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Autoimmune hepatitis (AIH) is a chronic inflammatory disorder characterized by
hypergammaglobulinemia, presence of serum autoantibodies and histological features
of interface hepatitis. AIH therapeutic management still relies on the administration of
corticosteroids, azathioprine and other immunosuppressants like calcineurin inhibitors
and mycophenolate mofetil. Withdrawal of immunosuppression often results in disease
relapse, and, in some cases, therapy is ineffective or associated with serious side effects.
Understanding the mechanisms underlying AIH pathogenesis is therefore of paramount
importance to develop more effective and well tolerated agents capable of restoring
immunotolerance to liver autoantigens. Imbalance between effector and regulatory cells
permits liver damage perpetuation and progression in AIH. Impaired expression and
regulation of CD39, an ectoenzyme key to immunotolerance maintenance, have been
reported in Tregs and effector Th17-cells derived from AIH patients. Interference with
these altered immunoregulatory pathways may open new therapeutic avenues that, in
addition to limiting aberrant inflammatory responses, would also reconstitute immune
homeostasis. In this review, we highlight the most recent findings in AIH
immunopathogenesis and discuss how these could inform and direct the development
of novel therapeutic tools.
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INTRODUCTION

Autoimmune hepatitis (AIH) was initially described as a severe form of fluctuating persistent
hepatitis, associated with acneiform rashes, spider angiomas, amenorrhea and marked elevation of
serum immunoglobulins (1). Subsequent studies showed that AIH occurs in individuals of all ages
and, although present in both sexes, is prevalent in females (2).

AIH is diagnosed based on the presence of hypergammaglobulinemia, serum autoantibodies and
histological features of interface hepatitis (3). While positivity for anti-nuclear antibody (ANA) and/or
anti-smooth muscle antibody (SMA) identifies type-1 AIH (AIH-1), liver-kidney-microsomal-type-1
(LKM-1) antibodies, which specifically target the cytochrome P4502D6 (CYP2D6) liver enzyme (4),
are the serological hallmarks of type-2 AIH (AIH-2) (5). Additional autoantibodies might aid in
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AIH diagnosis, especially in patients negative for ANA, SMA and
LKM-1 autoantibodies. Antibodies to soluble liver antigen (SLA)
have been reported in 58% of AIH patients where they are often
associated with severe disease (6). Anti-liver cytosol type-1 (LC1)
antibodies, which target formiminotransferase cyclodeaminase
(FTCD), identify AIH-2 (7), and their titer positively correlates
with disease activity (8). Presence of anti-neutrophil cytoplasmic
antibody (ANCA), particularly atypical p-ANCA (pANNA),
might also help in AIH diagnosis, in the absence of positivity
for the above-mentioned autoantibodies (9).

Interface hepatitis is present at disease presentation in 84-98%
of cases (10) and is characterized by a dense mononuclear cell
infiltrate eroding the limiting plate and invading the liver
parenchyma (11).

In 50% of cases, AIH manifests with an insidious onset that is
often associated with lethargy, malaise, arthralgia, and myalgia;
30-40% of patients present with clinical features of acute
hepatitis, whereas the remaining 10-20% of cases are
incidentally discovered as having elevated transaminase levels
on biochemical screening (12). AIH clinical manifestations may
differ, depending on the geographical location and ethnicity of
the affected patients. As an example, cirrhosis is more frequent in
African Americans (56-85%) than Europeans (38%) (13, 14); and
when considering subjects of non-European Caucasoid ethnicity,
AIH has earlier onset in African, Arabian and Asian individuals,
who also show lower response to immunosuppressive treatment
(13, 14). Japanese patients are reported having a later onset of the
disease that in most cases improves upon treatment with
immunosuppressive drugs (15).

AIH can be associated with autoimmune disorders, which can
be also found in first-degree relatives in 40% of cases (16).

The aim of AIH current treatment is to control inflammation.
The management of the acute phase includes the administration
of prednisone or prednisolone, which is gradually decreased to
lower doses, based on the decline of transaminase levels. The
addition of the anti-metabolite immunosuppressant azathioprine
can be considered when the transaminase levels stop decreasing
on steroid treatment alone or in the presence of steroid-related
side effects (17). Relapse may occur in up to 40% of cases due to
low compliance or when attempting treatment withdrawal.
Additional drugs have been used as steroid-saving agents with
the aim of reducing steroid-related side effects, these including
cyclosporine and tacrolimus (18–20) and, in difficult-to-treat-
cases, mycophenolate mofetil in association with prednisone or
prednisolone (21, 22). None of these treatments, however,
restores immunotolerance by boosting the impaired regulatory
cell compartment.

