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Abstract: Spectrum sensing is the most important task in cognitive radio (CR). In this paper, a new
robust distributed spectrum sensing approach, called diffusion maximum correntropy criterion
(DMCC)-based robust spectrum sensing, is proposed for CR in the presence of non-Gaussian noise
or impulsive noise. The proposed distributed scheme, which does not need any central processing
unit, is characterized by an adaptive diffusion model. The maximum correntropy criterion, which is
insensitive to impulsive interference, is introduced to deal with the effect of non-Gaussian noise.
Simulation results show that the DMCC-based spectrum sensing algorithm has an excellent robust
property with respect to non-Gaussian noise. It is also observed that the new method displays a
considerably better detection performance than its predecessor (i.e., diffusion least mean square
(DLMS)) in impulsive noise. Moreover, the mean and variance convergence analysis of the proposed
algorithm are also carried out.

Keywords: robust spectrum sensing; maximum correntropy criterion (MCC); diffusion scheme;
non-Gaussian noise; cognitive radio networks

1. Introduction

Cognitive radio (CR), which can exploit the vacant spectrum dynamically, has been considered
as a promising technology for response spectrum scarcity [1–3]. The most important component of
CR is spectrum sensing. This is because cognitive users (CUs) should know their own operating
environments to make sure that the primary users (PUs) are not interfered with by CUs. A large
number of schemes has been proposed for this target, including energy detection [4], matched filtering
detection [5], cyclostationary detection [6] and cooperative spectrum sensing [7,8].

Cooperative spectrum sensing is proposed to tackle the problem of shadow fading and hidden
primary receivers [9]. Among the cooperative spectrum sensing methods, centralized cooperative
sensing [9,10] lets each CU send information to a central processing unit, and then, the decisions about
the presence or absence of the PU are made by a certain fusion algorithm. In [11], fuzzy data fusion
Kalman filter-based cooperative spectrum sensing has been proposed to make a global sensing decision.
The fuzzy data fusion Kalman filter, which has been applied to reduce failure risk in an integrated
vehicle health maintenance system (IVHMS) [12], is an effective and reliable method to improve
sensing performance in CR. Because of the central processing unit, high communication overhead
and enormous computing power are needed [13]. To solve these problems, decentralized cooperative
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sensing methods have been proposed, such as consensus algorithms [14,15], belief propagation [16]
and diffusion methods [17–19].

Some recent literature [17–19] has proposed distributed diffusion methods (diffusion least mean
square (DLMS)), which allow each CU to collect data from its neighbors and make detection decisions
based on these data without any central processing unit. As it is a distributed and adaptive diffusion
scheme, DLMS has an ability to enhance network failure resistance. However, this diffusion solution
is only suitable for Gaussian noise. If the network is disturbed by non-Gaussian noise or so-called
impulsive noise, the detection performance of this diffusion solution may deteriorate seriously.

Typical non-Gaussian noise distribution [20–23] has heavy tails, which may be generated by
multiple impulsive interference. For example, the impulsive nature of the noise in industrial, scientific
and medical (ISM) bands leads to impulsive noise. Impulsive noise is also caused by microwave
ovens or devices with electromechanical switches. In addition, impulsive interference is also caused
by various components on a computer platform. What is more, igniting car engines, power lines and
heavy current switches in urban environments are the typical man-made impulsive noise sources.
Impulsive interference in real-world environments degrades the performance of spectrum sensing.

In order to solve the non-Gaussian noise problem in CR, various robust spectrum sensing
approaches have been published [24–27] in recent years. In [24], a p-th order moment-based spectrum
sensing has been proposed to counteract impulsive noise. An accurate kernelized energy detector
is displayed in [25]. Besides, Ref. [26] presents a soft-limited polarity-coincidence-array spectrum
sensing to detect the primary signal distorted by non-Gaussian noise. However, these approaches
are single-user detections, which have a limited capability to detect the signal in complex noise
environments. In [27], a multi-user detection algorithm called Rao test-based cooperative spectrum
sensing has been proposed for robust detection. Although this detection scheme performs well in
centralized cooperation, it needs a central processing unit. The disadvantage of the central unit
is obvious, that is once the central unit fails, it can easily lead to paralysis of the entire network.
In order to solve the shortcoming of centralized cooperation and improve robustness for CR, a robust
distributed cooperation spectrum sensing approach is needed. As far as we know, there are no
previous studies in the literature dealing with the robust distributed spectrum sensing in non-Gaussian
noise environments.

