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ABSTRACT Phenotypic heterogeneity in clonal bacterial batch cultures has been
shown for a range of bacterial systems; however, the molecular origins of such het-
erogeneity and its magnitude are not well understood. Under conditions of extreme
low-nitrogen stress in the model diazotroph Klebsiella oxytoca, we found remarkably
high heterogeneity of nifHDK gene expression, which codes for the structural genes
of nitrogenase, one key enzyme of the global nitrogen cycle. This heterogeneity lim-
ited the bulk observed nitrogen-fixing capacity of the population. Using dual-probe,
single-cell RNA fluorescent in situ hybridization, we correlated nifHDK expression
with that of nifLA and glnK-amtB, which code for the main upstream regulatory com-
ponents. Through stochastic transcription models and mutual information analysis,
we revealed likely molecular origins for heterogeneity in nitrogenase expression. In
the wild type and regulatory variants, we found that nifHDK transcription was inher-
ently bursty, but we established that noise propagation through signaling was also
significant. The regulatory gene glnK had the highest discernible effect on nifHDK
variance, while noise from factors outside the regulatory pathway were negligible.
Understanding the basis of inherent heterogeneity of nitrogenase expression and its
origins can inform biotechnology strategies seeking to enhance biological nitrogen
fixation. Finally, we speculate on potential benefits of diazotrophic heterogeneity in
natural soil environments.

IMPORTANCE Nitrogen is an essential micronutrient for both plant and animal life
and naturally exists in both reactive and inert chemical forms. Modern agriculture is
heavily reliant on nitrogen that has been “fixed” into a reactive form via the energet-
ically expensive Haber-Bosch process, with significant environmental consequences.
Nitrogen-fixing bacteria provide an alternative source of fixed nitrogen for use in
both biotechnological and agricultural settings, but this relies on a firm understand-
ing of how the fixation process is regulated within individual bacterial cells. We
examined the cell-to-cell variability in the nitrogen-fixing behavior of Klebsiella oxy-
toca, a free-living bacterium. The significance of our research is in identifying not
only the presence of marked variability but also the specific mechanisms that give
rise to it. This understanding gives insight into both the evolutionary advantages of
variable behavior as well as strategies for biotechnological applications.
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Cell-to-cell variability in gene expression has been recognized across many different
cell types, and it has been attributed to a range of causes (1, 2). In bacteria, such vari-

ability has been suggested to underpin phenotypic heterogeneity between otherwise-ge-
netically identical cells. Understanding the origins of cell-to-cell variability is important for
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medical and biotechnological applications and can lead to inferences about its evolution-
ary basis and the benefits in the cells' ancestral natural environments.

A key source of phenotypic heterogeneity is known to be the inherent stochasticity of
transcription (1, 3, 4). Such stochasticity is common to all chemical reaction systems involv-
ing small numbers of molecules, of which transcription is a key example. Transcription can
occur in bursts (5–8), characterized as short periods of intense transcriptional activity,
resulting in increased heterogeneity. Together, inherent stochasticity and burstiness lead
to intrinsic noise, which may be a fundamental property of transcription of a given gene.
However, in addition to intrinsic noise, other sources of noise external to a particular gene
(extrinsic noise) may also be at play but are often hard to determine within native gene
expression settings. These additional contributions to heterogeneity have been observed
by simultaneously measuring expression of two or more copies of the same gene at the
single-cell level (9–11). Correlations in expression of these two gene copies reflect pertur-
bations that simultaneously affect both.

Transcriptional noise contributions can be inferred via modeling. Intrinsic noise and
bursty transcription have been modeled by the so-called telegraph process, which
describes the stochastic changes in gene transcriptional activity associated with bursty
transcription and predicts the probability distribution of mRNA copy numbers (12–15).
Together with studies at the single-cell level, this model and its variants have been
used to infer transcriptional properties (16–19) and provide improved analysis and
understanding from experimental data. Such models can be extended to include
effects of extrinsic noise (20–22) and subsequently allow quantification of contribu-
tions from various molecular sources and their attendant mechanisms to the total
observed heterogeneity.

Phenotypic heterogeneity may be particularly relevant in costly microbial stress
response systems, such as the nitrogen starvation response (16). In organisms such as
Klebsiella oxytoca, nitrogen starvation triggers a transition to diazotrophy in which bac-
terial cells use atmospheric dinitrogen as nitrogen source for growth (23); this reaction
is enabled by the nitrogenase enzyme. In the seminal work of Schreiber et al., signifi-
cant diazotrophic heterogeneity was observed in K. oxytoca under nitrogen-limiting
balanced growth conditions in a chemostat (16). This heterogeneity was attributed to
noise acting downstream of the regulatory gene glnK and was further demonstrated to
provide an advantage at the population level. Given that a native resource availability
for enteric bacteria may be subject to sudden changes, in this work we studied tran-
scriptional heterogeneity following the abrupt onset of nitrogen starvation. Using
dual-probe single-cell RNA fluorescence in situ hybdridization (RNA-FISH), we further
investigated the molecular origins of the transcriptional heterogeneity following a
transition to diazotrophy.

