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Drug-induced liver injury (DILI) can lead to acute liver failure, a lethal

condition which may require liver transplantation. Hepatotoxicity associ-

ated with nonsteroidal anti-inflammatory drugs (NSAIDs) accounts for

~ 10% of all DILI. In the current study, we determined whether indo-

methacin, one of the most commonly used NSAIDS, induced apoptosis

in hepatocytes and investigated the underlying mechanism. Meanwhile,

we investigated the protective effect of S-allyl-L-cysteine (SAC), an active

garlic derivative, on indomethacin-induced hepatocyte apoptosis, and its

implication on endoplasmic reticulum (ER) stress. We found that indo-

methacin triggered ER stress, as indicated by the elevated expression of

phosphorylated eukaryotic translation initiation factor 2a (eIF2a), C/EBP
homologous protein (CHOP) and spliced XBP1 in a rat liver BRL-3A

cell line. Following indomethacin treatment, caspase 3 activation and hep-

atocyte apoptosis were also observed. Inhibition of ER stress by chemical

chaperone 4-phenyl butyric acid alleviated cell apoptosis caused by indo-

methacin, indicating that ER stress is involved in indomethacin-induced

hepatocyte apoptosis. Moreover, SAC abated indomethacin-induced

eIF2a phosphorylation, inhibited CHOP upregulation and its nuclear

translocation, abrogated the activation of caspase 3 and finally, protected

hepatocytes from apoptosis. In conclusion, SAC protects indomethacin-in-

duced hepatocyte apoptosis through mitigating ER stress and may be

suitable for development into a potential new therapeutic agent for the

treatment of DILI.

Drug-induced liver injury (DILI) is a common cause

of hepatitis and hospitalization worldwide [1]. Severe

DILI leads to acute liver failure, a lethal condition

which may require liver transplantation [2]. Indo-

methacin is among the most widely used nonsteroidal

anti-inflammatory drugs (NSAIDs) due to its antipyretic

and analgesic properties. However, the hepatotoxic-

ity associated with indomethacin is of concern to

both physicians and patients. After chronic indo-

methacin intake, serum aminotransferase levels were

found to be increased in 15% of patients [3]. Also,

severe cases of acute hepatitis and death attributed
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to indomethacin therapy have been reported [3–5].
NSAIDS-associated liver injury can be divide into

three major types: hepatocellular, cholestatic and

mixed, based on the ratio of plasma alanine amino-

transferase to alkaline phosphatase (ALT/AP) [6].

Of these three types, indomethacin-induced liver

damage is mainly hepatocellular [7,8]. The mecha-

nisms how indomethacin impairs cell viability have

been studied extensively, among which reactive oxy-

gen species (ROS) generation, mitochondria dysfunc-

tion, and endoplasmic reticulum (ER) stress are

essential [9–11].
Endoplasmic reticulum is an elaborate cellular net-

work where protein folding and posttranslational

modification take place. Perturbations of ER home-

ostasis lead to accumulation of unfolded or mis-

folded proteins, a situation termed ER stress [12]. To

cope with ER stress, cells have evolved a signaling

network known as the unfolded protein response

(UPR). UPR either restores ER homeostasis or, if

the restoration fails, triggers cell apoptosis [12,13].

The C/EBP homologous protein (CHOP) is a princi-

pal mediator of ER stress-associated cell apoptosis.

Under ER stress, CHOP is induced predominantly

via PKR-like ER kinase (PERK)/eukaryotic transla-

tion initiation factor 2a (eIF2a)/activating transcrip-

tion factor 4 (ATF4) signaling, and mediates

apoptosis through mitochondrial pathway or death

receptor pathway [14]. So far, CHOP has been shown

to be implicated in NSAIDS-associated cell apoptosis

[11,15,16]. In human hepatoma cells, diclofenac and

indomethacin induced ER stress and CHOP activa-

tion, resulting in cell death [15]. Additionally, in cer-

vical cancer cells, overexpression of CHOP by

plasmid transfection leaded to apoptosis without

other stimuli, while knockdown of CHOP by siRNA

alleviated apoptosis induced by celecoxib [16]. These

studies provide powerful evidence for the implication

of ER stress and CHOP activation in NSAIDS-in-

duced cell apoptosis.