In this paper, a distributed robust spectrum sensing (without any central processing unit), called
diffusion maximum correntropy criterion (DMCC)-based robust spectrum sensing, is proposed in
non-Gaussian noise environments. The correntropy, as a nonlinear similarity measure in information
theoretic learning (ITL), has been successfully used in non-Gaussian noise for its robust and
cost-efficient function [28–30]. The new distributed robust spectrum sensing is motivated by the
desirable features of correntropy and the diffusion model schemes [17,18]. The main contributions of
this paper are three-fold: A DMCC-based robust spectrum sensing scheme is presented to solve the
distributed power estimation with non-Gaussian noise; a version of DMCC-based robust spectrum
sensing, namely adaptation to combination DMCC (ATC DMCC) algorithm, is derived, which can
solve the non-Gaussian noise problem in spectrum sensing; the mean and mean square performance
of the new power estimation algorithm have been analyzed. In addition, the simulation results show
that the performance of the proposed method is excellent under impulsive noise environments.

This paper is organized as follows: in Section 2, we describe the signal model and non-Gaussian
noise model; a brief review of MCC is given in Section 3; in Section 4, we derive the distributed
DMCC-based power estimation algorithm and develop the DMCC-based robust spectrum sensing
algorithm; in Section 5, we present the mean analysis, the variance convergence analysis and the
detection performance analysis; in Section 6, the performance of the proposed sensing scheme is
evaluated and compared with existing sensing algorithms. Finally, the conclusion is given in Section 7.
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2. Signal Model and Non-Gaussian Noise Model

2.1. Signal Model

In this paper, every CU is interested in performing spectrum sensing in a distributed manner
without any central processing unit, where CU gets the available information from its neighbors. It is
assumed that the information transfer between neighbor CUs is lossless. Generally, the spectrum
sensing problem in a distributed system can be described as a two-hypotheses decision as:{

H0 : xk (n) = vk (n)
H1 : xk (n) = aks (n) + vk (n) , (n = 1, 2, ...)

(1)

where k = 1, 2, ..., K is the CU number and n = 1, 2, ..., N is the sample index. xk (n) is the received
signal of the CU k; s (n) is the signal emitted by the PU; vk (n) can be regarded as the non-Gaussian
noise, which will be described in detail below. s (n) and vk (n) both are independently and identically
distributed (i.i.d). At the same time, they are statistically independent of each other. ak represents
the channel gain of the CU k. As the channel is assumed to be a slowly fading channel in this paper,
the channel gain can be considered constant and obtained by: ak ∼ N (0, 1). The two-hypotheses H0

and H1 denote the absence and presence of the PU signal, respectively.
In energy detection theory [4], an energy detector is an energy measurer that gauges the energy of

the received signal. Based on these energy data, it decides whether the received waveform contains
the PU signal. According to (1), we obtain the energy model at CU k: H0 : E

[
|xk (n)|2

]
= E

[
|vk (n)|2

]
H1 : E

[
|xk (n)|2

]
= E

[
|ak|2|s (n)|2

]
+ E

[
|vk (n)|2

] (2)

where E
[
|xk (n)|2

]
denotes the average power of the received data samples, E

[
|vk (n)|2

]
= σ2

v is the

average power of noise and the power of the PU signal is E
[
|s (n)|2

]
= S. In this paper, the received

power estimated by CU k is represented by Pk (n).

2.2. Non-Gaussian Noise Model

The non-Gaussian noise, which is also called impulsive noise, is modeled as a Gaussian mixture in
this paper. The Gaussian mixture model has been widely applied in wireless communications. We can
get the impulsive noise by [31]:

vk (n) = g1,k (n) + dk (n) g2,k (n) (3)

where g1,k (n) and g2,k (n), the two zero mean Gaussian noises with variances σ2
1 and σ2

2 , respectively,
are independent. dk (n), a sequence of ones and zeros, which is an independently and identically
distributed (i.i.d) Bernoulli random process with occurrence probabilities, Pr (dk (n) = 1) = p. It is
necessary to note that the variance σ2

2 is chosen to be much larger than σ2
1 , so that a large impulse will

appear when dk (n) = 1.