Several studies have been conducted to identify the
mechanisms involved in AIH pathogenesis. It has been proposed
that genetically predisposed individuals upon exposure to certain
environmental conditions (23) can develop cell-mediated immune
responses against liver autoantigens. The derived inflammation,
permitted by defective immune regulation, progressively results in
fibrosis and cirrhosis with aberrant liver re-generation. Genetic
predisposition to the disease is conferred by the presence of specific
genes located within the human-leukocyte-antigen (HLA) region
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on the short arm of chromosome 6, especially those encoding
allelic variants of DQB1 and DRB1 (24, 25).

Studies on AIH pathogenesis have been furthered by the
generation of animal models, developed using different strategies.
In this regard, immunization of C57BL/6 female mice with a pCMV
plasmid containing the N-terminal region of mouse CTLA-4 and
human CYP2D6 and FTCD resulted in transaminase elevations
peaking 4 and 7 months after injection (26). Additional models,
obtained upon infection of mice with adenovirus Ad5 expressing
human CYP2D6, supported a role for viral infection as a possible
mechanism leading to tolerance breakdown and consequent
development of autoimmunity (27, 28). In an additional model by
Hardtke-Wolenski et al, self-limiting adenoviral infection triggered
immune responses against the human FTCD in mice of NOD
background and resulted in chronic AIH that was characterized by
portal and lobular fibrosis (29). Other AIH models have been
obtained in mice with medullary thymic epithelial cell depletion
due to a conditional deletion of Traf6 expression in murine thymic
epithelial cells (30); and in PD-1-/- mice upon neonatal thymectomy,
which resulted in aberrant generation of follicular helper T-cells in
the spleen (31). Overall, these studies indicate that experimental
AIH may derive from different immunopathogenic routes that can
be facilitated by viral infections and/or genetic predisposition, this
recapitulating the human scenario.

From an immunological perspective, AIH liver damage is
driven by overwhelming effector immune responses (32–35) that
are not adequately controlled by suppressor/regulatory T-cells
(Tregs) (36–39). Extracellular nucleotides and nucleosides are
strong modulators of T-cell immunity (40). Mounting evidence
links alterations of purinergic signaling with the immunological
dysfunction present in autoimmune conditions (41). Both Treg
and Th17-cells obtained from AIH patients express low levels and
impaired activity of the immunoregulatory ectoenzyme CD39
(42, 43). We have recently reported that such dysfunction
derives, at least in part, from alterations of aryl-hydrocarbon-
receptor (AhR) signaling (44), suggesting that modulation of this
pathway might be deployed to correct immunoregulatory defects
while boosting Treg immunity in AIH.

Understanding the mechanisms underlying AIH immune
dysregulation is of critical importance for developing more
effective treatments. In this review, we will present and discuss
the most recent experimental evidence of disrupted AhR/
purinergic interactions as one of the prominent factors leading
to immunotolerance breakdown in AIH.We will also review how
these alterations might inform and direct towards novel
therapeutic approaches that represent promising candidates for
the treatment of AIH.
MECHANISMS OF LIVER DAMAGE

The mechanisms underlying the liver attack in AIH are still
unclear. The autoimmune reaction is believed to be initiated by
the presentation of a liver autoantigen by antigen presenting cells
(APCs) to Th0 lymphocytes that upon antigen recognition
become activated. There is evidence that, in AIH, HLA-class-II
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molecules are expressed not only on professional APCs but also on
hepatocytes (45), this favoring the amplification of cellular
immune responses. Following activation, Th0 lymphocytes can
differentiate into Th1, Th2 or Th17-cells, this depending on the
cytokines in the milieu. All these subsets are present in the hepatic
inflammatory infiltrates of AIH patients (35, 46). The cytokines
released by each cell subset lead to a cascade of events culminating
with the maturation of B-lymphocytes into plasma-cells and
consequent production of autoantibodies, which are involved in
antibody-mediated-cell-cytotoxicity (47). Derived immune
reactions include activation of cytotoxic T-cells with subsequent
release of IL-2 and IFNg, activation of macrophages and,
importantly, upregulation of HLA-class-I and class-II molecules
by hepatocytes (45). Th17-cells are also involved in AIH liver
damage, by perpetrating inflammation and through induction of
pro-fibrotic events (35). If this cascade of events is not opposed by
effective immune regulation, perpetration of immune attack
occurs with consequent progression of tissue damage.

