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Abstract

In this paper, modeling of the coupling medium between two neurons, the effects of the

model parameters on the synchronization of those neurons, and compensation of coupling

strength deficiency in synchronization are studied. Our study exploits the inter-neuronal cou-

pling medium and investigates its intrinsic properties in order to get insight into neuronal-

information transmittance and, there from, brain-information processing. A novel electrical

model of the coupling medium that represents a well-known RLC circuit attributable to the

coupling medium’s intrinsic resistive, inductive, and capacitive properties is derived. Surpris-

ingly, the integration of such properties reveals the existence of a natural three-term control

strategy, referred to in the literature as the proportional integral derivative (PID) controller,

which can be responsible for synchronization between two neurons. Consequently, brain-

information processing can rely on a large number of PID controllers based on the coupling

medium properties responsible for the coherent behavior of neurons in a neural network.

Herein, the effects of the coupling model (or natural PID controller) parameters are studied

and, further, a supervisory mechanism is proposed that follows a learning and adaptation

policy based on the particle swarm optimization algorithm for compensation of the coupling

strength deficiency.

Introduction

The neuron is an innate sophisticated structural entity of any nervous system. Contemporary

research investigates its chief biophysical features and key mechanisms of operations for effec-

tive transmission of neuronal signals between the brain and the muscles. The probe of neuron

doctrine has emerged as an important research area in the field of neuroscience that provides

insight into brain-information processing and information transmittance among neurons [1–

8]. Neural-system malfunctions can contravene many physiological brain functions such as

neuro-signal transmittance, thus potentially resulting in various neuronal diseases such as Par-

kinson’s, Huntington’s, and epilepsy [9–11].
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Given the infeasibility of measuring neurological processes, especially neuro-signal trans-

mission, investigation of the underlying mechanisms of transmitting media remains as a con-

templated research subject. The coupling medium (that is, extracellular medium) between

neurons, through which they communicate, exhibits electrical characteristics from the view

that many neuronal activities are electrical in nature. To a certain extent, endeavors have been

devoted to the investigation of the electrical behavior of the coupling medium, specifically by

exploration of its resistive characteristics [12–17]. Nonetheless, such studies provide a simple

model on the coupling strength; but these studies do not incorporate the unknown biological

processes in modeling the coupling medium using electrical components, which can result in

restrictive models.

Modern-day biological studies have shown that the coupling medium (or extracellular

medium) between two neurons has resistive, capacitive, and inductive properties [17–20].

Some theoretical and experimental studies conclude that the extracellular medium possesses

the capacitive features. One of the existing theoretical and experimental works includes non-

resistive extracellular media instead of the traditional resistive extracellular media and pro-

poses that the scaling of EEG and MEG signals can be reconciled through capacitive character-

istics of the extracellular medium [18]. Moreover, various theoretical studies regarding the

cable theory, which is one of the most noteworthy contributions in neuroscience, also consid-

ered the capacitive properties of the extracellular media other than the resistive media [19]. In

which, the authors generalized the cable equations to illustrate the neuronal membranes sur-

rounded by arbitrarily complex and heterogeneous extracellular media. The demonstrated

results revealed that the extracellular media can exhibit other complex electrical characteristics

like capacitive effect and diffusion, and have drastic impacts on fundamental cable properties.

Another research [20] showed that the extracellular medium has the inductive nature as well.

Such inductive coupling involves modifying neighboring neurons by the ion currents in the

extracellular medium from the conducting neuron in close opposition. These findings moti-

vate us to develop a sophisticated mathematical model of the inter-neuronal coupling medium

and to examine the coupling behavior of neurons due to the medium characteristics.

