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A novel polysaccharide, Heimioporus retisporus Polysaccharide (HRP) was extracted
from the edible mushroom Heimioporus retisporus. HRP had weight-average molecular
weight 1,949 kDa and number-average molecular weight 873 kDa, and its major
components were arabinose (0.71%), galactose (12.93%), glucose (49.00%), xylose
(8.59%), mannose (17.78%), and glucuronic acid (10.99%). Fourier transform infrared
spectroscopy and nuclear magnetic resonance spectroscopy revealed that HRP
was composed of 1,3-linked β-D-glucose, 1,6-linked β-D-mannose, 1,6-linked β-
D-galactose, 1,4-linked β-D-galactose, 1,4-linked β-D-xylose, and 1,5-linked α-L-
arabinose. Thermogravimetric analysis indicated that degradation temperature (T0) of
HRP was 200◦C. In an STZ-induced diabetic mouse model, oral administration of
HRP (40 mg/kg/d) for 28 days significantly reduced blood glucose levels, and reduced
heart organ index by decreasing expression of IL-6 and TNF-α. Our findings indicate
hypoglycemic effect of HRP, and its potential application as a hypoglycemic agent.

Keywords: Heimioporus retisporus, polysaccharide, characterization, hypoglycemia, cardioprotective

KEY POINTS

1. A polysaccharide HRP was purified from fruiting bodies of Heimioporus retisporus.
2. Preliminary structural characterization of HRP was performed.
3. Hypoglycemic activity of HRP was evaluated in a STZ-induced diabetic mouse model.

INTRODUCTION

Diabetes is a common metabolic disorder characterized by high blood glucose level resulting from
β-cell dysfunction and insulin resistance (1). It may cause damage to various organs (particularly
liver, kidney, and brain), and presents increased risk of cardiovascular disease, kidney disease,
and partial or complete blindness (2). It is a pro-inflammatory state associated with increased
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production of reactive oxygen species (ROS) and expression
of inflammatory cytokines (e.g., IL-1β, IL-6, IL-8, TNF-α)
that promote apoptosis (3–5). The International Diabetes
Federation (IDF) estimates that ∼425 million adults worldwide
have diabetes, and that this number will increase to ∼630
million by 2045.

Commonly used diabetes medications have several adverse
effects, including hypoglycemia (sulfonylureas) (6), liver
damage, cardiovascular disease (thiazolidinedione) (7, 8), and
gastrointestinal disorders (flatulence, diarrhea, abdominal pain,
nausea, vomiting) (α-glucosidase inhibitors, biguanide) (9,
10). There is an urgent need for effective diabetes medications
without such adverse effects. Polysaccharides are naturally
occurring compounds present in a wide variety of animals,
plants, algae, microorganisms, and fungi, notably medicinal
mushroom species. Numerous studies have documented
beneficial biological activities of polysaccharides, including
hypoglycemic, antioxidant, anticoagulant, antitumor,
antimutagenic, anticomplementary, antiviral, and anti-
inflammatory activities (11–13, 14). A Hericium erinaceus
polysaccharide reduced glucose levels in normal and alloxan-
induced diabetic mice without adverse effects (15), and the
polysaccharide from Ganoderma lucidum and Hohenbuehelia
serotina displayed hypoglycemic activity (16, 17). In many
cases, activities of polysaccharides are related to their structure.
Lentinan (a Lentinula edodes polysaccharide), for example,
displayed immunomodulatory and antitumor effects, based
on its β-D-glucan structure (18). However, few studies have
addressed mechanisms of hypoglycemic activity as related to
structure of specific polysaccharides.

Heimioporus retisporus is an edible mushroom (class
Agaricomycetes, family Boletaceae) native to Yunnan Province
(China). We previously described inhibition of endogenous
oxidative stress and moisturizing effects of crude polysaccharides
from H. retisporus (19). In the present study, as part of an
ongoing search for safe, natural, hypoglycemic agents, we
purified a water-soluble polysaccharide, Heimioporus retisporus
Polysaccharide (HRP) from H. retisporus, characterized its
chemical structure, assayed its hypoglycemic activity, and
examined relationships between its structure and bioactivities.