There is evidence that the frequency of liver autoantigen-specific
T-cells present in the portal infiltrate is low (33, 48); these cells
could orchestrate the liver damage by favoring the recruitment of
non-antigen specific lymphocytes that, in turn, carry on hepatocyte
damage by producing IFNg and other cytotoxic factors.

Following the identification of CYP2D6 as the target
autoantigen of LKM-1 autoantibodies in AIH-2 (4), several
investigations have been conducted to identify CYP2D6
epitopes recognized by B and T-cells. By performing a
conformational epitope mapping of the CYP2D6 molecule, Ma
and colleagues identified CYP2D6316-327 as key target for
autoantibodies (49). Subsequent studies performed by the same
group showed that CD4 T-cell immunity in AIH-2 was polyclonal
and involved multiple subsets of effectors with IFNg, IL-4 and
IL-10 producing lymphocytes targeting specific epitope regions
within CYP2D6 (32). CD4-mediated immune responses were
associated with liver damage, a finding also confirmed when
analyzing CYP2D6-specific CD8 T-cell immunity (33). Future
investigations should elucidate where autoantigen specific CD8 T-
cell immune responses are initiated and perpetuated, given
previous animal studies showing poor cytotoxic function and
pro-inflammatory cytokine secretion in CD8 T-cells activated
within the liver microenvironment (50); and additional studies
showing that the spleen could modulate immune regulation as
well as the intensity of hepatic inflammation (51, 52).

There is evidence that overwhelming effector cell immunity in
AIH results from failure of immune regulatory mechanisms
permitting the autoimmune damage to unfold and perpetuate.

Defects in regulatory cells have been studied extensively over
the years, although the reasons leading to these impairments and
the factors contributing to it remain still unclear.
TREG IMPAIRMENT IN AIH: THE ROLE
OF CD39

A wealth of studies has provided evidence that impairment of
regulatory cells plays a permissive role in the initiation and
progression of autoimmune tissue damage.
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Among lymphocytes with immunoregulatory/suppressive
properties, CD4+CD25highFOXP3+ Tregs have been those most
extensively studied in the last decades. These cells play a key role
in promoting and maintaining immunotolerance, by controlling
effector immune responses. Tregs can be classified based on their
developmental pathway. Generation of thymic Tregs (tTregs) is
facilitated by intermediate affinity self-peptides/MHC
interactions resulting in high intensity TCR signals (53).
Peripheral Tregs (pTregs) can differentiate from T-cells in
certain peripheral sites like the gut mucosa and acquire stable
FOXP3 expression (54); whereas induced Tregs (iTregs) can be
derived in vitro following Tconv exposure to suboptimal antigen
stimulation in the presence of anti-inflammatory mediators
(55, 56).

Tregs can suppress immune responses by differentmechanisms
that involve the downregulation of costimulatory molecules on
APCs (57), release of cytokines like TGF-b (58), IL-10 (59) and
IL-35 (60); activation of apoptosis (61), including the Galectin-9/
T-cell-immunoglobulin-and-mucin-domain-3 (Tim-3) pathway
(62); release of Granzymes and perforin (63); metabolic
disruption via IL-2 deprivation from the environment (64);
transfer of cyclic-adenosine-monophosphate (cAMP) to effector
cells via gap junctions and subsequent upregulation of the
inducible cAMP early repressor (65); or via CD39, an
ectoenzyme that hydrolyzes pro-inflammatory ATP and ADP to
ultimately generate immunosuppressive adenosine (40).

In vivo and in vitro studies have indicated that Treg impairment
plays a key role in the pathogenesis of autoimmune diseases,
permitting overwhelming effector cell immunity to perpetrate and
perpetuate tissue damage (66–70).

