computers. However, the number of biological

parameters included in models did not increase over

time. Instead, the proportion of specific models – models

using a large number of parameters to fit an existing situ-

ation – remained constant at about 50%.

The models clearly identified selection as the most

important of the four key processes involved in the build

up of resistance as an adaptive trait. This would appear

to be logical, as pesticides exert a very strong selection

pressure, decreasing the impact of migration, mutations

and genetic drift on the evolution of resistance. Moreover,

the poor accounting for genetic drift (and more generally

stochasticity) had at least one consequence: the models

did not consider situations in which elimination of the

pest was a potential strategy for pest populations of lim-

ited size or in restricted areas (but see Boni et al.

2008a,b). Furthermore, the genetic drift may have impor-

tant impact on the evolution of resistant phenotypes in

the absence of drug selection (Levin et al. 2000).

Most models considered resistance alleles to segregate

in populations before the introduction of selection pres-

sure. This assumption may be correct (Génissel et al.

2003; Wenes et al. 2006), but probably not in all cases.

For instance, the absence of glyphosate resistance in weed

populations treated over a period of 25 years suggests a

lack of pre-existing resistance alleles for this molecule in

these populations (Dyer 1994; Bradshaw et al. 1997).

Most models defined not only an initial frequency of the

resistance allele but also set this frequency to a value sev-

eral orders of magnitude above the frequency predicted

under the hypothesis of mutation–selection balance.

Initial frequency of resistance alleles is generally not mea-

sured in natura. Moreover, the paucity of the measure-

ment of their cost in the literature may prevent the

computation of this frequency at mutation–selection bal-

ance. Therefore, this approach may be seen as conserva-

tive, as resistance is predicted to appear more rapidly

than it would in natural situations, but it may also pre-

clude the exploration of strategies in which resistance

alleles may be lost by genetic drift.

Almost all models calculated changes in the frequency

of the resistance allele over time. However, 10% of the

models surprisingly ignored this output parameter. In

40% of the articles, the frequency of resistance was the

only criterion used to compare strategies in terms of effi-

cacy. As highlighted above, demography, yield loss or

patient recovery and economic criteria are equally impor-

tant alternative outputs for facilitating stakeholders to

choose the best strategies for efficient chemical control.

Model parameters independent of the explanatory factors

Although taken into account heterogeneously in the mod-

els considered, several model parameters were found to

be independent of the four explanatory factors. For

instance, the cost of resistance was included in most

models, regardless of the year of publication, scientific

community, MT or class of PD. This finding is consistent

with the early identification of the fitness cost of resis-

tance being a key feature in the evolution of resistance to

many pesticides and drugs. Fitness cost is not only the

most directly obvious selective force counteracting the

selection pressure exerted by pesticide treatments, but also

underlies some of the possible control strategies, such as

the stable zone strategy (Lenormand et al. 1998).

Similarly, it is fairly obvious why the maximal number

of active molecules and the temporal distribution of these

molecules were not linked to any of the four explanatory

factors. For all the classes of PD, different molecules can

be combined. Conversely, there is no obvious reason why

the inclusion of strategies should differ as a function of

the type of modelling or for different scientific communi-

ties investigating these opportunities in very different

manners.

Effect of explanatory factors on model parameters

Year of publication had no impact on the use of each

of the 31 model parameters. This suggests that new

models were rarely developed through more detailed

analysis of previous models and that most of the param-

eters, including those referring to space processes, had

been considered from the earliest efforts to develop such

models.
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We expected scientific community to be a key factor

accounting for variability between models. We had previ-

ously shown that the two major modelling communities

(‘ecologists and agronomists’ and ‘medical scientists’)

were isolated from one another (REX Consortium, 2007).

This lack of exchange between groups could result in

strong differences in the model parameters considered by

each community. Twelve parameters were indeed consid-

ered differently by the two modelling communities,

including, in particular, the ploidy of the target organisms

and the dominance of the resistance alleles. This is consis-

tent with the notion that the first community includes

ecologists or agronomists preferentially working on dip-

loid pests, whereas the second includes medical scientists

focusing mostly on haploid microorganisms (bacteria and

viruses). The difference in the modelling approaches

developed by the modelling communities is therefore

more likely to reflect differences between the organisms

studied rather than differences in school of thought.

Population genetics and epidemiological models

differed greatly in the ways in which they considered host

‘quality’. Physicians and veterinary surgeons readily dis-

tinguish three classes of patients: healthy, infected and

immune. Conversely, the quality of the resources in pop-

ulation genetics models (essentially the host plant for

insects and fungi) is considered to be constant over time.