MATERIALS AND METHODS

Materials and Chemicals
Heimioporus retisporus fruiting bodies were purchased
from Kunming, Yunnan Province. Ion exchange resins
CM-Sepharose and DEAE-Sepharose were from General
Electric Co. (United States). Metformin hydrochloride
(MET) was from Beijing Coway Pharmaceutical Co. (China).
L-arabinose, D-glucose, D-galactose, D-mannose, D-xylose,
glucuronic acid, and galacturonic acid were from Dionex Ltd.
(China), Streptozotocin (STZ) and TRIzol reagent were from
Sigma-Aldrich (United States). Reverse transcription kit and
polymerase chain reaction mix were from Mei5 Biotechnology
Co. (Beijing, China). All other reagents used in this study were
analytical grade.

Extraction and Purification of
Heimioporus retisporus Polysaccharide
Heimioporus retisporus Polysaccharide was extracted and purified
as shown schematically in Figure 1. Fruiting bodies were dried
at 45◦C to constant weight, and ground into powder (mesh
#40; particle size ∼420 µm) with a triturator. The powder was
evenly dispersed in water at ratio 1:15 (w/v), the mixture was
heated in a water bath 4 h at 95◦C and centrifuged (10,000 rpm,
10 min), and supernatant was collected. Supernatant was mixed
with ethanol at ratio 1:3 (v/v), mixture was kept 10 h at 4◦C and
centrifuged (10,000 rpm, 10 min), and sediment was collected as
crude HRP (CHRP).

CHRP was dissolved in deionized water and deproteinized
in n-butanol/ chloroform (v/v; 4:1) for 4 h. After stratification,
upper fraction was collected and dialyzed thoroughly against
phosphate buffer (0.05 mol/L, pH 7.4) at room temperature.
Dialyzed CHRP solution was subjected to DEAE-Sepharose
chromatography, eluted with phosphate buffer, and unbound
fraction (DHRP) was collected. DHRP was dialyzed against
acetate buffer (0.05 mol/L, pH 4.6) at room temperature,
subjected to CM-Sepharose chromatography, eluted with acetate
buffer, and unbound fraction (CDHRP) was collected. CDHRP
was subjected to gel filtration (Superdex 75 16/600 column, GE
Healthcare, United States) using an AKTA purifier (Amersham
Biosciences, Sweden), and eluted with 0.15 mol/L NaCl in
0.05 mol/L phosphate buffer (pH 7.5) at flow rate 0.5 mL/min.
Fractions were collected with an automated fraction collector,
and the peak with highest polysaccharide content (S2) was
collected. Fraction S2 was dialyzed in deionized water for 48 h
with a dialysis bag (MW cutoff 3.5 kDa), freeze-dried, and termed
HRP (Figure 2).

Polysaccharide content was determined by DuBois’ method
(20). 1.5 mL polysaccharide solution was mixed with 5 mL
sulfuric acid, and the mixture was kept in boiling water bath
for 20 min and then cooled to room temperature. Absorption
value was determined by spectrophotometry at wavelength 490
nm, and carbohydrate concentration was estimated based on
a standard curve.

Molecular Weights and Monosaccharide
Composition of Heimioporus retisporus
Polysaccharide
Weight-average (Mw) and number-average (Mn) molecular
weights of HRP were determined by gel permeation
chromatography (GPC) using an Agilent 1200 HPLC system
equipped with PL aquagel-OH 50 column (7.7 × 300 mm)
and differential refractive index detector. Samples (5.0 mg)
were dissolved in 1.0 mL phosphate buffer (0.2 mol/L, pH 7.5)
containing 1.0 mL NaCl (0.02 mol/L), and filtered through a
membrane (pore size 0.45 µm). For each run, 20 µL solution
(0.1 mg HRP) was injected and eluted with phosphate buffer
(flow rate 0.5 mL/min, 30◦C). Mw and Mn values were
estimated using a calibration equation based on PL pullulan
polysaccharide standards.

Monosaccharide composition of HRP was analyzed by
high-performance anion exchange chromatography (HPAEC)
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FIGURE 1 | Purification of Heimioporus retisporus polysaccharide (HRP) (schematic).