Defects in suppressor lymphocytes/Tregs have been reported
also in AIH and found to play an important role in permitting
effectors like CD4 and CD8-cells to inflict hepatocyte damage
(36–39, 71). Treg defects in AIH are multifactorial and include
numerical impairment (37, 38, 72), functional defects (71, 73),
high rate of immune exhaustion (74) as well as plasticity with
tendency to acquire effector cell features, when exposed to or
challenged with a proinflammatory stimulus (42). Subsequent
investigations did not support these findings, likely as a result of
differences in methodologies, patients’ demographics and clinical
characteristics (75, 76).

Treg numerical impairment has been shown also in mice
(77, 78). In a humanized mouse model of AIH, obtained upon
injection of human CYP2D6/FTCD fusion protein into HLA-
DR3- or HLA-DR3+ transgenic NOD recipients, Yuksel and
colleagues showed that defective Tregs were associated with
heightened Th1-cell immunity with HLA-DR3+ mice
undergoing the most severe form of the disease (78). In
another study by Lapierre et al, adoptive transfer of ex vivo
expanded CXCR3+ Tregs restored peripheral tolerance to FTCD
and induced AIH remission (77).

Different mechanisms might account for Treg impairment in
AIH (Figure 1). We have shown that CD4+CD25high Tregs from
AIH patients display low levels of Galectin-9, contain higher
frequencies of IFNg+ and IL-17+-cells, while displaying lower
proportions of FOXP3+, IL-10+ and TGF-b+-cells. This
impairment is associated with low expression of Tim-3,
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the receptor of Galectin-9 on effector CD4-cells (39); this
implicating that regulatory cell defects are linked with low
responsiveness of T-effectors to Treg control. In a subsequent
study we have reported that AIH Tregs display reduced ability to
produce IL-10, this resulting in low responsiveness to low dose
IL-2, as demonstrated by inability to upregulate the phosphor-
signal-transducer-and-activator-of-transcription-5 (pSTAT5) (73).

In de novo AIH occurring after liver transplant Treg
impairment was proposed to derive from high secretion of IL-
12 and IL-6 by monocytes/macrophages that induced aberrant
IFNg production by Tregs impacting their function (79, 80).
Blockade of TLR2 and TLR4 on monocytes resulted in reduction
of IFNg production by Tregs, further supporting the role of
monocytes/macrophages in conferring Tregs proinflammatory
features (79, 80).

In a mouse model of AIH, characterized by hepatocellular
expression of a MHC-class II restricted immunodominant
epitope of the lymphocyte choriomeningitis virus and by
accumulation of CD4 T-cells specifically recognizing this
epitope, Preti et al. proposed that liver damage was fostered by
selective failure of peripherally induced autoreactive Tregs (81).
Notably these autoreactive Tregs not only were reduced in
frequency but also displayed heightened IL-17 production and
reduced epigenetic demethylation (81), postulating a role for
altered epigenetic regulation in Treg impairment in this model.
In human AIH, FOXP3 demethylation - a typical feature of bona
fide Tregs - was retained in some studies (75, 79) and altered in
Frontiers in Immunology | www.frontiersin.org 4
others, where AIH derived Tregs were highly methylated (82);
this indicates that further studies are needed to clearly establish
the role of FOXP3 epigenetic regulation in AIH Tregs.

In subsequent studies, we have shown that Tregs obtained
from the peripheral blood of AIH patients display low levels of
CD39 ectoenzyme (42). In addition to displaying low CD39
levels, AIH Tregs are defective in their ectoenzymatic activity,
this likely impacting their suppressive function due to lower
adenosine generation (42). Impaired suppressive function of
CD39+ Tregs is associated with increased tendency of these
cells to upregulate CD127 and producing higher levels of IL-17
and IFNg, when exposed to anti-CD3/CD28 (42).