This assumption is not always true. The physiological

defences of attacked plants have both direct and indirect

effects on pest dynamics, because of secondary secretions

that are either directly toxic, limiting further attacks, or

attract natural enemies of the pests, increasing the rates

of parasitism and predation of the phytophagous pests

(Despres et al. 2007). Similarly, large-scale germination of

an uncontrolled weed may reduce or delay the develop-

ment of new cohorts (Marushia and Holt 2008). Finally,

pest damage may also promote the arrival of other pests

(Landolt et al. 2000). A rapid review of papers published

after the building of our database shows that alternative

MT for modelling the evolution of resistance can now

alleviate some of the limits described in this paper (Boni

et al. 2006, 2008a,b; Day and Gandon 2007; Debarre et al.

2009). For instance, Boni et al. (2008b) presented a SIR

(for susceptible, infectious, and recovered compartments)

model of malaria drug resistance taking into account all

the parameters classically used in population genetics

models (mutation, fitness and allele frequencies). Simi-

larly, a recent study by Debarre et al. (2009) not only

mixes epidemiology and population genetic concepts but

also incorporates distance of migration in their model.

Furthermore, the output of the models mirrored the

differences between MT. Epidemiological models tended

to focus strongly on the quantity and quality of healthy

resources, whereas population genetics models often

focused exclusively on changes in resistance allele fre-

quencies. Indeed, population genetics models generally

ignored the impact of pesticide treatments on pests and

yields. At best, they modelled the population dynamics of

the target pests while ignoring its effect on the resource

on which the pests were living. This is clearly a pitfall,

because the link between population density and damage

is often not linear (Mitchell et al. 2004). We also know

that pests not only reduce yields, but may also reduce the

yield quality. For instance, maize may be contaminated

by mycotoxins from fungi, the development of which is

favoured by the damage caused by European corn borer

larvae (Papst et al. 2005). Thus, population geneticists

rarely include in their models the possible avoidance of

treatment as a reasonable strategy.

Class of pesticide or drug as the best explanatory factor

Model classification on the basis of clustering analysis

(based on the 31 questions of the grid) was clearly linked

to factors such as the MT used and the scientific commu-

nity. However, the PD factor was found to account for

the largest proportion of the deviance explained, and was

also considered the most explanatory on the basis of AIC

and the number of significant Fisher’s tests for the 31

model parameters considered.

Fungicides and antibiotics were the two classes of PD

most frequently included in general models, for which the

problem of resistance management is considered before

specific cases arise. By contrast, drug resistances in popu-

lations of viruses, such as human immunodeficiency

virus, were mostly explored on a case-by-case basis.

The models developed for herbicides, antibiotics and

antiviral drugs frequently included mutation rate, whereas

models developed for fungicides, insecticidal proteins and

insecticides seldom introduced this parameter. The under-

lying rationale is probably that short-lived organisms have

large effective population sizes and experience several gen-

erations under selection pressure, so mutations can

indeed appear during the selection process.

The use of refuges – areas free of treatment – was con-

sidered in 94% and about 50% of the models developed

for Bt resistance and insecticide resistance, respectively,

but only in about 20% of the models of resistance to

fungicides and antibiotics. As pointed out above, ethical

reasons may preclude some strategies. The absence of ref-

uges in models exploring antibiotic resistance illustrates

this point: one can hardly imagine risking the patient’s

life by establishing ‘untreated refuges’ to delay the evolu-

tion of resistance. However, it should be stressed that the

use of models can overcome this problem, making it

possible to analyse potential scenarios without conse-

quences. We must also keep in mind that untreated
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populations – e.g. populations that are excluded, notably

for economical reasons, from medical cares – actually

constitutes involuntary refuges for bacteria and viruses.

Hopefully, the increase of medical care would decrease

the number of untreated people. This would in turn

decrease the per cent of refuges for susceptible bacterial

strains and therefore reinforce the selection for resistance.

The rotation strategy was completely ignored in models

investigating resistance to antiviral drugs. This is probably

because viruses reproduce rapidly, over time scales much

shorter than the duration of treatment. Rotation would

therefore mimic a mixture strategy in practice. Rotation of

molecules was also poorly investigated in models of the

evolution of Bt resistance. This is unfortunate, because

several Bt toxins with different target sites are often active

against the targeted pests. This lack of consideration of

this strategy may be related to practical problems. For Bt

crops, rotation would require a general agreement at

regional scale, potentially requiring federal legislation

(Bourguet et al. 2005; Vacher et al. 2006). The addition of

rules on the types of Bt crops farmers must grow, in addi-

tion to mandatory refuges, would be a challenging politi-

cal issue. Finally, the high level of consideration of

rotation in models of the evolution of fungicide resistance

(60%) may be accounted for by the number of treatments

per year. Indeed, the need for successive treatments during

the season makes it possible for the owner of the field to

adopt a rotation strategy unilaterally, without the need for

concerted deployment at the regional scale. This under-

lines that the rotation strategy can finally correspond in

practice to rotation of the mosaic strategy. Increasing the

heterogeneity of the selection using several molecules

independently can also be an effective strategy delaying

the emergence of resistances (e.g. Boni et al. 2008a,b).