3. Brief Background of the Maximum Correntropy Criterion

MCC has been successfully and widely applied in adaptive filtering [29,30]. Correntropy is
generalized to measure the similarity of two random variables. The correntropy is defined as [28]:

V (X, Y) = E [κ (X, Y)] =
∫

κ (x, y)dFx,y (x, y) (4)
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where E denotes the expectation operator, Fx,y (x, y) is the joint distribution of the two variables and
κ (·, ·) is a Mercer kernel. In practice, the joint distribution Fx,y (x, y) is unavailable, and the number of
data we know is limited. In these cases, the correntropy can be estimated as the sample mean:

V (X, Y) = E [κ (X, Y)] ≈ 1
N

N

∑
i=1

κ (xi, yi) (5)

where N is the sample number.
In this paper, the most popular Gaussian kernel [32] is applied in correntropy, and it can be

expressed as:

κ(x, y) =
1√
2πσ

exp
(
− e2

2σ2

)
(6)

where e = x− y is the error and σ is the kernel size. According to the Gaussian kernel, the instantaneous
MCC cost is given by [29]:

JMCC (n) =
1√
2πσ

exp
(
−e2(n)

2σ2

)
(7)

MCC has some desirable advantages. For example, it is almost bounded for any distribution;
it is also a local similarity measure and is robust to outliers. Based on these favorable advantages,
we derive the distributed diffusion MCC-based power estimation algorithm in the following section.

4. Distributed Diffusion Maximum Correntropy Criterion-Based Power Estimation and
Spectrum Detection

4.1. Derivation of the Distributed DMCC-Based Power Estimation Algorithm

According to the energy model (2), each CU receives the signal transmitted by the PU and
estimates its power. As the channel gain is different, the estimated power at each CU differs. When the
channel condition at CU k is poor, the power is low. On the contrary, if the CU has a good channel
condition, it will have a high power performance. In this article, CUs cooperate to estimate a common
parameter Po, the average power of all CUs.

Po =
1
K

K

∑
k=1

E
[
|xk(n)|2

]
= S

1
K ∑

k=1
|ak|2 + σ2

v (8)

According to the MCC cost (7), the global cost function for each CU can be expressed as:

Jglob (P) =
K

∑
k=1

1√
2πσ

exp
(
− 1

2σ2

∣∣∣|xk (n)|2 − P
∣∣∣2) (9)

The optimal solution is obtained by minimizing (9).
In this paper, every CU is interested in estimating the average power Po in a distributed manner,

where the CU gets the available information from its neighbors. The distributed manner does not need
any central processing unit, which improves the robustness and stability of the algorithm. The local
cost function [33] of the DMCC for each CU is defined as:

Jloc
k (P) = ∑

l∈Nk

αl,k
1√
2πσ

exp
(
− 1

2σ2

∣∣∣|xl (n)|2 − P
∣∣∣2) (10)

where Nk is the neighborhood set of CU k,
{

αl,k
}

is a set of nonnegative coefficients, which satisfy the
following conditions:

αl,k ≥ 0,
K

∑
l=1

αl,k = 1, and αl,k = 0 i f l /∈ Nk (11)
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This means that for every CU k, the sum of the coefficients
{

αl,k
}

is one. We collect the entries{
αl,k
}

into a K× K matrix A.
The derivative of (10) is:

∇Jloc
k (P) =

1
σ2 ∑

l∈Nk

αl,k
1√
2πσ

exp
(
− 1

2σ2

∣∣∣|xl (n)|2 − P
∣∣∣2)(|xl (n)|2 − P

)
(12)

We take the steepest descent method to yield:

Pk (n + 1) = Pk (n) + ηk∇Jloc
k (P)

= Pk (n) +
ηk
σ2 ∑

l∈Nk

αl,k
1√
2πσ

exp
(
− 1

2σ2

∣∣∣|xl (n)|2 − P
∣∣∣2)(|xl (n)|2 − P

) (13)

where ηk is the step size. For the sake of simplicity, we set µk =
ηk√
2πσ3 (k = 1, 2, · · · , K) as the new step

size. Therefore we have:

Pk (n + 1) = Pk (n) + µk ∑
l∈Nk

αl,k exp
(
− 1

2σ2

∣∣∣|xl (n)|2 − P
∣∣∣2)(|xl (n)|2 − P

)
(14)

Next, we can obtain the intermediate estimates of each CU by:

ψk (n) = ∑
l∈Nk

βl,kPl (n) (15)

where ψk (n) represents an intermediate estimate for CU k at instant n. The non-negative element βl,k
defines if the estimate from CU l (including CU k) is available for CU k. They satisfy the conditions:

βl,k ≥ 0,
K

∑
l=1

βl,k = 1, and βl,k = 0 i f l /∈ Nk (16)

We collect the entries
{

βl,k
}

into a K × K matrix B. With the intermediate estimates, the CUs
update the estimates by (14):

θk (n) = ψk (n) + µk ∑
l∈Nk

αl,k exp
(
− 1

2σ2

∣∣∣|xl (n)|2 − ψk (n)
∣∣∣2)(|xl (n)|2 − ψk (n)

)
(17)

The coefficients
{

αl,k
}

decide which CUs should share their measurements with CU k. At last,
each CU combines the estimates as:

Pk (n + 1) = ∑
l∈Nk

γl,kθl (n) (18)

where the coefficients
{

γl,k
}

are similar to
{

βl,k
}

, and they represent whether CUs should share their
intermediate estimates θl (n) with CU k. We collect the entries

{
γl,k
}

into a K× K matrix R.
There are detailed descriptions of the selection of the weights βl,k, αl,k and γl,k in [34]. We can

see that Equation (17) is similar to those in [33,34]. The only difference is that it contains an extra

scaling factor exp
(
− 1

2σ2

∣∣∣|xl (n)|2 − ψk (n)
∣∣∣2), which is an exponential function of the error. When a

large noise occurs, this factor is close to zero, which endows the DMCC method with robustness and
significantly improves the adaptation performance in impulsive noise.
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4.2. ATC DMCC-Based Power Estimation

There are mainly two different schemes (including the adapt-then-combine (ATC) scheme and the
combine-then-adapt (CTA) scheme) for the diffusion estimation [33,34]. The ATC scheme first utilizes
the adaptive algorithm to update the local estimates and then combines the estimates. The CTA scheme,
however, has a reverse order. As the learning performances of the two versions of DMCC-based
algorithms are almost the same [34], we only discuss the ATC DMCC in this paper.

According to the adapt-then-combine scheme, one can obtain the following ATC DMCC method
for the power estimation by combining (17) and (18):

θk (n) = Pk (n) + µk ∑
l∈Nk

αl,k exp
(
− 1

2σ2

∣∣∣|xl (n)|2 − Pk (n)
∣∣∣2)(|xl (n)|2 − Pk (n)

)
Pk (n + 1) = ∑

l∈Nk

γl,kθl (n)
(19)

The ATC DMCC estimation algorithm consists of two parts, an information exchange step and
a combination step. In the information exchange step, every CU utilizes the information {xl (n)}
from its neighbors to update the estimate θk (n); while in the combination step, each CU combines the
estimates from its neighbors to obtain the intermediate estimate Pk (n + 1).

For less information communications, we set A = I. No information exchange is performed in the
first part, so the ATC DMCC (19) reduces to:

θk (n) = Pk (n) + µk exp
(
− 1

2σ2

∣∣∣|xk (n)|2 − Pk (n)
∣∣∣2)(|xk (n)|2 − Pk (n)

)
Pk (n + 1) = ∑

l∈Nk

γl,kθl (n)
(20)

4.3. ATC DMCC-Based Robust Spectrum Sensing

We summarize (20) together with energy detection as Algorithm 1.

Algorithm 1 ATC DMCC-Based Robust Spectrum Sensing.