CD39 can be regulated at genetic, transcriptional and post-
transcriptional levels. Among the factors that regulate CD39
expression at the transcriptional level, the AhR signaling plays a
pivotal role. AhR is a modulator of toxin responses that also
regulates effector and Treg immunity (83). AhR is activated by
endogenous ligands including products of heme catabolism
like unconjugated bilirubin (UCB), tryptophan metabolites,
2-(1’ H-indole-3’-carbonyl)-thiazole-4-carboxylic acid methyl
ester, dietary compounds like quercetin, or environmental
pollutants, i.e., dioxin and benzo-a-pyrene. Upon binding to its
ligands, AhR translocates to the cell nucleus where it forms a
complex with the aryl-hydrocarbon-receptor-nuclear-translocator
(ARNT), the AhR canonical partner, to regulate various genes,
including cytochrome P450 enzymes, cytokines (IL-22, IL-17,
IL-10), drug transporters (ABCB1, ABCC4) and CD39.
FIGURE 1 | Mechanisms of Treg impairment in AIH. Different mechanisms account for Treg impairment in AIH. Low Galectin-9 in Tregs is associated with
decreased TIM-3 levels on Th1-cells. This possibly results in reduced control of the effector potential of the Th1 subset through induction of apoptosis. AIH Tregs are
also defective in their response to low dose IL-2, as reflected by impaired upregulation of pSTAT-5. AIH Tregs produce low amounts of IL-10 and TGF-b, while
secreting effector cytokines like IFNg and IL-17. This indicates that, in AIH, Tregs have high tendency to acquire effector cell features. AIH Tregs also display low
levels and activity of CD39, an ectoenzyme that initiates a hydrolysis cascade culminating with the generation of immunosuppressive adenosine. In health, levels of
CD39 are regulated by the aryl-hydrocarbon-receptor (AhR)/aryl-hydrocarbon-receptor-nuclear-translocator (ARNT) complex. In AIH, preferential AhR binding to
estrogen-receptor-alpha (Era), an AhR non-canonical partner results in less effective upregulation of CD39 by Tregs.
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Notably, AhR activation has been demonstrated playing a role
in the pathogenesis of other liver diseases, like hepatitis C, where
the AhR-cytochrome P4501A1 pathway was found to favor lipid
accumulation along with virus replication and assembly (84);
and primary biliary cholangitis (PBC) where dioxin activated
dendritic cells promoted differentiation of naïve CD4-cells,
derived from PBC patients, into effector Th1 and Th17-cells
(85). Importance of xenobiotics as triggers for PBC was also
reported in earlier investigations (86, 87). Conversely, in the
setting of experimental primary sclerosing cholangitis,
administration of indole-3-carboxaldehyde could alleviate
hepatic inflammation and fibrosis upon activation of the AhR-
IL-22 axis (88). Further, kynurenine, a tryptophane metabolite
that serves as AhR endogenous ligand, was decreased in the
serum of children with AIH, when compared to controls (89).

Given the important links between AhR and CD39, we tested
whether defective CD39 levels could derive from decreased AhR or
ARNT expression. We found that AIH Tregs display AhR and
ARNT levels comparable to Tregs derived from healthy controls;
notably AIH Tregs express high levels of estrogen-receptor-alpha
(Era) (44), an AhR non-canonical partner. Further, in AIH Tregs,
AhR preferentially binds to Era rather than ARNT, this potentially
resulting in less effective upregulation of CD39 upon exposure to
ligands like UCB, L-kynurenine and quercetin (44). As increased
Era levels are present in patients under immunosuppression, we
postulate that immunosuppressive drugs, while enabling control
over inflammation, might also promote liver damage perpetuation
by upregulating Era and leading to a less effective AhR activation
cascade. As silencing of Era results in increased frequency of
CD39+-cells among Tregs (44), strategies potentially interfering
with AhR non-canonical binding might have a role in boosting
CD39 levels, by restoring AhR signaling.

There is evidence that AhR transcriptional efficiency could be
regulated by factors that impact the chromatin structure (90),
suggesting that AhR can undergo epigenetic regulation. Previous
studies have documented global hypomethylation of CD4 T-cells
in systemic lupus erythematosus, and systemic sclerosis (90, 91); it
remains to be established whether these mechanisms are operative
also in CD4 T cell subsets in AIH, possibly impacting AhR
function and its ability to regulate downstream genes like CD39.
ABERRANT CD39 REGULATION IN AIH
Th17-CELLS

Th17-cells are an effector subset that derives from CD4
lymphocytes upon exposure to IL-6 and TGF-b in mice and
IL-6, IL-1b and TGF-b in humans (92). IL-23 plays an important
role in the maintenance and stabilization of already differentiated
Th17-cells (92). Transcription factors involved in the
development of Th17-cells include RORgt, RORa and STAT-3
(92). Th17-cells can be regulated by additional factors, like AhR,
which modulates CD39 and drug transporter levels (93, 94).
Th17-cells have been involved in the pathogenesis of various
autoimmune disorders including AIH (35).