In K. oxytoca, expression of a functional nitrogenase involves coordinated transcription
of 18 nif genes that are organized in 5 operons. The nifHDK operon encodes structural
genes of nitrogenase and is the most highly expressed operon within the nif cluster. The
core hierarchical regulatory system of nif expression (Fig. 1A) consists of the nitrogen regu-
lator NtrC activating expression of glnK-amtB and nifLA operons, with NifA activating
nifHDK gene expression when not directly inhibited by NifL (23). NtrC and NifA are bacte-
rial enhancer binding proteins (bEBP) that activate s 54 RNA polymerase with a distinct
ATPase-dependent activating mechanism, compared with canonical s70-type RNA poly-
merases (24). Studies with purified components from Azotobacter vinelandii have shown
that complex formation between NifL and NifA is influenced by the binding of GlnK and
adenosine nucleotides to NifL, the redox status of the flavin cofactor in NifL, and the bind-
ing of 2-oxoglutarate to NifA (23, 25). Some of these regulatory features are also likely to
operate for control of NifA in K. oxytoca (26). This arrangement integrates signals condu-
cive to nitrogen fixation, i.e., a reducing environment, high energy levels, and presumably
low nitrogen levels, as high 2-oxoglutarate levels indicate a low nitrogen status in the
closely related Escherichia coli (27). Low nitrogen status, defined as the ratio of glutamine
to 2-oxoglutarate, also increases NtrC activity and enhances its expression by triggering
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uridylation of PII signaling proteins to allow higher overall NtrB kinase activity. Low gluta-
mine levels affect the posttranslational uridylylation state of GlnK; however, it is unclear if
the uridylation state affects GlnK function in destabilizing the NifL-NifA complex in K. oxy-
toca (28).

We were interested in the relative contributions of intrinsic and extrinsic noise to
expression of the native single-copy nifHDK gene locus under conditions in which free-
living wild-type K. oxytoca cells transition to use atmospheric dinitrogen as nitrogen
source for growth. Using mRNA-FISH and examining the relationship between control
genes at different levels in the regulatory cascade controlling nitrogenase expression,
we were able to reveal the combined roles of intrinsic noise at the level of the nifHDK
promoter and extrinsic noise arising from upstream regulation. By fitting stochastic
models for transcription, these contributions were quantified, along with further details
of the regulatory mechanisms. We provide evidence that heterogeneity in nitrogenase
expression in wild type (WT) cells is an inherent property of the transcriptional pro-
gram, and therefore we hypothesize that heterogeneity of diazotrophy could have
evolved through providing advantages in natural bacterial environments.

RESULTS
Significant nifHDKmRNA heterogeneity observed in cells by RNA-FISH. To mea-

sure the full spectrum of heterogeneity pertaining to transition into and establishment of
full diazotrophy, precultures grown under nitrogen-replete aerobic conditions were trans-
ferred to nitrogen-free media under anaerobic conditions at time zero, when no nifHDK
expression or acetylene reduction was detectable. We found that K. oxytoca (WT) popula-
tions subjected to these conditions first consumed residual ammonia and then experi-
enced a 5-h growth arrest (Fig. 1B). This was followed by growth resumption using N2-
derived ammonia as nitrogen source, evidenced by acetylene reduction activity profiles as
a measure of bulk population nitrogenase activity in batch culture (29).

To investigate and verify the regulatory roles of glnB, glnK, and nifA, we tracked
population growth and nitrogenase activity of wild-type and derivative mutant strains
lacking the positive regulator GlnK (DglnK) and PII (DglnB), as well as cells lacking bEBP
NifA and its cotranscribed inhibitor, NifL (DnifLA).

FIG 1 (A) Regulatory pathway governing nifHDK expression. Transcription of nifHDK is subject to a
hierarchical regulatory system. (B) Population size during transition to diazotrophy in wild-type K.
oxytoca. Following run-out of ammonia, cultures displayed arrested growth during the diazotrophic
transition, marked in gray. Growth from 10 h onwards was achieved through nitrogen fixation. (C)
Distribution of nifHDK transcript abundance at 8 h, as illustrated by mRNA-FISH. Adapted from
reference 23 with permission from the publisher.
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We found that the absence of GlnB had negligible effects on either growth or nitro-
gen fixation, while absence of GlnK had an inhibitory effect on growth (see Fig. S1 in
the supplemental material). Since the DglnK mutant had a growth defect under diazo-
trophic growth conditions (see Fig. S1A) and our previous work at an early time point
(3 h post–NH4 run-out) had illustrated that its nitrogenase activity is significantly
reduced (30), cells for RNA-FISH were harvested when they showed similar levels of
nitrogenase activity across all bacterial strains, i.e., at 9.5, 14.5, and 19 h post–NH4 run-
out (see Fig. S1B). In contrast, the DnifLA mutant exhibited both very much slower
growth and a very greatly reduced acetylene reduction compared with the WT (see
Fig. S1), consistent with previous findings (23).