S-allyl-L-cysteine (SAC), an active and abundant

garlic derivative, possesses antioxidant, antitumor and

anti-inflammatory characteristics [17–21]. Besides,

compelling evidence demonstrates that SAC is hepato-

protective and neuroprotective [21–24]. Our previous

study revealed that SAC reduced ROS generation and

reversed mitochondria dysfunction, thus protected hep-

atocytes from alcohol-induced apoptosis [25]. Never-

theless, the impact of SAC on ER stress is still largely

unknown. The current study aims to investigate

whether SAC protects indomethacin-induced hepato-

cyte apoptosis, and explore the implication of ER

stress.

Materials and methods

Chemicals

Indomethacin (99.71%) was obtained from MedChemEx-

press LLC (Monmouth Junction, NJ, USA). SAC (≥ 98%)

and 4-phenyl butyric acid (4-PBA; 99%) were obtained

from Sigma-Aldrich (St. Louis, MO, USA). Indomethacin

was dissolved in DMSO, subpacked, and stored at �80 °C.
SAC and 4-PBA were dissolved in PBS, respectively, and

aliquots were stored at �20 °C.

Cell culture

BRL-3A, a rat liver cell line, was obtained from Kunming Cell

Bank of the Chinese Academy of Sciences (CAS; Kunming,

China) and maintained at 37 °C with 5% CO2, as previously

reported [25]. Cell passages 10–25 were used for all experiments.

CCK-8 assay

Cell viability was detected using CCK-8 assay (Dojindo Lab-

oratories, Kumamoto, Japan). Briefly, BRL-3A cells were

cultured in 96-well plates and allowed 16 h to attach before

being exposed to drugs. After treatment, medium was chan-

ged (100 µL per well) and 10 µL of CCK-8 reagent was

added to each well. Then, the plates were put back to cell

incubator for 2 h, and absorbance was measured at 450 nm.

Terminal deoxynucleotidyl transferase-mediated

uridine 50-triphosphate-biotin nick end labeling

assay

BRL-3A cell apoptosis was detected by terminal deoxynu-

cleotidyl transferase-mediated uridine 50-triphosphate-biotin
nick end labeling (TUNEL) assay (In Situ Cell Death Detec-

tion Kit, TMR red; Roche Diagnostics, Indianapolis, IN,

USA). Briefly, cells were seeded on coverslips in six-well plates.

After treatment, coverslips were washed and fixed with 4%

paraformaldehyde, then permeabilized with 0.1% citrate buffer

containing 0.1% Triton X-100. After wash, coverslips were

incubated with TUNEL reaction mix at 37 °C in dark for 1 h

and rinsed with PBS for three times. Then, coverslips were

mounted to a glass slide with a mounting medium contains

40,6-diamidino-2-phenylindole (DAPI) for nuclei staining.

Slides were observed under a fluorescence microscope, and rep-

resentative pictures were taken. TUNEL-positive as well as

total cell number were counted using IMAGEJ software (National

Institute of Health, Bethesda, MD, USA) for quantification.

Western blotting

Specific cellular protein levels were determined using west-

ern blot analysis. After treatment, BRL-3A cells were lysed

on ice with radioimmunoprecipitation assay buffer (Beijing
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ComWin Biotech, Beijing, China), and protein concentration

was normalized using bicinchoninic acid kit (Beijing Com-

Win Biotech). Equal amounts of protein (20–40 µg) were

separated by SDS/PAGE gel and electro-transferred to

nitrocellulose membranes. After blocking, membranes were

probed overnight at 4 °C with following primary antibodies:

anti-X-box binding protein 1 (XBP1s; 1 : 500), anti-p-eIF2a
(1 : 1000), anti-CHOP (1 : 1000), and anticleaved caspase 3

(1 : 500, Cell Signaling Technology, Danvers, MA, USA).