Expression of CD39 by Th17-cells has been associated with
attenuation of their pathogenic potential and acquisition of
Frontiers in Immunology | www.frontiersin.org 5
regulatory properties, as reflected by upregulation of FOXP3
and IL-10 production (93). Levels of CD39 in Th17-cells are
regulated, at least in part, upon engagement of AhR by
exogenous and endogenous ligands (93). Akin to Tregs, Th17-
cells obtained from the peripheral blood of AIH patients express
low CD39 levels and impaired ectoenzymatic activity (Figure 2).
These defects are associated with reduced expression of A2A
adenosine receptor, further confirming alterations in purinergic
signaling mediators and, consequently, decreased response to
adenosine. Due to lower generation of adenosine, AIH Th17-
cells display impaired acquisition of regulatory properties that
result in defective ability to control CD4+ CD25–cell proliferation
and IL-17 production. As for Tregs, Th17-cells obtained from
AIH patients cannot effectively upregulate CYP1A1 and CD39
when exposed to AhR ligands like UCB, L-kynurenine and
quercetin, postulating alterations of AhR signaling as possible
determinants of impaired CD39 levels. Differently from Tregs,
however, no differences have been found in the expression of
Era. Instead, increase in the expression of hypoxia-inducible-
factor-1alpha (HIF-1a), which is known to negatively regulate
AhR expression (95) and signaling (94), is noted.

As discussed, the AhR signaling alterations noted in AIH
impact both Treg and Th17 cell ability to upregulate CD39, this
accounting for their impaired suppressive function (Tregs) and
inability to acquire regulatory properties (Th17-cells). This
indicates that defective immune regulation involves not only
the regulatory but also the effector cell compartment. Strategies
aimed at restoring alterations of AhR signaling both in Tregs and
Th17-cells should be developed to guarantee a broader control
over effector cell immunity in this autoimmune setting.
NEW IMMUNOTHERAPIES

Given the multiple defects underlying immunotolerance
breakdown in AIH, therapeutic strategies should be developed
with the aim of restoring the pool of Tregs while dampening the
effector potential of these cells (Figure 3). Reconstitution of the
Treg pool could be achieved upon adoptive transfer. In previous
studies we assessed Treg ability to expand under polyclonal
conditions (96). Tregs expanded from the already existing
regulatory cell pool express higher FOXP3 levels and suppress
effector cells more effectively (96). This strategy also resulted in
de novo generation of Tregs from CD4+CD25- effector
lymphocytes, when using healthy controls and AIH-derived
cells (96). In line with this strategy, inhibition of IL-17 was
found to favor the differentiation of newly generated Tregs from
CD4+CD25- effectors (97), supporting the postulate that immune
regulation could be enhanced even further when effector cells are
conditioned to become suppressive. Exposure of CD127+CD25+

activated cells to TGF-b and IL-2 boosts IL-10 production and
suppressive function of these cells (98). As CD39 is strictly linked
with Treg ability to suppress, adoptive transfer of CD39high Tregs
(99) would be preferable; however, since this subset is
substantially impaired in AIH patients (42), strategies that
enable boosting CD39 in Tregs, prior to their transfer, should
be implemented. A study by Oo and colleagues showed that
September 2021 | Volume 12 | Article 746436
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polyclonal Tregs, isolated from leukapheresis products, labelled
with indium tropolonate and re-infused in AIH patients, homed
to the liver where they were detected for up to 72 hours (100). In
a murine model of AIH in the context of autoimmune-
polyendocrine-syndrome-type-1, a multiorgan autoimmune
condition caused by mutations of the autoimmune regulator
(AIRE) gene, adoptive transfer of polyspecific Tregs was effective
in treating AIH (101).