We established use of mRNA-FISH (31) in K. oxytoca to estimate mRNA levels for the
nifHDK operon, which encodes the Fe protein component of nitrogenase. Results indi-
cated significant variation in nifHDK transcript abundance between cells (Fig. 1C). As is
common in gene expression data, the distribution was decidedly non-Gaussian, with a
bulk of cells at low expression levels and a longer tail of much higher values. Hence,
the “average” cell had relatively high expression levels compared with the majority,
and therefore bulk measurements of nifHDK gene expression did not represent those
of a typical cell.

Mutual information analysis confirmed direct propagation of transcriptional
noise to nifHDK via GlnK. Given significant heterogeneity in nifHDK gene expression
(Fig. 1C and 2), we sought to establish whether extrinsic noise is present and if this noise
arises from the regulatory pathway or from elsewhere. We grew WT cells and DglnK and
DglnBmutants to levels where different bacterial cultures displayed equivalent cumulative
levels of nitrogenase activity (as described in Materials and Methods). Two sets of probes
were used to measure nifHDK expression and simultaneously either glnK or nifLA expres-
sion in individual cells to monitor variability across these paired genes. Expression covari-
ance between two genes can occur either because one gene has a direct (and relatively
quick) influence on the other, or because both genes are simultaneously affected by
another source of variability. This could be a shared and rather specific upstream control
protein or more “global” factors, such as RNA polymerase or sigma factor abundance,
which may influence many genes simultaneously and should therefore be evident as sig-
nificant covariance between any expressed pair of genes.

We used mutual information (MI) as a suitable metric for quantifying covariance in
gene expression. MI is commonly used to analyze single-cell data in situations where
relationships are complex, nonlinear, and unknown, as no assumptions or prior knowl-
edge are required (32, 33). Here, we computed the MI between each gene pair and a
null distribution of MI values from which a corresponding significance level could be
computed (see Materials and Methods). The MI can be compared further to the en-
tropy of the nifHDK expression level distribution, to compare the MI with the total in-
formation content.

The results (Fig. 2 and Table 1) demonstrated modest MI between glnK and nifHDK
for both the WT (Fig. 2A) and DglnB (Fig. 2C) strains, but there was no statistically sig-
nificant measure of MI between nifLA and nifHDK (Fig. 2B). Undetectable MI between
nifLA and nifHDK suggests that global sources of extrinsic noise are not significant for
these two operons. By extension, one can deduce that such global factors are therefore
unlikely to be generally significant for s54-dependent genes, since by definition global
factors influence many genes simultaneously. The measurable low-level MI between
glnK and nifHDK was therefore suggestive of a direct propagation of noise from glnK to
nifHDK. Thus, stochastic variability of glnK expression acts to increase the level of vari-
ability in nifHDK expression; cells with high glnK mRNA levels at a given time are also
likely to have higher nifHDK mRNA levels. Heterogeneity in nifHDK expression is there-
fore generated at multiple levels in the regulatory cascade, suggesting that it is a fun-
damental property of the regulatory system.

Stochastic models incorporating extrinsic noise. Next, we sought to understand
the minimum level of variability that might be observed if the direct regulatory role of
GlnK were bypassed. We measured the expression levels in DnifLA in which nifA was
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overexpressed ectopically (1nifA), making nifHDK expression independent of GlnK.
Figure 3A displays a distribution for the 1nifA mutant, showing significant remaining
sources of heterogeneity. Given that fluctuations in GlnK are no longer anticipated to
have an effect on nifHDK expression heterogeneity and that global sources of extrinsic
noise were found to be minimal, nifHDK transcription heterogeneity must have been
due to intrinsic noise at the level of the nifHDK promoter. Such noise is widely attrib-
uted to bursty transcription, in which the promoter is intermittently active and inactive
(5, 6). The sources of this intermittent activity may be related to transcription factor
binding and unbinding (34) or to mechanical supercoiling effects (35, 36). Regardless
of the mechanism, similar levels of intrinsic noise may also be relevant for the other
genetic variants (WT, DglnK, etc.).

Since both intrinsic and extrinsic sources of noise may be generally relevant, we
sought to develop stochastic models for transcription that could incorporate both

FIG 2 Mutual information analysis based on dual-probe measurements from biological replicate 1. For each case, the marginal distributions of the two
mRNA abundances are shown, in addition to the calculated mutual information and the total entropy in nifHDK abundance. Mutual information was
compared to a null distribution obtained by randomly shuffling the nifHDK data 100,000 times, thereby providing a P value for each pair. These values for
the displayed data and a further biological replicate are displayed in Table 1. (A) WT cells in which glnK and nifH were simultaneously measured, indicating
significant MI. (B) WT cells in which nifL and nifH were simultaneously measured, indicating no significant MI. (C) Cells from the DglnB mutant in which
glnK and nifH were simultaneously measured, indicating significant MI. (D) Cells from the DglnK mutant in which nifL and nifH were simultaneously
measured, indicating no significant MI.
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these effects (22). When considering nifHDK transcription to be intrinsically bursty, as
shown schematically in Fig. 3B, this can be modeled by the telegraph model (13, 15),
where the promoter undergoes rapid activation and deactivation at rates l and �,
respectively. When active, transcription occurs at rate K, while the mRNA is degraded
in a first-order degradation process with rate d . Under particular parameter ranges,
this process results in a negative binomial distribution for the transcript copy number
(22, 37), parameterized by the normalized burst frequency l/d and mean burst size K/
�. In this context, we took the view that extrinsic noise arising from glnK variability acts

TABLE 1Mutual information with nifHDK transcript abundancea

Genetic strain Gene
Biological
replicate no.