Start with Pk (0) = P (0) for each CU. Choose proper coefficients γl,k, µ and σ.
for every time instant n ≥ 1 do

for every CU k = 1, ..., K, do
1. Power estimation:

Adaption:

θk (n) = Pk (n) + µk exp
(
− 1

2σ2

∣∣∣|xk (n)|2 − Pk (n)
∣∣∣2)(|xk (n)|2 − Pk (n)

)
Combination:
Pk (n + 1) = ∑

l∈Nk

γl,kθl (n)

2. Detection decision:
H0 : Pk (n + 1) < λ or H1 : Pk (n + 1) > λ

The threshold λ is described in detail in Subsection 5.3.
end for

end for

5. Performance Analysis

In this section, we study the performance analysis of the proposed algorithm. The mean
performance and the variance of the performance of the proposed algorithm are analyzed first.
Then, we study the energy detection performance. In order to facilitate the analysis, the following
assumptions are to be adopted.

Assumption 1. All input signals xk (n) are spatially and temporally independent.
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Assumption 2. The error nonlinearity rk (n) = exp

− 1
2σ2

∣∣∣∣∣|xl (n)|2 − ∑
i∈Nk

βk,iPi (n)

∣∣∣∣∣
2
 is independent of

the input signal xk (n).

Strictly speaking, Assumption 2 does not accord with this fact because rk (n) is a function of error.
However, this function can be considered as a variable step size term.

Because of the information exchange amongst CUs, the current estimates will affect their update.
Therefore, in view of this dependence between CUs, we study the performance of the whole network.
The proposed DMCC algorithm can be expressed as:

Pk (n + 1) = ∑
l∈Nk

βk,l Pl (n) + µk ∑
i∈Nk

αl,krk (n)

(
|xl (n)|2 − ∑

l∈Nk

βk,l Pl (n)

)
(21)

When A = I, the algorithm will reduce to a simple version as:

Pk (n + 1) = ∑
l∈Nk

βk,l Pl (n) + ρk (n)

(
|xk (n)|2 − ∑

l∈Nk

βk,l Pl (n)

)
(22)

where ρk (n) = µkrk (n) as a new step size factor.
Furthermore, for more convenience, some other new variables are needed. Then, we stack the

local ones into global variables as follows:

P (n) = col {P1 (n) , P2 (n) , · · · , PK (n)} (23)

Ψ (n) = diag {ρ1 (n) , ρ2 (n) , · · · , ρK (n)} (24)

X (n) = col
{
|x1 (n)|2, |x2 (n)|2, · · · , |xK (n)|2

}
(25)

We define extra matrix U, which contains the step size parameters as follows

U = diag (µ1, µ2, · · · , µK, ) (26)

According to the above new variables above, we remodel the update equations to represent the
global network:

P (n + 1) = BP (n) + Ψ (n) [X (n)− BP (n)] (27)

where Ψ (n) = UR (n) is a diagonal matrix, and R (n) is defined by:

R (n) = diag

exp

− 1
2σ2

∣∣∣∣∣|x1 (n)|2 − ∑
l∈N1

β1,l Pl (n)

∣∣∣∣∣
2
 , exp

− 1
2σ2

∣∣∣∣∣|x2 (n)|2 − ∑
l∈N2

β2,l Pl (n)

∣∣∣∣∣
2


, · · · , exp

− 1
2σ2

∣∣∣∣∣|xK (n)|2 − ∑
l∈NK

βK,l Pl (n)

∣∣∣∣∣
2


(28)

Through the above equations, we can derive the mean performance and the variance performance.

5.1. Mean Performance

According to (27), we can rewrite the recursion as follows:

P (n + 1) = [I−Ψ (n)]BP (n) + Ψ (n)X (n) (29)
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Taking the expectation on both sides of (30), we have:

E [P (n + 1)] = E [I−Ψ (n)]BE [P (n)] + E [Ψ (n)X (n)] (30)

We employ Assumption 2 to infer that the matrix Ψ (n) is independent of the matrix X (n),
and then, we have:

E [P (n + 1)] = B [I− E [Ψ (n)]] E [P (n)] + E [Ψ (n)] E [X (n)] (31)