In the context of AIH-2 where the autoantigen and the CD4
and CD8 T-cell epitopes within it are known, adoptive transfer of
autoantigen-specific Tregs would enable achieving a tailored and
effective form of treatment to re-establish immunotolerance. In
this regard, we could generate Tregs specific for HLA-DR3 and
HLA-DR7 restricted CYP2D6 epitopes upon co-culture with
semi-mature DCs that enable antigen presentation and
promote immunotolerance induction (102). CYP2D6-Tregs
suppress the proliferation and pro-inflammatory cytokine
production by CD4 effectors of the same antigen specificity
(102). As CYP2D6-specific Tregs showed the tendency to lose
their suppressor properties when exposed to proinflammatory
stimuli, treatment with retinoic acid could stabilize their
phenotype and functional properties even in the presence of an
Frontiers in Immunology | www.frontiersin.org 6
inflammatory milieu (103). Effort has been made in subsequent
studies to control autoantigen-specific effectors upon in vivo
injections of peptide-major histocompatibility class-II (pMHC-
II) nanomedicines with specificity for the immunodominant
epitope CYP2D6398-412 in a mouse model of AIH, obtained by
infecting NOD mice with replication defective adenovirus
encoding for human FTCD (104). This approach resulted in
the expansion of Tr1-cells (104). Preclinical studies have
provided evidence that antigen-specific Tregs deliver targeted
and superior immunosuppression, when compared to other
approaches, including polyclonal Tregs (105). Since generation
of antigen-specific Tregs is, however, hampered by their limited
ability to expand, recent studies have shown that these cells could
be also obtained from polyclonal Tregs through transduction of
Treg T-cell receptor or chimeric antigen receptor (CAR) (105);
or, through strategies based on the CRISPR Cas9 system where
an endogenous TCR can be replaced by a recombinant one (105).

In addition to cell-based therapies, the implementation of
which may be limited by substantial costs, Tregs could be
expanded by modifying the cytokine environment. A study by
Diestelhorst et al. proposed that the marked decrease in AIH
Tregs during immunosuppressive therapy might derive from
FIGURE 2 | Mechanisms of aberrant Th17-cell immunity in AIH. Expression of CD39 by Th17-cells is associated with acquisition of regulatory properties. These
include increased FOXP3 expression levels, IL-10 production and control of effector cell proliferation and function. In healthy subjects, levels of CD39 in Th17-cells
are regulated by the aryl-hydrocarbon-receptor (AhR)/aryl-hydrocarbon-receptor-nuclear-translocator (ARNT) complex. In AIH, Th17-cells display decreased CD39
levels and activity. This is linked, at least in part, with high levels of hypoxia-inducible-factor-1alpha (HIF-1a) that inhibits AhR levels and signaling. Th17-cells from AIH
patients also display reduced levels of A2A adenosine receptor, this implicating defective response of these cells to the immunosuppressive effects of adenosine.
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decreased levels of IL-2, a cytokine key for Treg survival (106).
Exposure of PBMCs from patients with autoimmune liver
diseases, including AIH, to very-low-dose Proleukin, used at
less than 5 IU/ml, resulted in phosphorylation of STAT-5 and
increased levels of CTLA-4 and FOXP3 in the Treg subset (107).
Administration of low dose IL-2 would enable in vivo cell
reconstitution, even when the autoantigen is unknown. In a
study on two AIH patients with persistent disease activity,
administration of low dose IL-2 resulted in Treg expansion in
both. This was evident on day 9 but returned to baseline levels on
day 28 (108). Clinical response was observed in one case,
suggesting that the effects of IL-2-induced Treg expansion is
transient and the clinical benefit limited, at least in the small
cohort studied. Additional efforts should be made to optimize
and successfully implement this approach.

To prolong the half-life of IL-2 in the bloodstream, mutants
have been developed to promote Treg expansion in vivo. Another
Frontiers in Immunology | www.frontiersin.org 7
strategy has been attempted and consists of the administration of
monoclonal antibody/IL-2 complex to expand Tregs in a mouse
model of colitis (109) and AIH (110). A new complex of IL-2 and
anti-IL-2 monoclonal antibodies was found to stimulate Treg
expansion among human T-cells ex vivo and in rhesus macaques
in vivo (111).