Mutual
information (bits)

Entropy of
nifHDK (bits)

Significance
level

WT glnK 1 0.187939 2.249837 0.00016
WT glnK 2 0.340274 2.444729 0.00035
WT nifL 1 0.275314 2.872011 0.61815
WT nifL 2 0.31771 2.752161 0.47135
DglnB glnK 1 0.118429 1.897344 0.00000
DglnB glnK 2 0.071995 1.915492 0.00744
DglnK nifL 1 0.066759 0.690746 0.27533
DglnK nifL 2 0.096455 1.303811 0.04686
aThe entropy of nifHDK abundance provided a measure of the total variability, while the mutual information was
the amount of variability that could be directly explained by the abundance of the other gene. Smaller
significance levels indicate a stronger statistical indication of nonzero mutual information.

FIG 3 Stochastic modeling of bursty transcription incorporating extrinsic noise. (A) nifHDK mRNA copy number
distributions for each of the 1nifA, WT, and DglnK strains. WT and DglnK data are from replicate 1 as displayed
in Fig. 2. (B) Schematic of bursty transcription and its relation to the stochastic model. Extrinsic noise here is
catered for by considering the burst frequency to be variable between cells. (C) Variation of the model
parameters between mutants, plotted as a function of the mean expression level. Error bars denote 95%
Bayesian credible intervals, obtained from the posterior distributions. Data are plotted for biological replicates
1 and 2.
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as a variation between cells in burst frequency. This led to a model that is additionally
parametrized by the normalized frequency variation s /d (see Materials and Methods).

For each of the three exemplar distributions shown in Fig. 3A, a comparison is given
with the model following the parameter fitting process. The model can provide a good
fit to the data in each case, enabling us to draw meaning from the model parameters,
inferred for a number of genetic variants and biological replicates, as displayed in
Fig. 3C. We observed a clear relationship between mean expression and burst fre-
quency, which was contrasted by the very limited correlation between mean expres-
sion and burst size. Cells such as DglnK have a very low burst frequency, yet their burst
size is within a factor of 2 of that for the most highly expressing 1nifA strain. Finally, it
was clear that extrinsic noise was lowest in both the DglnK and 1nifA strains. This sup-
ports the findings from the MI analysis that extrinsic noise arises from glnK, as such
noise was reduced when glnK was either absent or bypassed.

Based on these model fits, we further calculated the contributions of intrinsic and
extrinsic noise to the total variance in nifHDK expression (21, 38) (see Materials and
Methods), as shown in Fig. 4A. For DglnK, the results demonstrated that a significant
contribution from extrinsic noise of �30% remained, indicating that some variability in
burst frequency may have arisen from noise sources other than the cell-to-cell variation
in GlnK activity. The extrinsic noise contribution increased to �70% in WT and DglnB,
in which noise propagation from glnK is known to be present, but was almost zero in
the 1nifA mutant, in which the nitrogen regulatory pathway via GlnK is uncoupled.

DISCUSSION

Bacteria can be subject to a multitude of stresses and respond in a multitude of
ways. While the average behavior of a clonal population is often of interest, the degree
of variability between cells is also important. Such knowledge may provide both mech-
anistic biochemical insights as well as an indication of typical survival strategies that le-
verage this variability. Here, we examined the nitrogen starvation response in a model
diazotroph, determining behavior at the population level and expression of several
genes in the regulatory cascade at single-cell resolution.

From bulk measurements, our data extended the existing understanding of the nif
regulatory network in K. oxytoca. We found that a DglnB strain behaved similar to WT in
terms of both growth and noise propagation, consistent with GlnK being able to com-
pensate for loss of GlnB. GlnB and GlnK were shown to have redundant functionalities in
regulating nitrogen assimilation genes in E. coli, but this redundancy was not fully
extended to nifHDK gene regulation in K. oxytoca (39). Further, GlnB and GlnK