After incubation with secondary antibodies, membranes

were developed using chemiluminescence substrate (Beijing

ComWin Biotech). The same membrane was stripped,

washed, and incubated with anti-b-actin (1 : 5000; Protein-

tech, Rosemont, IL, USA) or anti-eIF2a (1 : 1000; Cell Sig-

naling Technology) for internal control. The protein bands

were semiquantified by densitometry using IMAGEJ software

(National Institute of Health).

Reverse transcription PCR

Total RNA from BRL-3A cells was extracted with the

Eastep� Super Total RNA Extraction Kit (Promega,

Madison, WI, USA) and cDNA was synthesized with the

GoScriptTM Reverse Transcription System (Promega) fol-

lowing the manufacturer’s instructions. Reverse transcrip-

tion PCR (RT-PCR) was performed using the cDNA

template and the GoTaq� Green Master Mix (Promega) as

described previously [26]. The primers for rat Xbp1 were as

follows: 50-AGCAAGTGGTGGATTTGGAAGAAG-30

and 50-AGGGTCCAACTTGTCCAGAATG-30 [27]. PCR

products were electrophoresed on a 2.5% agarose gel. The

346-bp amplicon corresponds to the unspliced Xbp1

mRNA, and the 320-bp amplicon corresponds to the

spliced Xbp1 mRNA.

Quantitative real-time PCR

cDNA was synthesized as mentioned above. Quantitative

real-time PCR was carried out using the cDNA template

and the GoTaq� qPCR Master Mix (Promega). The pri-

mers for rat spliced Xbp1 were as follows: 50-GAGTCCG

CAGCAGGTG-30 and 50-GCGTCAGAATCCATGGGA-30

[28]. The primers for rat Chop were as follows: 50-GAAAG

CAGAAACCGGTCCAAT-30 and 50-GGATGAGATATA

GGTGCCCCC-30 [27]. Data were analyzed by the compara-

tive threshold cycle method, and glyceraldehyde phosphate

dehydrogenase was used as the internal control.

Immunocytochemistry

BRL-3A cells were subcultured on coverslips in 6-well

plates. At the end of treatment, cells on coverslips were

fixed with 4% PFA for 20 min, followed by permeabiliza-

tion with 0.1% Triton X-100 for 10 min. After blocking,

coverslips were incubated with anticleaved caspase 3

antibody (1 : 100) or anti-CHOP antibody (1 : 100; Cell

Signaling Technology) at 4 °C overnight. Then, coverslips

were washed and incubated with Alexa Fluor� 488 or 555-

conjugated secondary antibody (1 : 500; Cell Signaling

Technology) at room temperature for 1 h in dark. After

wash, coverslips were mounted to a slide (the mounting

medium contains DAPI), and pictures were taken under a

fluorescence microscope. Total and nuclear fluorescence

was measured by IMAGEJ software (National Institute of

Health).

Statistical analysis

The quantitative data are presented as mean � standard

deviation (SD). GRAPHPAD PRISM 5.0 was used to analyze all

data. Statistical analyses were carried out using analysis of

variance (ANOVA). A P-value of < 0.05 was considered to

be statistically significant.

Results

Indomethacin induces apoptosis in hepatocytes

To demonstrate whether indomethacin induces hepato-

cyte apoptosis, we insulted BRL-3A cells with different

concentrations of indomethacin for 24 h. CCK-8 assay

revealed that indomethacin dose-dependently impaired

cell viability (Fig. 1A). Next, we exposed cells to

100 lM indomethacin for designated time. We found

that cell viability decreased significantly since 4-h

exposure, and deteriorated as exposure time prolonged

(Fig. 1B). Then, we recorded cell morphology under

an invert phase contrast microscope after 24-h indo-

methacin treatment. The pictures revealed that indo-

methacin increased dead cell (small round cell)

number, and decreased total cell number (Fig. 1C).

Furthermore, we detected BRL-3A cell apoptosis by

TUNEL staining. TUNEL assay stains genomic DNA

fragmentation in apoptotic cells and cellular DNA

damage in injured cells [29]. We found that indo-

methacin remarkably increased TUNEL-positive (red)

cell number (Fig. 1D). All these data demonstrate that

indomethacin induces apoptosis in hepatocytes.