FIGURE 2 | Purification of Heimioporus retisporus Polysaccharide (HRP) on Superdex 75 16/600 gel filtration column by fast protein liquid chromatography (FPLC).
Eluent: 0.15 mol/L NaCl in 0.05 mol/L phosphate buffer (pH 7.5). Flow rate: 0.5 mL/min. Fraction S2: purified polysaccharide (HRP).

coupled with pulsed amperometric detector (PAD). Neutral
sugars and uronic acids were released by hydrolysis (10%
H2SO4, 2.5 h, 105◦C). Acid hydrolysates of HRP were
diluted and analyzed using HPAEC system (Dionex ISC 3000;
United States) with PAD, AS50 autosampler, CarboPac PA20
column (4 × 250 mm, Dionex), and PA-20 guard column
(3 × 30 mm). Standard solutions of L-arabinose, D-glucose,
D-xylose, D-glucose, D-mannose, D-galactose, glucuronic acid,
and galacturonic acid were used for calibration.

Fourier Transform Infrared Spectroscopy
Fourier transform infrared spectroscopy was performed using
Optik GmbH Tensor II system (Bruker, Germany). Spectra were
recorded from 4,000 to 400 cm−1, with resolution 4 cm−1 and
maximal source aperture (21).

Nuclear Magnetic Resonance
Spectroscopy
∼40 mg HRP was dissolved in 0.55 mL chloroform-d (CDCl3),
and solution-state 1H and 13C nuclear magnetic resonance
(NMR) spectroscopy (Bruker system) were performed with
parameters: spectral width 1,800 Hz for 1H dimension and
10,000 Hz for 13C dimension; delay between transients 2.6 s; delay
for polarization transfer corresponding to estimated average 1H-
13C coupling constant 150 Hz. Data were processed using Bruker
Topspin-NMR software program (22).

Thermogravimetric Analysis
Thermogravimetric analysis (TGA) and derivative
thermogravimetry (DTG) were performed using simultaneous
thermal analyzer (model STA449F3; Netzsch; Germany). ∼8 mg
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lyophilized HRP powder was placed in a platinum crucible
under nitrogen atmosphere, and heated at rate 10◦C/min in
temperature range of 30–800◦C (23). Data were analyzed using
software program Origin 8.0.2.8.

Scanning Electron Microscopy
Dried HRP samples were gold-coated by sputter-coater (model
IB-3, EiKo, Japan), and morphological features were observed
by scanning electron microscopy (model S-3400N, Hitachi,
Japan) (accelerating voltage 10.0 kV; magnifications ×100,
×500, ×1,000, ×2,000; high vacuum conditions) as described
previously (24).

Animal Model and Drug Administration
Male SPF Balb/c mice (weight 20 ± 2 g) from Charles River
(Beijing) were maintained in the Experimental Animal Public
Service Platform at China Agricultural University (25 ± 2◦C,
humidity 50 ± 10%, 12 h light/12 h dark cycle), and fed normal
chow diet ad lib. After 1 wk acclimination period, mice were i.p.
injected with 1% STZ (40 mg/kg) for 5 days (25), and fasting
blood glucose (FBG) was measured 24 h after the last injection.
A successful model was defined as mice with FBG≥ 11.0 mmol/L,
stable for 1 week (26).

Group Blank consisted of five untreated normal mice. 25
diabetic mice were assigned randomly to one control and four
experimental groups (intragastric administration; 4-wk feeding
period) as follows:

Group Blank: blank, deionized water.
Group CK: deionized water; control.
Group Met: metformin (40 mg/kg); positive control.
Group HRP-20: HRP 20 mg/kg.
Group HRP-40: HRP 40 mg/kg.
Group HRP-80: HRP 80 mg/kg.
Body weight and FBG data were collected for the four

experimental groups. At the end of experimental period, mice
were sacrificed (cervical dislocation), heart, liver, spleen, and
kidney were removed, connective tissue was cleaned and
washed with saline to remove blood, and collected organs were
weighed for calculation of organ indices, immediately frozen
in liquid nitrogen, and stored at -80◦C for further analysis.
All experiments were approved by the Institutional Ethics
Committee of China Agricultural University, and performed in
accordance with International Standards and Ethical Guidelines
for Animal Welfare.

Fasting Blood Glucose Measurement
Mice were fasted for 8 h, blood was extracted from tail vein, and
the FBG was measured using express glucose meter (On Call).