Accurate modeling of the coupling medium is essential to any investigation of neuronal

transmission. This is because it plays a critical role in their synchronization [21–24], which is a

fundamental phenomenon for information processing and integration in neural systems. Stud-

ies dealing with the neuronal modeling along with the relevant extracellular medium properties

and synchronization under external electrical stimulation are also essential in effort to discover

cures for brain disorders [25–27]. In the recent studies associated with the neuronal modeling

[28–30], complex dynamical behavior of electrical activities in the neuronal systems has been

explored by considering the effect of Faraday’s law of electromagnetic induction using mag-

netic fluxes. Consequently, realistic and improved neuronal models are developed that can be

utilized for understanding of synchronization process in brain. Another simple model is the

FitzHugh-Nagumo (FHN) model under external electrical stimulation, which has been consid-

ered owing to its utility in representing the dynamical behavior of neurons and its usefulness in

describing and exploring the inter-neuronal coupling medium [31–33]. It is worth noting that

studies on accurate modeling of the inter-neuronal medium and neuronal behavior under dif-

ferent medium couplings have not been fully addressed in the literature yet [34–37].

The present study exploits the neuronal coupling medium in order to investigate its diverse

electrical behavior for better understanding of information transmittance among neurons and

muscles. Modeling of the inter-neuronal coupling medium, the effects of the coupling medium

on synchronization between neurons, and learning and adaptation policy based mechanisms

for synchronization of FHN neurons are explored. The curiosity in the coupled neuronal sys-

tem and neural networks is more often than not due to the complicated behavior of the
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medium: Indeed, the transmittance of neural signals to different regions in the brain is highly

sensitive to the medium’s coupling properties. A novel electrical model of the coupling

medium that represents a well-known parallel RLC circuit attributable to the medium’s intrin-

sic resistive, inductive and capacitive properties, among others, is introduced. The coupling

medium properties are related to resistors, capacitors, and inductors owing to the motivations

from the existing studies and due to physical characteristics investigated through Faraday’s law

of electromagnetic induction. Existence of a parallel RLC circuit due to coupling between neu-

rons is proposed on the basis of superposition principle and the hypothesis of linear behavior

of the coupling medium for simplicity purpose.

It is worth noting that incorporation of the proposed coupling medium model reveals the

existence of a natural three-term controller, which is well known as the proportional integral

derivative (PID) controller. Fundamentally, a PID structure consists of proportional, integral,

and derivative parameters that can be utilized for control of the transient and the steady-state

behaviors of a system to attain a desired response [38]. Upon the viability and existence of nat-

ural PID properties, the effects of coupling properties of the medium in terms of the natural

PID components on the synchronization of FHN neurons are studied. Beside the study on a

natural mechanism, a supervisory mechanism that can compensate for the natural coupling

strength deficiency, specifically by employing a learning and adaptation policy in order to tune

PID control parameters utilizing a particle swarm optimization (PSO) algorithm, is developed

for synchronization assurance. This supervisory mechanism will present a stark contrast to the

traditional schemes, see [39–41]. The results of the proposed approach are verified through

numerical simulation results.

The remainder of the paper proceeds as follows: Section 2 discusses the main results, which

include a new modeling approach to the neuronal coupling medium, the theoretical reasoning

for medium properties, the discovery of the existence of a natural PID controller, the effects of

the coupling properties of the medium in terms of natural PID components on neuronal syn-

chronization, and the compensation for the natural coupling strength deficiency by utilization

of a supervisory mechanism of PID-controlled-synchronization. Section 3 addresses the utility

of the employed methods, application of Faraday’s law, superposition principle, the FHN

model, synchronization of nonlinear systems, the PID control approach, and PSO algorithm.

Section 4, finally, draws conclusions.

Results and discussion

Theoretical reasoning for inductive coupling

A neuronal coupling medium senses the electrical pulses (known as neuronal signals or spikes)

generated by neurons during neuronal activities and transmits them to other neurons. The

coupling medium properties are represented by gap junctions, and the strength of these gap

junctions depends linearly on the difference between the membrane potentials [17, 32–33].