Indomethacin induces ER stress in hepatocytes

To determine whether indomethacin triggers ER stress

in hepatocytes, we exposed BRL-3A cells to different

concentrations of indomethacin for 8 h. The protein

levels of several ER-associated factors (spliced XBP1,

phosphorylated eIF2a, CHOP) as well as cleaved cas-

pase 3 were detected by western blot analysis. We

found the expressions of these proteins increased dose-
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dependently (Fig. 2A,B). Next, we treated BRL-3A

cells with 50 lM indomethacin for designated time. As

expected, expressions of spliced XBP1, phosphorylated

eIF2a, CHOP, and cleaved caspase 3 all increased

time-dependently (Fig. 2C,D). Moreover, Xbp1 mRNA

splicing was induced as early as 2 h after indomethacin

exposure, as demonstrated by RT-PCR (Fig. 2E). In

parallel, the mRNA levels of spliced Xbp1 and Chop

both increased significantly after indomethacin treat-

ment (Fig. 2F). To further explore the expression and

Fig. 1. Indomethacin induces apoptosis in hepatocytes. (A) BRL-3A cells were treated with different concentrations of indomethacin for

24 h. Cell viability was detected by CCK-8 assay (n = 3, *P < 0.05, ***P < 0.001 vs. Ctrl). (B) BRL-3A cells were exposed to 100 µM

indomethacin for designated time. Cell viability was measured by CCK-8 assay (n = 3, **P < 0.01, ***P < 0.001 vs. Ctrl). (C) BRL-3A cells

were challenged with 50 or 100 µM indomethacin for 24 h. Cell morphology was recorded under an invert phase contrast microscope

(arrow: representatives of dead cells; bar: 50 µm). (D) Cells were treated with 100 µM indomethacin for 24 h. Apoptosis was detected by

TUNEL assay (red: apoptotic cells; blue: cell nuclei stained with DAPI; bar: 50 µm) and quantified (n = 3 fields, ***P < 0.001 vs. Ctrl). Data

were analyzed using ANOVA with Bonferroni’s multiple comparison tests (A, B) or unpaired Student t test (D). Error bars indicate SD.
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Fig. 2. Indomethacin induces ER stress in hepatocytes. BRL-3A cells were exposed to various concentrations of indomethacin for 8 h.

Protein levels of spliced XBP1, phosphorylated eIF2a, total eIF2a, CHOP, and cleaved caspase 3 were determined by western blot (A) and

analyzed by densitometry (B) (n = 3, *P < 0.05, **P < 0.01, ***P < 0.001 vs. Ctrl). BRL-3A cells were treated with 50 µM indomethacin for

designated time, and expressions of the same proteins were detected by western blot (C) and analyzed by densitometry (D) (n = 3,

*P < 0.05, **P < 0.01, ***P < 0.001 vs. Ctrl). (E) BRL-3A cells were exposed to 50 µM indomethacin for designated time, Xbp1 mRNA

splicing was detected by RT-PCR (n = 3, Xbp1u, unspliced Xbp1; Xbp1s, spliced Xbp1). (F) Cells were treated with 50 or 100 µM

indomethacin for 4 h, and mRNA levels of spliced Xbp1 and Chop were determined by quantitative real-time PCR (n = 3, *P < 0.05 vs. Ctrl).

(G) BRL-3A cells were exposed to 50 µM indomethacin for 16 h. Expression and distribution of cleaved caspase 3 was detected by

immunocytochemistry (green: cleaved caspase 3; blue: cell nuclei stained with DAPI; bar: 50 µm). Data were analyzed using ANOVA with

Bonferroni’s multiple comparison tests. Error bars indicate SD.
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distribution of cleaved caspase 3, we employed

immunocytochemistry. We found that cleaved caspase

3 was remarkably induced in the nucleus after indo-

methacin treatment (Fig. 2G). Our data suggest that

indomethacin triggers ER stress and apoptosis in hepa-

tocytes.