FIG 4 (A) Calculated contributions of extrinsic noise to the variance in nifHDK transcript abundance.
Contributions are calculated for 4,000 parameter triplets sampled from the posterior distributions,
thereby providing the most probable value and 68% credible intervals. (B) Schematic showing
propagation of noise through the signaling cascade. Only a contribution from glnK was supported
directly by the experimental data, although contributions from nifLA and from ntrC could not be
excluded. Global noise sources were determined to be undetectable.
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posttranslational uridylylation plays an important role in regulating nitrogen assimi-
lation genes, but GlnK uridylylation appears not to be required for nifHDK gene regu-
lation in vivo (10). Our DglnK strain showed clearly discernible growth but similar
acetylene reduction to that of the WT at late time points post–NH4 run-out (see
Fig. S1 in the supplemental material), compared to earlier time points (30). Since our
data on nifHDK mRNA copy numbers as quantified by RNA-FISH did not support
equal NifHDK expression in DglnK and WT, the comparable nitrogenase activity may
have been due to NifH protein expression and/or stability. Alternatively, increased N2

assimilation rates may compensate for low nitrogenase levels to help diazotrophic
growth of cells lacking GlnK, or possibly the glnB-encoded PII can partially substitute
for GlnK. Nevertheless, growth of the DglnK strain remained defective despite the
high nitrogenase activity, potentially due to pleotropic effects on nitrogen regula-
tion, assimilation, and metabolism, such as the AmtB ammonia transporter inhibition
normally mediated by GlnK.

It has been shown that GlnK plays a role in dissociating the repressed NifL-NifA
complex in E. coli, an activity also inferred from in vivo transcription assays in K. oxytoca
(39, 40). In contrast, the NifL-NifA complex of the diazotroph Azotobacter vinelandii is
not affected by the absence of glnK in the heterologous host E. coli, as evidenced in in
vitro transcription assays from the nifH promoter (41). Similarly, we found nonzero
expression of nifHDK in native K. oxytoca (DglnK), indicating that GlnK is not strictly
required for the repressive dissociation of the NifL-NifA complex. It has been shown for
A. vinelandii in vitro that NifA dissociates from NifL in the presence of 2-oxoglutarate
and, in the closely related E. coli, 2-oxoglutarate concentrations are highly elevated
under nitrogen starvation (27). Consistent with these findings, we propose that in K.
oxytoca 2-oxoglutarate is sufficient to dissociate NifL-NifA in vivo, at least under the rel-
atively rapid nitrogen depletion conditions used here. Given that metabolic changes
generally occur on a much faster time scale (seconds) than regulatory mechanisms
involving gene expression (many minutes), bypassing any strict glnK requirement
under transient nitrogen starvation conditions may represent an evolved regulatory
shortcut. Additionally, in K. oxytoca, GlnB when overexpressed can functionally com-
pensate for a deletion of glnK (38), and because glnB, unlike glnK, is constitutively
expressed, such a compensatory mechanism of glnK by glnB could explain the reduced
contribution of extrinsic noise. Further, 2-oxoglutarate and adenosine nucleotides,
potentially involved in GlnK releasing the NifL-NifA complex in K. oxytoca under condi-
tions of nitrogen deprivation (41), may alternatively bind to GlnB, should this PII protein
act as a substitute for GlnK and lead to NifA dissociation from NifL. Finally, readily de-
tectable low-level nifHDK expression did not occur in the DnifLA strain (see Fig. S2).
This was consistent with a control scheme in which NifA is essential while GlnK is not.
Interestingly, in diazotrophic cyanobacteria, 2-oxoglutarate is the major signal trigger-
ing differentiation into diazotrophy, although the nitrogen regulatory pathways are
distinct in these non-proteobacteria (42).

By examining the mutual information between gene pairs, we can infer how noise
is propagated through the regulatory cascade. MI was generally small compared with
nifHDK entropy and was below the level of statistical significance between nifLA and
nifHDK, suggesting that global sources of extrinsic noise were negligible. In other
genetic systems, the source of variability in transcription has been attributed to vari-
ability in sigma factor or RNA polymerase abundance (1, 9, 43); our results suggest that
this was not the case here. We cannot exclude that fluctuations do propagate from
NifLA, since the differences in mRNA and protein lifetimes can act to reduce correla-
tions between transcript and protein abundance (43). Fluctuations could also propa-
gate from the master regulator NtrC, but any sources of noise above this level must be
small, and therefore all variability in nifHDK expression must arise from within, and not
outside, the regulatory network (Fig. 4B).

Unlike for nifLA, a small but statistically significant MI was observed between glnK
and nifHDK. This indicated that variability in glnK expression must propagate down to
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nifHDK. We therefore have a direct detection of extrinsic noise from within the regula-
tory pathway acting on nifHDK transcription.