Table 4. Guidelines for further modelling the evolution of resistance.

Class of

parameters Observations and recommendations

Pesticides or drugs

concerned

Biological

parameters

Like models dealing with resistance to herbicides, antibiotics and antiviral drugs, models

exploring the evolution of fungicide resistance could include mutation rate allowing

resistance alleles to appear by mutation from susceptible alleles during the

selection process

Fungicides

The influence of pest migration on the evolution of resistance could be further explored by

developing spatially explicit population genetics models

All pesticides

expect fungicides

While resistance sometimes involves several genes (such as detoxification), models

considered almost exclusively monogenic resistance. Models could therefore consider

cases of quantitative multiple genes resistance

All pesticides and

drugs

Among the evolutionary processes involved in the build up of resistance as an adaptive trait,

models clearly emphasized the selection process. Models could give more emphasis to

migration, mutation and genetic drift

All pesticides and

drugs

Strategies The mosaic strategy is rarely considered probably because the greater complexity the

introduction of this parameter would induce. The development of spatially explicit models

would allow a comparison of this strategy with the other strategies

All pesticides and

drugs

The rotation strategy was ignored in most models of the evolution of resistance to

insecticidal proteins. The development of transgenic crops with different proteins

would make this kind of models useful

Insecticidal proteins

Probably for ethical reason, the refuge strategy – i.e. the maintenance of untreated areas/

patients – have not been consider in human epidemiological models. The investigation of

this strategy would be a mean to evaluate the effect or consequences that an unequal

access in medical care has on the evolution of resistance in human parasite

Antiviral and

antibiotics

More than half of the articles modelling the evolution of herbicide resistance considered

strategies based on alternative methods, such as crop rotation or the mechanical control

of weeds. Models on other kind of pesticides could also considered alternative methods

for controlling pest

All pesticides except

herbicides

Outputs Among the criteria used for comparing strategies, the economic criterion was rarely used.

Models could include demography, yield loss or patient recovery and economic criteria as

outputs for facilitating stakeholders to choose the best strategies for efficient pest control

All pesticides and drugs

Epidemiological models tended to focus strongly on the quantity and quality of healthy

resources, whereas population genetics models often focused exclusively on changes in

resistance allele frequencies. Population genetics models could consider (i) the impact of

pesticide treatments on pests and yields in population genetic models and (ii) the effect of

variation in pest demography on the resource on which the pests are living

All pesticides except

fungicides
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Conclusions and recommendations

Analysis of the possible causes of model diversity was

highly informative. In a previous article analysing the sci-

entific community of resistance evolution modellers

through its citation and co-citation networks, we

concluded that the scientific community was highly

structured. We show here, that the main factor explaining

the diversity of the models is the class of PD linked to

the target organism, either than the structure of the

scientific community.

Along the discussion, we have identified some lacks in

biological parameters, strategies and outputs considered

so far. They are summarized in Table 4. In this table, we

provide guidelines for further modelling of resistance evo-

lution.

Overall, we ended up with three main intermingle

conclusions. First, among the four evolutionary pro-

cesses involved in the build up of resistance as an

adaptive trait, models clearly emphasized the selection

process. Migration, mutation and drift are by far too

rarely integrated in the models impeding the explora-

tion of new strategies. For example, the fact that drift

is not well accounted for has the consequence that

models did not test the situation where a strategy

would be pest or pathogen elimination at least over

restricted area.

The second conclusion is that there is a clear asymme-

try between space and time as sources of heterogeneity in

the selection pressure. Much more emphasis has been

made over time than over space processes. The increased

capacity of computers to integrate complexity has not so

far resulted in a better account of space in models. As a

consequence, strategies like rotation, mosaic or refuges

would remain clearly under-analysed. More generally,

migration has been insufficiently considered in its double

consequence of delaying the build up of resistance in a

given space while transferring this resistance into new

previously unscathed places.

Our last important conclusion is that many papers

explored a situation of poor potential strategic interest.

Most of the models analyse the performance of already

used strategies in case of already present resistance rather

than exploring new domains such as coupling rotation

and mosaic in a more or less complex design. In parallel,

models would also gain in extending the use of economic

criteria or pest consequence that would allow test accep-

tance or integrate treatment. The paucity of the consider-

ation that models make of the consequence of the

evolution of resistance on the quality of the resource and

its economical viability would contribute to delay the

transfer from simulations to their experimental validation

and use.
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