Inhibition of ER stress attenuates indomethacin-

induced hepatocyte apoptosis

4-PBA is a chemical chaperone that helps protein fold-

ing, prevents protein aggregation in the ER, thus alle-

viates ER stress in various cells [30–32]. To find out

Fig. 3. Inhibition of ER stress alleviates indomethacin-induced hepatocyte apoptosis. BRL-3A cells were pretreated with 1mM 4-PBA for

24 h, followed by exposing to indomethacin for another 24 h. (A) Cell viability was detected by CCK-8 assay (n = 3, **P < 0.01,

***P < 0.001 vs. cells treated with indomethacin only). (B) Cell morphology was recorded under an invert phase contrast microscope (n = 3,

arrow: representatives of dead cells; bar: 50 µm). (C) BRL-3A cell apoptosis was detected by TUNEL assay (red: apoptotic cells; blue: cell

nuclei stained with DAPI; bar: 50 µm) and quantified (n = 3 fields, ***P < 0.001 vs. Ctrl, ǂǂǂP < 0.001 vs. cells treated with indomethacin

only). (D) BRL-3A cells were pretreated with 1mM 4-PBA for 24 h, then exposed to 50 µM indomethacin for 16 h. Protein levels of

phosphorylated eIF2a, total eIF2a, CHOP, and cleaved caspase 3 were detected by western blot and analyzed by densitometry (n = 3,

***P < 0.001 vs. Ctrl, ǂP < 0.05 vs. cells treated with indomethacin only). Data were analyzed using ANOVA. Error bars indicate SD.
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whether ER stress is required for indomethacin-in-

duced hepatocyte apoptosis, we pretreated BRL-3A

cells with 4-PBA before exposing the cells to different

concentrations of indomethacin. CCK-8 assay demon-

strated a significant improvement of cell viability upon

4-PBA pretreatment in indomethacin-insulted BRL-3A

cells (Fig. 3A). In the mean time, cell morphology

change induced by indomethacin was partially reversed

by 4-PBA pretreatment (Fig. 3B). Moreover, TUNEL

assay confirmed the protective role of 4-PBA as indo-

methacin-induced cell apoptosis was alleviated upon 4-

PBA pretreatment (Fig. 3C). As CHOP is widely con-

sidered to be a principal mediator of ER stress-associ-

ated apoptosis, we detected the expressions of CHOP

as well as phosphorylated eIF2a and active caspase 3

(cleaved caspase 3) by western blot analysis. In line

with other results, we found that eIF2a phosphoryla-

tion, CHOP upregulation and caspase 3 activation

induced by indomethacin were all mitigated by 4-PBA

pretreatment (Fig. 3D). These findings indicate that

ER stress is essential in indomethacin-induced hepato-

cyte apoptosis.

SAC rescues hepatocytes from indomethacin-

induced apoptosis

To demonstrate whether SAC alleviates indometha-

cin-induced hepatocyte apoptosis, we pretreated BRL-

3A cells with SAC before exposing cells to indo-

methacin. CCK-8 assay revealed that cell viability

was decreased to 41.7% of the Control after cells

were insulted by indomethacin for 24 h. Nevertheless,

pretreatment of SAC restored cell viability to 73.9%

of the Control (Fig. 4A). In parallel, SAC mitigated

indomethacin-induced cell morphology change and

cell number decrease (Fig. 4B). Furthermore, SAC

remarkably alleviated cellular DNA fragmentation

and DNA damage in indomethacin-treated cells, as

demonstrated by the reduced number of TUNEL-

positive cells (Fig. 4C). All these results demonstrate

Fig. 4. SAC rescues BRL-3A cells from indomethacin-induced apoptosis. BRL-3A cells were pretreated with 50 µM SAC overnight (16 h),

followed by exposing to 100 µM indomethacin for 24 h. (A) Cell viability was detected by CCK-8 assay (n = 3, ***P < 0.001 vs. Ctrl,
ǂǂǂP < 0.001 vs. cells treated with indomethacin only). (B) Cell morphology was recorded under an invert phase contrast microscope (n = 3,

arrow: representatives of dead cells; bar: 50 µm). (C) Apoptosis was detected by TUNEL assay (red: apoptotic cells; blue: cell nuclei stained

with DAPI; bar: 50 µm) and quantified (n = 3 fields, ***P < 0.001 vs. Ctrl, ǂP < 0.05 vs. cells treated with indomethacin only). Data were

analyzed using ANOVA with Bonferroni’s multiple comparison tests. Error bars indicate SD.
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that SAC protects hepatocytes from indomethacin-in-

duced apoptosis.