While the MI analysis evidenced the nonzero contribution of extrinsic noise to het-
erogeneity in nifHDK transcription, we further quantified this contribution through sto-
chastic modeling. All single-cell measurements for nifHDK expression were consistent
with a model in which transcription is inherently bursty, even in the 1nifA mutant, in
which the promoter should be constitutively active. This burstiness may result from
unavoidable dissociation of the NifA bEBP and/or the RNA polymerase closed complex,
and it acts to generate significant levels of intrinsic noise. The model also incorporates
noise propagation as variability in the frequency of the transcriptional bursts.
Furthermore, by examining the variation of model parameters across mutants, we
were able to deduce that the average expression level was principally determined by
the burst frequency rather than the burst size. This was consistent with recent observa-
tions for the phage shock protein (Psp) membrane stress response, which is also s54

dependent (44), and in contrast to the existing understanding for s70 promoters (45).
The model and inferred parameter variation (Fig. 3C) were consistent with initiation

of bursts by binding of the NifA bEBP to its target, closed promoter complexes, and ter-
minated by its unbinding. In the case of the 1nifA mutant, high NifA availability
enabled frequent bursts of transcription, yet the burst size was similar to that of the
WT, perhaps because the average time before NifA dissociation from the promoter was
independent of its abundance within the cell. This may reflect the rather slow conver-
sion of a closed promoter complex, such as that bound by NifA, to an open promoter
complex from which NifA has dissociated (46). The level of extrinsic noise in this case
was very low, since NifA availability was high enough for the system to essentially be
“saturated”; any variability in NifA has little impact if the burst frequency is already at a
maximal value.

The modeling and quantitative analysis provided mechanistic insight into the sources
of heterogeneity, demonstrating that the large variation in nifHDK expression was an
inherent property of this system. Heterogeneity manifested as a cautiousness in fully acti-
vating nifHDK transcription across all cells, such that even under nitrogen-starved anaero-
bic conditions, many cells had few or no nifHDK transcripts. It is possible that this variability
is either unavoidable or sufficiently benign, such that the extra regulatory effort required
to suppress it is not worthwhile (47, 48). However, we observed that there was no leaky
expression of nitrogenase under nitrogen-replete or aerobic conditions, suggesting that
diazotrophic heterogeneity is an evolved systems characteristic that could be beneficial at
the population level, perhaps as a bet-hedging strategy (49, 50). In the key previous study
on heterogeneity in nitrogen fixation (16), it was determined that heterogeneity was
indeed advantageous at the population level, following a downshift in nitrogen availabil-
ity. Our results suggest that heterogeneity may also be advantageous in the opposite
scenario, in which a starved population suddenly accesses fixed nitrogen. While nitrogen
fixation is essential for growth under nitrogen-deplete conditions, the transition to diazo-
trophy is extremely expensive to a cell at many levels. Thus, if reactive nitrogen soon
becomes available again, it is advantageous for some cells to have not fully undergone
the diazotrophic transition. Activation of the nitrogen starvation response may therefore
be a gamble in which the payoff depends on future conditions. In unpredictable natural
environments, in contrast with controlled laboratory settings, stochastic variability in the
stress response helps ensure that a subset of the population is always well placed for
growth. Because resource availability for enteric bacteria is indeed highly unpredictable,
such a strategy is likely advantageous.

While a bet-hedging strategy would work well for free-living bacteria, it is also
worth noting that most bacteria live in biofilm communities and are associated with,
for example, key biogeochemical cycles on earth (51). This includes both binary- and
single-species biofilms of nitrogen-fixing organisms (52, 53). The stochastic and cau-
tious nature of nitrogenase activation observed here may form part of a mechanism by

Molecular Origins of Diazotrophic Heterogeneity mSystems

September/October 2022 Volume 7 Issue 5 10.1128/msystems.00596-22 9

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00596-22


which cells test conditions and ensure differentiation into specialized phenotypes only
under the correct conditions.

The observations made here are likely applicable to many other costly stress
response systems. However, particular interest in the nitrogen starvation response
arises from the desire to engineer higher bulk levels of nitrogen fixation (54). In this
context, the significant heterogeneity observed here naturally imposes limitations on
industrial-scale use of diazotrophs (55), as well as confounding the efficient use of clo-
nal populations of diazotrophs in the rhizosphere unless engineered to avoid variance.
We hope that the results reported here will therefore motivate further work to under-
stand and combat heterogeneity in these contexts.

MATERIALS ANDMETHODS
Bacterial strains and growth conditions. All experiments were performed with Klebsiella oxytoca

M5aI, which was obtained from Z. Yu and colleagues (56). Whole-gene knockout mutants, marked with
a kanamycin resistance (nptII) gene, were derived from M5a1 by using Lambda red recombineering
(Datsenko and Wanner method). The oligonucleotide primers used to construct knockout mutants can
be found in Table S1 in the supplemental material. To generate a strain overexpressing NifA, the M5aI
nifA gene sequence was cloned into the pSEVA424 vector (from R. Silva-Rocha and colleagues) under
the control of the Ptrc promoter and a synthetic ribosome binding site (BBa_B0032, Registry of Standard
Biological Parts), prior to transformation into the DnifLA mutant background by electroporation. NH4