Visceral Organ Indices
For each of various visceral organs, an index was calculated by the
formula:

Visceral organ index

= (visceral organ weight)/(body weight) × 100%

Inflammatory Cytokine mRNA Levels in
Heart Tissue
Total RNA extraction from heart tissue was performed
using TRIzol reagent. First-strand cDNA synthesis was
performed using a commercial reverse transcription kit as
per manufacturer’s instructions. Primer sequences used were as
follows:

β -actin forward primer 5′-AACACCCCAGCCATGTACG-3′

reverse primer 5′-ATGTCA CGCACGATTTCCC-3′

IL-6 forward primer 5′-TGCTGGTGACAACCACGGCC-3′

reverse primer 5′ -GTACTCCAGAAGACCAGAGG-3′

INF-α forward primer 5′-ATGGCCTCCCTCTCATCAGT-3′

reverse primer 5′-ATAGCAAATCGGCTGACGGT-3′

PCR procedure was: initial denaturation at 94◦C for 4 min,
30 cycles of denaturation at 94◦C for 30 s, annealing at 60◦C (β-
actin) or 62◦C (IL-6, TNF-α) for 30 s, extension at 72◦C for 30 s,
final extension at 72◦C for 10 min. Amplification products were
confirmed by electrophoresis (1.0% agarose gels) and visualized
by Gel Red staining (27).

Statistical Analysis
Results were expressed as mean ± SE, and data were analyzed
using software program SPSS 20.0 (IBM). Means were compared
by one-way analysis of variance (ANOVA), with p < 0.05 as
criterion for significant difference.

RESULTS

Heimioporus retisporus Polysaccharide
Molecular Weights and Monosaccharide
Components
Mw and Mn of HRP were, respectively, 1,949 and 873.34 kDa, and
polydispersity index (PDI, calculated as Mw/Mn) was 2.232. PDI
reflects distribution of molecular weight in each polymer sample,
and the low value indicates that chain lengths of HRP vary over a
relatively narrow range of molecular weights.

Monosaccharide composition of HRP, determined by HPAEC/
PAD analysis, is summarized in Table 1. The major component
was glucose (49.0%), followed by mannose, galactose, glucuronic
acid, and xylose (percentages ranging from 17.8 to 8.6%).
Arabinose was a minor component (0.7%).

Fourier Transform Infrared Spectroscopy
Analysis
In the FT-IR spectrum of HRP (Figure 3), the absorption bands
at 3,407 and 2,923 cm−1 represent stretching vibrations of O-H
and C-H groups of the sugar ring (28). The 1,652 cm−1 band
reflects C=O linkage (29), weak symmetric stretching band near
1,357 cm−1 corresponds to carboxylate groups (30), 1,159 cm−1

band reflects stretching of α-(1,4) glycosidic linkages (31),
1,071 cm−1 band indicates that HRP sugar rings are pyranose
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TABLE 1 | Monosaccharide composition of Heimioporus retisporus Polysaccharide (HRP).

Monosaccharide: Glucose Mannose Galactose Glucuronic acid Xylose Arabinose

Molar ratio (%): 49.00 17.78 12.93 10.99 8.59 0.71

rings (32), 855 cm−1 peak represents α-glycosidic bonds (33),
943 cm−1 band represents β-glycosidic bonds (34), and 530 cm−1

band reflects in-plane C=O bending (35).

Nuclear Magnetic Resonance Analyses
Structural features of HRP were elucidated by measuring 1-D
NMR (1H) and 2-D NMR (heteronuclear single quantum
coherence; HSQC) spectra. In the 1H NMR spectrum
(Figure 4A), H-1 signals representing six residues were
seen at 3.11, 3.17, 3.31, 3.51, 3.73, and 4.06 ppm. The first four
(strong signals) indicate presence of β-D-glucose (36), and the
latter two reflect β-D-mannose configured residues (37).

In the HSQC spectrum (Figure 4B), six cross-peaks
(4.48/102.9, 3.36/72.8, 3.51/85.8, 3.34/68.0, 3.38/76.0, and 3.64,
3.58/60.4 ppm) were assigned, respectively, to H-1/C-1, H-
2/C-2, H-3/C-3, H-4/C-4, H-5/C-5, and H-6(a), H-6(b)/C-
6 of →3)-β-D-Glcp-(1→residues. 1H/13C chemical shifts at
3.51/71.2, 73.1/3.62, 68.8/3.95, and 3.78/70.9 ppm were assigned
to H-2/C-2, H-3/C-3, H-4/C-4, and H-6/C-6 of →6)-β-D-
Galp-(1→residues, and cross-peaks at 3.43/69.8, 3.88/69.3, and
3.41/62.4 were assigned to H-2/C-2, H-4/C-4, and H-6/C-6 of
→3)-β-D-Galp-(1→residues. Cross-peaks at 4.22/102.2, 3.13/73,
3.46/74.2, and 3.62/75.8 ppm were assigned to H-1/C-1, H-
2/C-2, H-3/C-3, H-4/C-4 of →4)-β-D-xylan-(1→, and those
at 4.86/97.2, 3.71/66.2, 3.58/68.0, 4.08/68.2, and 3.72/68.2 were
assigned to H-1/C-1, H-3/C-3, H-4/C-4, H-5/C-5, and H-6/C-6
of→6)-β-D-Manp-(1→residues. Cross-peaks at 4.99/102.1 and
3.50/66.30 were assigned to→5)-α-L-Araf-(1→residues (36, 38–
40). These findings are consistent with those for monosaccharide
composition and 1H spectra.