SAC protects hepatocyte apoptosis through

mitigating ER stress

To further elucidate the mechanism by which SAC

protects hepatocyte apoptosis, we explored the influ-

ence of SAC on the expressions of phosphorylated

eIF2a, CHOP, and cleaved caspase 3 in indomethacin-

insulted BRL-3A cells. We found that SAC per se had

no effects on the expressions of these proteins under

normal condition. However, upon SAC pretreatment,

the induction of phosphorylated eIF2a, CHOP, and

cleaved caspase 3 by indomethacin was mitigated

(Fig. 5A,B). In consistent, indomethacin-induced Chop

mRNA upregulation was reduced by SAC pretreat-

ment (Fig. 5C). Immunocytochemistry revealed that

Fig. 5. SAC protects hepatocyte apoptosis through mitigating ER stress. BRL-3A cells were pretreated with 50 µM SAC overnight (16 h),

followed by exposing to 50 µM indomethacin for another 16 h. Protein levels of phosphorylated eIF2a, total eIF2a, CHOP, and cleaved

caspase 3 were determined by western blot (A) and analyzed by densitometry (B) (n = 3, ***P < 0.001 vs. Ctrl, ǂP < 0.05 vs. cells treated

with indomethacin only). (C) BRL-3A cells were pretreated with 50 µM SAC overnight (16 h), then exposed to 100 µM indomethacin for 4 h.

Chop mRNA level was determined by quantitative real-time PCR (n = 3, **P < 0.01 vs. Ctrl, ǂP < 0.05 vs. cells treated with indomethacin

only). (D) Cells were pretreated with 50 µM SAC overnight (16 h), then exposed to 100 µM indomethacin for 24 h. Expression and

distribution of CHOP was detected by immunocytochemistry (n = 3, red: CHOP; blue: cell nuclei stained with DAPI; bar: 50 µm). Total and

nuclear CHOP fluorescence was measured by IMAGEJ software, and the nuclear/cytoplasmic ratio was calculated (E) (n = 20 cells,

***P < 0.001 vs. Ctrl, ǂǂǂP < 0.001 vs. cells treated with indomethacin only). Data were analyzed using ANOVA with Bonferroni’s multiple

comparison tests. Error bars indicate SD.
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indomethacin changed cell morphology and increased

the nuclear level of CHOP, both of which was par-

tially reversed by SAC pretreatment (Fig. 5D,E).

These data suggest that SAC protects hepatocyte

apoptosis through reducing ER stress. Figure 6 is a

schema illustrating how SAC protects indomethacin-

induced apoptosis of hepatocytes.

Discussion

Nonsteroidal anti-inflammatory drugs are among the

most widely used drugs due to not only their pain and

fever-relieving effects, but also their availability either

by prescription or over-the-counter [33]. NSAIDS-asso-

ciated hepatotoxicity, as reported in the literature,

accounts for ~ 10% of all DILI [8,34]. Moreover, sev-

eral NSAIDS (benoxaprofen, ibufenac, and bromfenac)

were withdrawn from the market due to their liver toxic-

ity [35,36]. At present, N-acetylcysteine has been proved

to be an antidote for DILI induced by acetaminophen

as well as other drugs [37–39], and corticosteroids have

been used to treat immune-mediated drug reactions in

DILI [40]. Nevertheless, the remedy for NSAIDS-asso-

ciated DILI is still lacking, and new drugs are desper-

ately needed. The present study demonstrates that SAC

alleviates indomethacin-induced hepatocyte apoptosis,

which sheds light on new treatments for DILI.