From (31), the mean is stable if and only if the eigenvalues of matrix B [I− E [Ψ (n)]] satisfy the
following condition:

|λmax (B [I− E [Ψ (n)]])| = |λmax (BZ)| < 1 (32)

where Z = I− E [Ψ (n)], and the maximum eigenvalue of a matrix is denoted by λmax (·). Because of
the relation ‖BZ‖ ≤ ‖B‖ ‖Z‖ and ‖B‖ = 1, we derive |λmax (BZ)| ≤ |λmax (Z)|. The algorithm will be
stable if |λmax (Z)| < 1, so we have:

|λmax (Z)| = |λmax (I− E [Ψ (n)])| = |λmax (I− µkE [R (n)])| < 1 (33)

Thus, the step size satisfies:
|1− µkE [rk (n)]| < 1 (34)

We further derive:
0 < µk <

2
E [rk (n)]

, k = 1, 2, · · · , K (35)

Therefore, the algorithm will be stable if the step size is in the bound of (35).
It is necessary to note that the condition of (35) is similar to those in [17,18]; the only difference is

the extra term E [rk (n)], which is the expectation of the error nonlinearity introduced by MCC.

5.2. Variance Performance

We denote the covariance of the estimate as Cov (P (n)), which is defined as:

Cov (P (n)) = E
[
‖P (n)− E [P (n)]‖2

Σ

]
(36)

Substituting (29) and (30) into (36), we have:

Cov (P (n + 1)) = E [‖[I−Ψ (n)]XP (n) + Ψ (n)X (n)−

[I− E [Ψ (n)]]BE [P (n)]− E [Ψ (n)] E [X (n)]‖2
Σ

] (37)

We can see that when the kernel size is large, the elements in Ψ (n) = µkR (n) are very small,
and the variation of Ψ (n) is also very small. Therefore, we can consider that Ψ (n) = E [Ψ (n)]. Thus,
we have:

Cov (P (n + 1)) = E [‖B (I− E [Ψ (n)]) (P (n)− E [P (n)]) +

E [Ψ (n)] (X (n)− E [X (n)])‖2
Σ

] (38)

Considering the fact that P (n) and observation vector X (n) are independent, the covariance
recursion can be shown as:

Cov (P (n + 1)) = B (I− E [Ψ (n)]) E [P (n)− E [P (n)]] (I− E [Ψ (n)])BT+

E [Ψ (n)] E [X (n)− E [X (n)]] E [Ψ (n)]
(39)
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Therefore, we have:

Cov (P (n + 1)) = B (I− E [Ψ (n)])Cov (P (n)) (I− E [Ψ (n)])BT+

E [Ψ (n)]Cov (X (n)) E [Ψ (n)]
(40)

This is the transient behavior of the network. Although (40) does not explicitly show the variance
performance, it is in fact subsumed in the weighting matrix B (I− E [Ψ (n)]), which varies for each
iteration. However, the effect of the algorithm on the performance is clearly shown in (40).

5.3. Detection Performance Analysis

In order to derive the probability of false alarm (Pf ) and detection (Pd) for the proposed algorithm,
the probability density function (PDF) of the test statistic Pk (n) under both hypotheses H0 and H1

needs to be evaluated.
As mentioned earlier, the DMCC method is very robust to outlier points. Thus, when an impulsive

noise occurs, the factor exp
(
− 1

2σ2

∣∣∣|xk (n)|2 −Ψk (n)
∣∣∣2), which can be seen as the weight of the error

|xk (n)|2 −Ψk (n), is close to zero, so the impulsive noise does not lead to a large estimate. Therefore,
when K = 1, we can regard the test statistic of energy detection Pk (n) as a chi-square distributed
random variable with 2N degrees of freedom. The test statistic Pk (n) consists of a lot of identically
distributed variables. According to the central limit theorem (CLT), when the number of samples is
large enough, the chi-square distribution is approximated by a Gaussian distribution [35]. However,
when K > 1, the test statistic Pk (n) in the case of hypothesis H1 consists of a sum of a various
independent, but not identically distributed variables. In this case, we apply the Lyapunov CLT [36];
when the number of samples N is large enough, Pk (n) is a Gaussian approximation. The simulation
result (Figure 1), shows that this approximation is reasonable. In this case, when Pk (n) is a Gaussian
approximation, the formulas for the Pf and Pd of the energy detector can be derived under the
Neyman–Pearson criterion [37].
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Figure 1. PDF of the power estimation and the Gaussian distribution.
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By taking the previous results into account, the approximate formulas for the recursive
performance are derived. The probability of false alarm Pf under hypothesis H0 is given as follows:

Pf = Q

(
λ− E (Pk (n)|H0)√

Var (Pk (n)|H0)

)
(41)

where λ is the threshold, and Q (x) = 1√
2π

∫ ∞
x exp

(
− t2

2

)
dt.