FIGURE 3 | Fourier transform infrared spectroscopy (FT-IR) spectrum of
Heimioporus retisporus Polysaccharide (HRP).

Thermal Analysis
Weight loss (TG) and DTG curves of samples are shown in
Figure 5. The TG curve shows two stages (30–130 and 165–
540◦C) of weight loss. The first stage (∼9%), resulting from
vaporization and removal of bound water in HRP, reflects
characteristic moisture sorption based on abundance of hydroxyl
radical. The second (degrading) stage, involving alteration of
functional groups and depolymerization of structure, resulted
in substantial loss (∼54%) of sample weight. The two curves
indicate onset degradation temperature (T0) = 200◦C and
maximum degradation temperature (Tmax) = 263◦C.

Microstructural Analysis
Analysis of surface morphology by SEM is a qualitative
tool to characterize polysaccharides. SEM images of HRP
(magnifications ×100, ×500, ×1,000, ×2,000) (Figure 6)
demonstrate an entanglement structure with irregular sheets
and coils. The tangled structure reflects the complex nature of
HRP (41). The apparent pores may be artifacts of the freeze-
drying process.

Antidiabetic Effect
Figure 7 illustrates in vivo antidiabetic effect of HRP. FBG levels
on day 28 were significantly lower for Groups HRP-40 and Met
than for Group CK. Group HRP-20 had a striking reduction in
FBG level between days 0 and 7. No such reduction was observed
for Group HRP-80, suggesting that the effect of HRP was not
dose-dependent (Figure 7A). No notable effects on body weight
were observed for the experimental groups (Figure 7B).

Visceral organ indices did not differ significantly for Group
CK vs. the three HRP groups, except for heart (data not shown).
Heart indices are shown in Figure 7C. Heart index for Group CK
was higher than those of all the other groups, and the difference
was significant for Groups Met and HRP-40. RT-PCR assays
for inflammatory cytokines IL-6 and TNF-α showed that IL-6
expression levels in heart tissue were higher for Group CK than
for Group Met or the HRP groups, while TNF-α expression levels
were similar for all groups. These findings are consistent with the
high heart index for Group CK (Figure 7D).

DISCUSSION

Numerous polysaccharides from medicinal mushroom species
have been shown to display hypoglycemic activity, but reported
structures and activities of such polysaccharides are highly
variable depending on extraction and purification methods (42).
We used hot water extraction to purify and characterize a novel
neutral polysaccharide from the mushroom H. retisporus (termed
HRP), and demonstrated strong hypoglycemic activity of HRP in
an STZ-induced diabetic mouse model.
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FIGURE 4 | 1H (A) and HSQC (B) spectra of Heimioporus retisporus Polysaccharide (HRP). Glcp:→3)-β-D-Glcp-(1→; Manp:→6)-β-D-Manp-(1→; Galp:
→6)-β-D-Galp-(1→; Galp’:→4)-β-D-Galp-(1→; Xylp:→4)-β-D-Xylan-(1→; Araf:→5)-α-L-Araf-(1→.

FIGURE 5 | Weight loss (TG) percentage and derivative thermogravimetric (DTG) curves for Heimioporus retisporus Polysaccharide (HRP).

HRP is composed of glucose (the predominant component),
mannose, galactose, glucuronic acid, xylose, and arabinose, in
molar ratio 49.00: 17.78: 12.93: 10.99: 8.59: 0.71% (Table 1).