Studies on pharmacokinetics of SAC revealed high

oral absorption in experimental animals, with the

bioavailability value of 92.1–98% in rats, and 92% in

dogs [41,42]. Also, high bioavailability of SAC after

oral intake was reported in healthy human volunteers

[43]. Meanwhile, the clearance of SAC in humans is

relatively slow. The plasma half-life of SAC is > 10 h

and the estimated clearance time is over 30 h [43], sug-

gesting a potential long dosage interval. Toxicity tests

revealed that the median lethal dose (LD50) of SAC

upon oral administration in mice and rats was over

8.8 g�kg�1, and the LD50 on intraperitoneal injection

in rats was comparable to that of essential amino acids

[43]. The high bioavailability and low-toxicity proper-

ties of SAC provide great virtues for its employment

in animal studies as well as in future clinical trials.

The antioxidant feature of SAC has been intensively

investigated, and much work has shown that SAC

exerts its hepatoprotective function through mitigating

oxidative stress. In carbon tetrachloride treated rats,

SAC dose-dependently inhibited lipid peroxidation and

decreased serum levels of ALT and lactate dehydroge-

nase [44]. In Wistar rats insulted with hexavalent chro-

mium, SAC protected against liver cell apoptosis by

upregulating the hepatic expression of NF-E2-related

factor 2, a crucial regulator of cellular antioxidant

response [45]. However, in spite of these studies, little

is known concerning the effects of SAC on ER stress

in hepatocytes. The current study demonstrates that

SAC abates indomethacin-induced eIF2a phosphoryla-

tion, inhibits CHOP upregulation and its nuclear

translocation, abrogates the activation of subsequent

caspase 3 apoptotic pathway, and, finally, protects

hepatocytes from apoptosis. To the best of our knowl-

edge, this is the first study demonstrating the impact

of SAC on ER stress in hepatocytes. Our data suggest

that ER stress may be a latent therapeutic target for

the treatment of DILI.

Another interesting finding is that inhibition of ER

stress by 4-PBA partially, but not fully, reversed indo-

methacin-induced hepatocyte apoptosis, indicating that

ER stress is among the various mechanisms by which

indomethacin induces apoptosis of hepatocytes. Previ-

ously, indomethacin has been shown to enhance ROS

generation and reduce intracellular antioxidant capac-

ity in hepatocytes [46], evidence of the involvement of

oxidative stress in indomethacin-induced apoptosis.

Given the potent antioxidative efficacy of SAC, it is

presumable that SAC protects indomethacin-insulted

hepatocytes through reducing not only ER stress, but

also oxidative stress.

Fig. 6. Schematic of the mechanism how SAC protects hepatocytes from indomethacin-induced apoptosis. Indomethacin evokes ER stress,

increases CHOP expression via PERK/eIF2a/ATF4 pathway, and induces caspase 3 activation resulting in hepatocyte apoptosis. SAC

suppresses ER stress and rescues hepatocytes from apoptosis.
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The most conserved ER sensor inositol-requiring

enzyme 1a (IRE1a) is a transmembrane ER kinase as

well as an endoribonuclease. Upon ER stress, activated

IRE1a splices a small intron (26 bp) from the Xbp1

mRNA, generating an active spliced XBP1 protein

(XBP1s) [47]. XBP1s then translocates to cell nucleus

and drives transcription of genes responsible for restor-

ing protein homeostasis [14]. In the past two decades,

XBP1 has been shown to be a survival factor in differ-

ent categories of cells [48–50]. Moreover, our previous

study found that overexpression of XBP1s by aden-

ovirus abated hydroquinone-induced CHOP upregula-

tion, while knockdown of XBP1 resulted in significant

increase of Chop mRNA level in the retinal pigment

epithelium, suggesting a potential regulation of XBP1s

on CHOP expression [51]. The present study demon-

strates the upregulation of XBP1s protein as well as the

splicing of Xbp1 mRNA upon indomethacin treatment,

evidence of IRE1a activation, and ER stress implica-

tion in indomethacin-insulted hepatocytes. Neverthe-

less, the role of XBP1s on indomethacin-induced

apoptosis and the influence of SAC on XBP1 expres-

sion in hepatocytes are to be explored in our future

experiments.

Taken together, the current study demonstrates that

SAC alleviates ER stress and inhibits CHOP expres-

sion, thus protects hepatocyte apoptosis induced by

indomethacin. SAC may present a potential new thera-

peutic agent for the treatment of DILI.
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