run-out was used to derepress gln and nif gene expression and stimulate a reproducible transition into
diazotrophic growth. Briefly, K. oxytoca strains were cultured in nitrogen-free David and Mingioli (NFDM)
medium (57) (69 mM K2HPO4, 25 mM KH2PO4, 0.1 mM Na2MoO4, 90 mM FeSO4, 0.8 mM MgSO4, 2% [wt/
vol] glucose) supplemented with NH4Cl as a nitrogen source. To ensure replete cellular N status, seed
cultures were supplemented with 20 mM NH4Cl and grown to an optical density at 600 nm (OD600) of
�2 to 3. Cells were washed and resuspended in NFDM supplemented with 0.5 mM NH4Cl to an OD600 of
0.1. Cultures were then crimp-sealed in 70-mL glass serum bottles (Wheaton) and chilled on ice while
sparged with N2 gas for 45 min to establish a microaerobic atmosphere. Colorimetric O2xyDot sensors
(OxySense) fixed inside the bottles were used to verify O2 concentration. Following injection of 1 mL
pure, O2-free acetylene into the headspace, cultures were warmed to 25°C and shaken at 200 rpm for up
to 24 h. We harvested cells from different bacterial strains when they were at the same growth point
and exhibited the same cumulative levels of nitrogenase activity (see Fig. S1). Time points selected to
achieve this uniform level of nitrogenase activity across different M5a1 bacterial strains were 14.5 h for
the DglnB and M5a1 (WT) strains and 19.5 h for the DglnK strain.

Nitrogenase assay. Nitrogen fixation was assessed via the acetylene reduction assay (58). For this
assay, 500 mL of culture headspace was sampled via gas-tight syringe and subject to gas chromatogra-
phy through a HayeSep N column (Agilent) at 90°C in N2 carrier gas. Acetylene and ethylene were
detected by flame ionization at 300°C, and ChemStation software (Agilent) was used to integrate signal
peak areas. Periodically, 15 mL of oxygen-free N2 gas was injected into sample bottles via gas-tight sy-
ringe prior to extraction of an equivalent volume of cell culture for analysis of OD600 and RNA-FISH.
Accumulative nitrogenase activities are expressed as the percent acetylene consumption and ethylene
production, normalized by the OD600 (see Fig. S1).

RNA fluorescence in situ hybridization.mRNA-FISH was performed according to a protocol described
previously (31). Briefly, bacterial cells were sampled anaerobically and collected by centrifugation. Pelleted
cells were fixed in a buffer containing 3.7% (vol/vol) formaldehyde prior to permeabilization in 70% (vol/vol)
ethanol. Hybridization and wash steps were performed in saline and sodium citrate buffer (150 mM sodium
chloride, 15 mM sodium citrate) supplemented with 40% (vol/vol) formamide. All solutions were prepared
using diethyl pyrocarbonate-treated water and RNase-free plasticware. DNA probes against the nifHDK, nifLA,
and glnK-amtB structural operons were designed using the Stellaris Probe Designer version 4.2; the oligonu-
cleotide length was set at 20 nucleotides (nt), the minimal spacing length was set at 2 nt, and the masking
level was set at 1 to 2. The probes were purchased prelabeled with 6-carboxytetramethylrhodamine succini-
midyl ester (for nifLA and glnK-amtB) or Cy5 equivalent Quasar 670 (for nifHDK) from LGC Biosearch
Technology. The oligonucleotide probes used for mRNA-FISH can be found in Table S2. Hybridization was
performed overnight at 30°C at a final concentration of 1 mM, in buffer containing 2 mM ribonucleoside-
vanadyl complex, 1 mg mL21 E. coli tRNA, and 10% (wt/vol) dextran sulfate. Following multiple wash steps,
chromosomal DNA was stained with 10 mg per mL 49,6-diamidino-2-phenylindole (DAPI) for 30 min before
cells were immobilized using 1% (wt/vol) agarose pads on 35-mm highm-Dishes (ibidi) for imaging.

For normalization purposes, we established experimental conditions that allowed us to express
nifHDK, nifLA, and glnK-amtB operons at low and zero levels by using different strains of K. oxytoca M5a1
(see Fig. S2 to S4). These conditions were as follows: 7

Low expression of nifHDK: DglnKM5a1 strain was grown for 4 to 5 h with 10 mM ammonia;
Zero expression of nifHDK: DnifLA strain was grown for 5 to 6 h with 20 mM ammonia;
Low expression of nifLA: M5a1 strain was grown for 3 to 4 h with 0.5 mM ammonia;
Zero expression of nifLA: DnifLA strain was grown for 5 to 6 h with 20 mM ammonia;
Low expression of glnK-amtB: M5a1 strain was grown for 4 to 5 h with 0.5 mM ammonia;
Zero expression of glnK-amtB: DglnG strain was grown for 4 to 5 h with 10 mM ammonia.
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Microscopy and image analysis. Cells were harvested for carrying out RNA-FISH and microscopy
analysis as described previously (31) with slight modifications. We used 35-mm ibidi discs for imaging
purposes with the help of a WF1 Zeiss Axio observer inverted microscope. Multiple fields of view were
acquired for each sample, and within each field of view five z-slices were captured for further processing.
Data stacks were converted to TIFF format using ImageJ, and cell segmentation masks from bright-field
or DAPI images were generated using Schnitzcells. The protocol outlined previously (31) was then fol-
lowed to detect and quantify mRNA in each cell by using the Spatzcells package in MATLAB. Fluorescent
spots within cells were detected automatically by the software, and false positives were removed using
a threshold chosen using the “zero” control samples described above. The probability distribution of the
remaining spots was then extracted, and remaining false-positive spots were removed using the 99.9th
percentile from the zero control sample of nonexpressing cells. The distribution of spots from the “low”
control sample were then used to determine the characteristic intensity of a single mRNA, obtained by
fitting a Gaussian distribution to the spot intensity histogram. With this normalization performed, spots
could be integrated within the cell boundary determined by the masks, thereby obtaining mRNA copy
numbers for each imaged cell. The number of imaged cells ranged from 200 to 1,000 for each individual
sample.

