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Wild-type APC
Influences the Severity

of Familial Adenomatous
Polyposis
ermline mutations in the
Gadenomatous polyposis coli
(APC) gene are responsible for familial
adenomatous polyposis (FAP). FAP
patients develop multiple colonic ade-
nomas early in life. The number of
polyps can vary considerably because
of different mutations1 but also for
family members carrying the same
mutation.2 Several genes have been
considered as modifiers for the intra-
familial severity differences.3

We generated APC1311/þ mutant
pigs, orthologous to the hotspot
APC1309 mutation,4 which is associated
with severe FAP in humans. These pigs
recapitulate major hallmarks of the
human disease5 and provide a trans-
lational model for preclinical studies.6
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To identify differentially expressed
genes, RNA sequencing of 35 normal
mucosa samples from APC1311/þ pigs
with low or high polyp number was
carried out. After multi-comparison
testing, the only significant difference
was obtained for cholesterol 7 alpha-
hydroxylase (Supplementary Figure 1A
and B). However, the up-regulation of
the gene is likely the result of colon
inflammation,7 as confirmed by similar
cholesterol 7 alpha-hydroxylase mRNA
expression in non-inflamed colon
mucosa of young APC1311/þ pigs
(Supplementary Figure 1C).

Because renewed wild-type APC
expression increased apoptosis of colo-
rectal cancer cells,8 we asked whether
expression differences in APC itself
could be responsible for the polyposis
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the colon) (interquartile range ¼ 28.5
versus interquartile range ¼ 138)
(Figure 1C and D). These results indi-
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Figure 2. Altered wild-type APC expression affects the function of the normal colon epithelium in APC1311/D pigs. (A)
Representative hematoxylin-eosin and Ki67 immunohistochemistry staining. Scale bar, 200 mm. (B) Measurements of mucosa
thickness. (C) Measurements of crypts heights. (D) Percentage of Ki67 positive cells (n ¼ 30 per genotype). (E) LGR5 mRNA
expression in laser microdissected epithelial crypts from normal mucosa samples (n ¼ 12). (F) Representative pictures showing
formation of organoids derived from normal colon mucosa. (G) Number of organoids counted on bright field images (n ¼ 6 per
passage). (H) Relative frequency of wild-type (wt) APC allele measured by quantitative polymerase chain reaction in colon
organoids (n ¼ 2 per genotype). *P < .05, **P < .01, ***P < .001.
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APC allele determines the severity of
polyposis in APC1311/þ pigs.

The mutant APC1311 allele gener-
ates a shortened mRNA and a trun-
cated protein. By using reverse
transcriptase polymerase chain reac-
tion, primers specific for the 3’ end or
antibodies for the C-terminus mRNA
and protein derived solely from the
wild-type alleles could be quantified.
In normal mucosa, the expression of
the G allele was reduced by approxi-
mately 2-fold for both mRNA and
protein (Figure 1E and F,
Supplementary Figure 2). This was
not due to altered CpG methylation of
the promoter; here too changes were
restricted to the 3’UTR (Figure 1G). A
luciferase-based 3’UTR assay showed
a significant activity reduction for the
G compared with the A variant
(Figure 1H). Addition of the Mimic-
17-5P resulted in decreased lucif-
erase values for both alleles.
Together, these results indicated that
the c.10046A/G SNP was responsible
for the difference in APC expression
and disease severity.

Functional analysis ofnormalmucosa
showed increased mucosa thickness for
the A*G genotype, but similar crypt
length, a higher number of Ki67 positive
cells, and increased mRNA expression of
the colon stem cells marker LGR5
(Figure 2A–E). This was reflected in the
increased ability to form organoids for
the colon epithelium of A*G genotype
(Figure 2F and G), which was associated
with increased inactivation of the wild-
type APC allele (Figure 2H). Immuno-
staining revealed no differences for
goblet cells, CD3þ, neutrophils, and
macrophages between A*A and A*G ge-
notypes (Supplementary Figure 3).

In summary, normal tissue hemo-
stasis in the APC1311 model is only
possible if the effect of the mutant
allele is counteracted by strong
expression of the wild-type APC allele.
Expression of truncated APC in com-
bination with reduced expression of
wild-type allele enhances Lgr5 and
Wnt signaling, cell proliferation, and
the risk of second mutations, eg, loss of
heterozygosity resulting in polyposis.
The results provide evidence support-
ing previous observations showing
that reduced APC mRNA expression
can be associated with polyp formation
in human FAP patients,10 thus arguing
that APC itself can function as an FAP
modifier gene and that expression
imbalance is a disease risk factor.

A detailed description of methods is
included in the Supplementary
Material (www.cmghjournal.org or
http://doi.org/10.1016/j.jcmgh.2021.
11.002).
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Supplementary Figure 1.
Differentially expressed genes in
normal mucosa of APC1311/þ pigs
with low alnd high polyp number.
(A) Whole genome association
analysis.Quantitative PCR analysis
showing CYP7A1 expression in
normal mucosa of 4- month old (B)
and 1- month old (C) APC1311/þ
pigs.
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Supplementary Figure 2. Uncropped Western blots for wild-type APC protein.
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Supplementary Figure 3.
Immunohistochemistry staining
and quantitative measurement of
normal colon mucosa sections
from APC1311/þ pigs with A*A (n ¼
20) and A*G (n ¼ 20) genotype.
Immunostaing for Goblet cells (A),
CD3 T cells (B), neutrophils (C),
and macrophages (D).
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