Transient increase in the proportion of splenic Tregs was
achieved in a mouse model of AIH, resulting from
xenoimmunization of C57BL/6 mice with DNA coding for
human liver autoantigens, after treatment with low-dose anti-
CD3 antibody (112). No differences in the proportion of splenic
and liver derived Tregs were noted in xenoimmunized mice
subjected to anti-CD20 antibody treatment, this approach
inducing AIH remission by decreasing antigen presentation
(through B-cells) and help to T lymphocytes (113). Whether
belimumab, an inhibitor of serum B-cell activating factor that
has been recently proposed as a promising treatment option for
FIGURE 3 | New immunotherapies for tolerance reconstitution in AIH. Strategies that might be considered as tools to re-establish immunotolerance in AIH include:
adoptive transfer of Tregs, polyclonally expanded in vitro in the presence of high dose IL-2 and CD3/CD28 T-cell activator or generated under antigen-specific
conditions upon co-culture with semi-mature dendritic cells; modulation of the cytokine milieu by administration of low dose IL-2 or monoclonal antibody/IL-2
complex; use of Era or HIF-1a antagonists to interfere with aberrant AhR signaling in Tregs (Era) and Th17-cells (HIF-1a); boosting of purinergic signaling through
the use of exogenous apyrase, APT102, an ADPase that was found to enhance the beneficial effects of AhR activation in vivo and in vitro, and A2A adenosine
receptor agonists to amplify the immunosuppressive properties of adenosine.
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patients with refractory AIH and advanced liver-related fibrosis,
induces disease remission having also a beneficial impact on Treg
frequencies, is unknow (114).

As immunoregulatory defects in AIH involve both Tregs and
effector Th17-cells, future approaches targeting both cell types
should be considered. Our research has shown impaired CD39
levels in both Tregs and Th17-cells obtained from the peripheral
blood of AIH patients. Reduced CD39 expression is present in
AIH patients during active disease and remission, suggesting an
intrinsic defect of this ectoenzyme in AIH Treg and Th17
lymphocytes (42, 43). This defect derives, at least in part, from
aberrant increase in the levels of Era, an alternative AhR partner,
which is upregulated in AIH Tregs; and from high expression of
HIF-1a, an AhR inhibitor, which is upregulated in AIH Th17-
cells. In this regard, strategies inhibiting Era and HIF-1a may
help reconstituting the altered AhR signaling in AIH, and along
with this, CD39 and immunotolerance.

Alternatively, interventions that boost CD39 levels might
represent an additional option to bypass the altered AhR
signaling/pathway and restore immunotolerance by enhancing
the levels and/or activity of this ectoenzyme.

These approaches could be based on exogenous apyrase that
has ectoenzymatic activity comparable to CD39; and APT102,
the extracellular domain with improved ADPase activity of
human nucleoside-triphosphate-diphosphohydrolase-3, a
member of the CD39 family (115). APT102 was found
beneficial in enhancing the immunoregulatory properties of
the AhR ligand UCB in an experimental model of colitis in
mice and in promoting increased levels of immunoregulatory
molecules on Tregs and Tr1-cells (115). Notably, there were no
safety or toxicity concerns when APT102 treatment was
protracted after resolution of colitis in vivo (115). Additional
studies reported on the safety profile of this molecule in the
vascular setting (116, 117). However, since CD39 also plays
an important role in tumor development and progression
(99, 118–121) and inhibition of effector immune responses
against pathogens (99, 122, 123), the safety of long-term
treatments aimed at restoring the levels of this ectoenzyme in
the context of autoimmune diseases should be considered and
carefully evaluated. A2A receptor agonists that enhance the
Frontiers in Immunology | www.frontiersin.org 8
adenosinergic signal might also have a role in restoring
immunotolerance by reconstituting the purinergic milieu (41).

Strategies targeting CD39 antisense RNA, a long noncoding
RNA regulating CD39 at both mRNA and protein levels, should
be taken into consideration. Silencing of CD39 antisense RNA
has been effective in containing disease activity in an
experimental mouse model of colitis in humanized NOD/scid/
gamma mice, reconstituted with human CD4-cells (124).
CONCLUDING REMARKS

This review has discussed the mechanisms mediating liver
damage perpetuation and progression in AIH with a specific
focus on the imbalance between Tregs and Th17-cells.

Numerous pathways might be involved in AIH disordered
immunity. We have discussed how defects in CD39 are linked
with aberrant AhR signaling in AIH-derived Tregs and Th17-
cells. Standard treatment of AIH is still based on corticosteroids
and azathioprine, immunosuppressive drugs that currently
enable control of inflammation without, however, restoring
immunotolerance and preventing progression to end-stage
liver disease. Strategies targeting factors that interfere with
AhR canonical pathway or directly boosting CD39 expression
and activity might represent new therapeutic avenues in the
treatment of AIH.
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