The monosaccharides glucose, galactose and mannose are in
β-D conformations. The polysaccharides GLP-1 and GLP-
2 from Ganoderma lucidum are composed of mannose,
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FIGURE 6 | Scanning electron microscopy (SEM) imaging of Heimioporus retisporus Polysaccharide (HRP). (a–d) magnifications ×100, ×500, ×1,000, ×2,000.

FIGURE 7 | Antidiabetic effect of Heimioporus retisporus Polysaccharide (HRP). (A) Fasting blood glucose (FBG) level. (B) Weight. (C) Visceral organ index of heart.
(D) RT-PCR of TNF-α and IL-6. Values are expressed as mean ± SE. *p < 0.05 for comparison with CK group.
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glucose, galactose, and fucose in respective molar ratios
4.9: 63.5: 26.2: 5.4% and 1.6: 90.6: 7.8: 0% (43). The
polysaccharide CFP from Pleurotus citrinopileatus is composed
of galactose, glucose, glucuronic acid, and glucuronic acid in
molar ratio 20.53: 28.75: 5.55: 45.17% (44). Most medicinal
fungal polysaccharides have glucose as the major component
(45), but there is great variability in identities and proportions
of other components.

Intragastric administration of 40 mg/kg HRP in an STZ-
induced diabetic mouse model caused significant reduction
of blood glucose level, but had no notable effect on body
weight. HRP was found to decrease visceral organ index
for heart, and we therefore used RT-PCR assay to evaluate
expression levels of inflammatory cytokines IL-6 and TNF-α
in heart. IL-6 expression level was reduced by HRP treatment.
Previous investigations of elevated tissue concentrations of
inflammatory cytokines in mouse diabetes models indicate
that inflammatory processes promote development of diabetic
cardiomyopathy. For example, intramyocardial inflammation
(including increased expression of IL-6 or TNF-α) contributed
to diabetic cardiomyopathy (3). Activated macrophages
enhance the production of IL-6, but excessive activation
of macrophages can cause damage to living organisms
(46). HRP may protect the heart by preventing excessive
activation of macrophages.

Many recent studies have revealed hypoglycemic effects
of certain polysaccharides (45, 47, 48). One example is a
polysaccharide (SERP1) from the herb Sarcandra glabra (family
Chloranthaceae) composed of 1,4-linked α-D-galacturonic acid,
methyl esterified 1,4-linked α-D-galacturonic acid, 1,4-linked
α-D-glucuronic acid, 1,5-linked α-L-arabinose, 1,3-linked β-
D-galactose, 1,4-linked α-D-glucose, 1,4,6-linked β-D-glucose,
1,6-linked β-D-glucose, and 1,2-linked rhamnose (49). HRP in
this study was composed of 1,3-linked β-D-glucose, 1,6-linked β-
D-mannose, 1,6-linked β-D-galactose, 1,4-linked β-D-galactose,
1,4-linked β-D-xylose, and 1,5-linked α-L-arabinose. HRP
and SERP1 thus have similar monosaccharide compositions,
but different linkages. More generally, there are numerous
naturally occurring polysaccharides that display hypoglycemic
activity, but none of them have the same compositions,
linkages, or conformations (34, 49–55). There is no direct
evidence that polysaccharide components control hypoglycemic
activity based on ratios of specific monosaccharides. On the
other hand, several studies suggest that mannogalactoglucan
domain plays a role in suppressing hyperglycemia, consistent
with our findings (45, 56, 57). Yang et al. (45) analyzed
hypoglycemic activity of 18 polysaccharides extracted from
fruiting bodies of various mushroom species. In a db/db
mouse model, neutral polysaccharide AAMP-N, which has
a large mannogalactoglucan domain, strongly enhanced
insulin sensitivity in vitro, reduced FBG, and modulated lipid
metabolism. Future studies by our group and others will elucidate
the link between structural characteristics of polysaccharides and
their hypoglycemic activities.

Therefore, we characterized HRP, a water-soluble
neutral polysaccharide extracted from H. retisporus, as a

heteropolysaccharide composed of 1,3-linked β-D-glucose,
1,6-linked β-D-mannose, 1,6-linked β-D-galactose, 1,4-linked
β-D-galactose, 1,4-linked β-D-xylose, and 1,5-linked α-L-
arabinose. In an STZ-induced diabetic mouse model, HRP
significantly reduced blood glucose level and heart visceral
organ index by downregulating IL-6 expression. HRP has strong
potential for application as a hypoglycemic, cardioprotective
dietary supplement in diabetes treatment.
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