Similarly, the probability of detection Pd under hypothesis H1 is given as follows:

Pd = Q

(
λ− E (Pk (n)|H1)√

Var (Pk (n)|H1)

)
(42)

The sensing threshold of the detector can be calculated from (41) by the predefined value of Pf . Thus:

λ = Q−1
(

Pf

)√
Var (Pk (n)|H0) + E (Pk (n)|H0) (43)

The threshold is determined by the noise power and the predefined false alarm probability Pf .

6. Simulation Results

In this section, the performance of the proposed algorithm is simulated. In order to verify
the performance, we consider a distributed network with K = 20 CUs. The network topology is
generated as the realization of the random geometric graph model (shown in Figure 2). The parameters
for measurement Gaussian mixture noise are σ2

1 = 1, σ2
2 = 100σ2

1 and Pr (dk (n) = 1) = p = 0.01.
We examine the learning performance of the new algorithm by the global average mean-square error,

MSE = 1
K

K
∑

k=1
E
[∣∣P0 − Pk (n)

∣∣2]. We compare the performance of the new power estimation algorithm

with the diffusion algorithm called ATC DLMS [18].

Figure 2. Network topology with K = 20 cognitive users (CUs).

6.1. Performance of Power Estimation Comparison among the New Method and Other Algorithms

First of all, we investigate the power estimation algorithm and the comparison among the new
method (ATC DMCC) and ATC DLMS in [18]. The channel gain is assumed to be constant and
generated by a standard normal distribution: ak ∼ N (0, 1). All algorithms use the same channel
gain. To guarantee the almost same initial convergence rate, we set the step sizes at 0.001 and 0.0004
for the mentioned ATC DMCC and ATC DLMS, respectively. The kernel size is chosen as 50 for
ATC DMCC algorithm. Furthermore, all the CUs receive N = 4× 104 samples, and the PU signal is
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absent during the first half of the samples n = 1, 2, ..., 2× 104 and present in the other half of samples
range. Under both detection hypotheses, all CUs are disturbed by the same Gaussian mixture noise.
The combination weights γl,k are calculated by the averaging rule: [38]

γl,k =

{
1
nk

, if k 6= l are neighbors or k = l
0, otherwise

(44)

where nk is the degree of CU k, which means CU k has nk neighbors. All parameters are set by scanning
for the best results. All the simulation results are obtained by taking the ensemble average of the
network over 100 independent Monte Carlo runs.

Figure 3 shows the performance curves in terms of power estimation with different signal to
noise ratios (SNR = −5 dB, 0 dB, 5 dB). Figure 3a shows the convergence curves in terms of the
power estimation. One can observe that the ATC DMCC algorithm works well in Gaussian mixture
noise, while the ATC DLMS algorithm fluctuates significantly. As one can see from the results,
the proposed ATC DMCC algorithm has a much better performance in convergence rate and accuracy
compared with the ATC DLMS algorithm. The results confirm that the proposed algorithm shows a
significant improvement in robust performance in impulsive noise environments. Figure 3b shows
the convergence curves in terms of MSE, and Figure 3c shows the steady-state MSEs at each CU k.
As expected, the ATC DMCC algorithm performs better than the ATC DLMS algorithm.
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Figure 3. Performance in terms of power estimation with different SNRs. ATC, adaptation to
combination; DMCC, diffusion maximum correntropy criterion. (a) Convergence curves in terms
of power estimation; (b) Convergence curves in terms of MSE; (c) MSE at steady-state for the 20th CU.
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Secondly, we compare the learning performance of the ATC DLMS algorithm with that of the
proposed ATC DMCC under different kernel sizes σ. The kernel sizes of ATC DMCC are selected
at σ = 10, 50, 500, 1000, 5000, respectively. The SNR is chosen as 5 dB. The other parameters for the
algorithms keep the same as those in the previous simulation. It is known that kernel size is a key
parameter for the proposed ATC DMCC algorithm. When the kernel size is σ→ ∞, the ATC DMCC
algorithm degenerates into an ATC DLMS algorithm whose robustness is poor. From Figure 4, we can
see that when the kernel size σ = 5000 (which is considered to be pretty large), the power estimation
of the proposed ATC DMCC is as poor as ATC DLMS. On the other hand, the smaller the kernel size
we choose, the stronger robustness is obtained. However, the difference between power estimates
(being absent or present under the PU signal) is smaller, as well. This is because if the kernel size