Mutual information analysis. In order to assess the relationship between transcript abundance of
two different genes, we evaluated the MI. MI is a method for evaluating statistical dependencies between
two random variables from the joint and marginal probability distributions, even when the underlying
relationship is complex and nonlinear. These distributions are the transcript abundance distributions
obtained empirically from the data, examples of which are displayed in Fig. 2. As with any statistic
intended for classification, it is important to ascertain a confidence threshold in order to rule out false posi-
tives. This is achieved by evaluating a null distribution for the value of the test statistic in the case that
there is no relationship. Here, we achieved this by shuffling the data for one gene and evaluating the MI
obtained in that case. By performing this shuffling and evaluation 100,000 times, a null distribution for the
MI is obtained. From this null distribution, a significance level can be obtained for the measured MI.

Entropy was calculated from the transcript abundance measurements. The data were discretized
into a probability distribution over the (integer) mRNA copy numbers, denoted in the following equation
as p(x). The following formula was then applied:

H xð Þ ¼ 2

X
x

pðxÞlog½pðxÞ�:

Stochastic modeling and parameter inference. The stochastic model for transcription is based
upon the telegraph model, in which a given gene transitions from inactive to active at rate l and from
active to inactive at rate �. When the promoter is active, transcription occurs at rate K, while degradation
of the mRNA occurs at rate d independent of the promoter activity. If � � l and K � d , the distribution
of transcript abundances is the negative binomial (22):

p n;
l

d
;
K
�

� �
¼ NegBinom n;

l

d
;

�

�1K

� �
¼ NegBinom n; r; pð Þ ¼ n1 r2 1

n

� �
ð12 pÞrpn:

We additionally considered extrinsic noise arising from variation in glnK (and potentially other fac-
tors) to act as a variable activation rate. This was incorporated by taking the parameter l as itself varying
between cells according to a log-normal distribution with mean l and standard deviation s . This leads
to the following compound distribution:

q n;
l

d
;
K
�
;
s

d

� �
¼
ð1
0

NegBinom n; r;
�

�1K

� �
LogNormal r;

l

d
;
s

d

� �
dr:

The model therefore gives us an expected transcript abundance distribution in terms of three parame-
ter ratios: l/d , the average normalized burst frequency; K/�, the average burst size; and s /d , the normal-
ized standard deviation for burst frequency. This integral can be evaluated numerically by computing the
distribution for a range of values for r and then performing a numerical integration across them.

Given this model, we fitted the parameters via a Bayesian inference approach using a Markov chain
Monte Carlo (MCMC) sampling scheme implemented in the programming language Julia. This enabled us to
obtain posterior distributions for each of the three parameter ratios, from which we obtained maximum a
posteriori estimates for each parameter and 95% credible intervals, as plotted in Fig. 3C. All code relating to
the modeling and parameter inference is available at https://github.com/rdbrackston/TranscriptionModels.

Calculating extrinsic contributions to variance. Given the model fits to each data set, we were
able to calculate the extrinsic contributions to variance following an approach described elsewhere (21,
38). If n is the copy number of mRNA drawn from the compound distribution q(n/l), where l is the vari-
able burst frequency, then the total variance of n, Var(n), may be determined as follows:

VarðnÞ5E½VarðnjlÞ�1Var½Eðn=lÞ�:

The first term is the average variance of the mRNA copy number distribution, where the average is over
the distribution of values for l . This term gives the contribution of intrinsic noise, as it is essentially a
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weighted sum of the variation that arises for a fixed l . The second term is the variance of the mean
copy number, where the variance is again evaluated over the distribution of values for l . This quantifies
the contribution of the extrinsic noise, since it is a measure of the variation in the copy number directly
resulting from the variation in l . We can calculate each of these terms numerically given the model pa-
rameters, thereby calculating the fractional extrinsic contribution to the total variance as follows:

e ¼ Var E njl½ �½ �
Var n½ � :

In practice, the MCMC scheme yields a joint distribution over the three parameters, l/d , K/�, and
s /d . In order to accurately assess a best estimate of the extrinsic contribution as well as confidence
intervals, we evaluated the contribution e for 4,000 parameter triplets sampled from the chain. From this
distribution, we calculated a maximum a posteriori estimate and 68% credible intervals.
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