is small, the scaling factor exp
(
− 1

2σ2

∣∣∣|xl (n)|2 − ψk (n)
∣∣∣2) in (17) will suppress the impulsive noise

more effectively; the power estimate on the other hand will also be small. After consideration of the
difference between power estimations (under H0 and H1) and the robustness of the proposed ATC
DMCC, the kernel size is selected at σ = 50 for the following simulations.
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Figure 4. Performance in terms of power estimation with different σ. (a) Convergence curves in terms
of power estimation; (b) Convergence curves in terms of MSE; (c) MSE at steady-state for the 20th CU.
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6.2. Probability of Detection Comparison among ATC DMCC and ATC DLMS

Next, the probability of detection of the proposed robust power estimation algorithm is
investigated. Then, we simulate the comparison among the new method and ATC DLMS. In the
following simulations, we also set the network size K = 20 CUs. Figure 5 is the simulation result of
ATC DMCC and ATC DLMS. Specifically, Figure 5a shows the receiver operating characteristic (ROC)
curves of both schemes with different noise power levels (SNR = −15 dB, −10 dB, −5 dB). Figure 5b
is the detection result with different false alarm probabilities (Pf = 0.001, 0.01, 0.1). As represented
in Figure 5, the proposed algorithm has a much better performance than the ATC DLMS algorithm
in non-Gaussian noise. This is because of the fact that the new method has the ability to restrain the
impulse noise.
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Figure 5. The probability of detection, ATC DMCC vs. ATC DLMS. (a) Description of what is contained
in the first panel; (b) Description of what is contained in the second panel.

6.3. Probability of Detection of ATC DMCC with Different Network Sizes

Lastly, the performances of five different network sizes (K = 1, 3, 7, 13, 20) are simulated.
The desired probability of false alarm is chosen as Pf = 0.001. In order to better display the simulation
results, we set the step size at 0.004 for ATC DMCC. The comparison among the estimated and
theoretical results of Pd is simulated. In the experiment, the threshold of the energy detector is
calculated by using (43) for each CU under the detection hypothesis. The theoretical Pd is obtained by
using (42). Figure 6 shows the detection performance curves of the proposed algorithm with different
network sizes. One can observe that the Pd increases as the number of CUs increases. We can also see
that the detection performance is the worst when K = 1. In this case, there is not much that can be
done to improve the Pd if only one CU is used to detect the spectrum. For K = 3, K = 7 and K = 13,
the detection probability increases due to the distributed estimation. However, when the network size
is large enough (i.e., K = 13), the Pd increases a little as the number of CUs K increases. Meanwhile,
we can see that the simulated and the theoretical Pd are almost the same.
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Figure 6. The probability of the detection of ATC DMCC with different CU numbers.

7. Conclusions

In this paper, we propose a version of the DMCC-based robust spectrum sensing scheme,
namely the ATC DMCC algorithm, for impulsive noise. The new algorithm shows strong robustness
against impulsive disturbance as MCC is very effective at handling non-Gaussian noise with large
outliers. Mean and variance convergence analyses have been carried out. We also theoretically
analyzed the detection performance of the new method. The performance of the proposed distributed
ATC DMCC-based spectrum sensing algorithm has been compared with the ATC DLMS-based
spectrum sensing [18]. Simulation results illustrate that the proposed algorithm performs very well in
non-Gaussian noise environments. It can be concluded that the ATC DMCC method can achieve better
performance than its predecessor (ATC DLMS) in impulsive noise.
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