Given that the properties of the coupling medium can affect neuronal synchronization, the

behavior of gap junctions is studied by utilizing a neuronal model such as the FHN system

under external electrical stimulation (e.g., deep brain stimulation). The schematic diagram in

Fig 1 illustrates the coupling medium modeling scenario by considering electrically coupled

FHN neurons under deep brain stimulation. Fig 1(a) demonstrates communication between

two FHN neurons through the neuronal coupling medium under deep brain stimulation. Fig 1

(b) more precisely focuses on the coupled model that incorporates the resistive, capacitive and

inductive properties of the medium. The conventional coupling medium models, as in [24],

[25], [31], [32], and [33], consider only the resistive properties of the coupling medium. How-

ever, when information is shared between two neurons separated by a coupling medium
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containing gap junctions, the electrical pulses face both capacitive and inductive effects in

addition to the resistive property of the coupling medium, as seen in [18–20]. The present

study explores a more general model of the coupling medium than the conventional

approaches [24–25], [31–33]. In addition, the effects of the additional coupling medium terms

on the coupled neurons and compensation of the medium strength are also investigated.

The hypothesis of inclusion of the inductive term in coupling medium can be justified

through the famous phenomenon of electromagnetic induction discovered by Michael Fara-

days [42], which reveals that a magnetic field varying with time induces a voltage, which causes

a current flow in a closed circuit. It is considered as a basic principle of inductors.

There are two types of neuronal transmission through which neurons can communicate:

chemical synapses and electrical synapses. Regarding chemical synapses that permit unidirec-

tional communication between neurons, it is true that this type of synapses cannot be modeled

Fig 1. Modeling of medium between electrically coupled FHN neurons. The electrical signals between the neurons can pass through

the inter-neuronal medium. This medium has resistive, inductive and capacitive characteristics. Therefore, it can be modeled through an

RLC circuit: (a) Two neurons under external stimulation and communicating through the medium, (b) neuronal signals facing the RLC

medium.

https://doi.org/10.1371/journal.pone.0176986.g001
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through an inductor. However, in electrical synapses (another type of synaptic junctions, that

is, gap junctions) that permit bidirectional communication between neurons, they can be mod-

eled through inductors together with resistors and capacitors. In this type of synapses, the com-

munication between one neuron to another is direct; without chemical intervention, owing to

the adjacency of the membranes of pre-synaptic and post-synaptic neurons. A neuronal mem-

brane separates the inside part of a cell from the extracellular medium and acts as a partially

porous fence to the diffusion of ions. Normally, the interior of a neuronal cell contains electrical

charges; positive or negative, however, the negative charges have excess concentration in the

inside of a neuron than the outside region. This concentration difference of negative and posi-

tive charges between the intracellular and extracellular mediums results in the generation of an

electrical potential difference, called membrane potential. In more detail, it is evident that the

membrane potential is generated by four relevant types of ions: Na+, K+, Cl-, and organic ions

(A). A large number of organic ions cannot diffuse through the membrane; however, some of

the ions like Na+ and K+ can pass through intra membranous protein holes, called ionic chan-

nels, owing to the partial permeability of the membrane. The concentrations of K+ and Na

+ are different inside and outside regions of the membrane. The K+ ions are more concen-

trated in the inside region, while the Na+ ions have more concentration in the extracellular

medium. A chemical concentration gradient makes K+ ions to flow towards the extracellular

medium, while a potential difference, produced owing to the separation of the electrical char-

ges, tends to make K+ ions to flow back to the inside part of a neuron. A similar diffusion pro-

cess can be observed for Na+ ions. The out flux of K+ ions to the extracellular medium from

the inside region polarizes the membrane and the influx of Na+ to the intracellular medium

depolarizes the membrane. In reality, the membrane responses to the potassium activation and

sodium inactivation result in the flow of ionic current. The process of ionic current flow from

one neuron to another is the same as per Faraday’s experimental results. These ions (potassium

and sodium) carrying electrical charges produces a time-varying field, which develops an

induced voltage to produce a flow of current. Faraday’s law is the fundamental principle of

inductors, and these inductors are characterized by their inductances. Therefore, the physical

phenomenon suggests the existence of an inductive property of the coupling medium.

A combination of the three effects of resistive, inductive, and capacitive components leads

to a parallel RLC circuit attributable to the electrical properties of the coupling medium. It is

important to mention that the consideration of a parallel RLC circuit as a theoretical justifica-

tion is based on a simple hypothesis: The RLC circuit consists of three electronic components

(resistor, capacitor, and inductor) that represent the characteristics of the extracellular

medium. The electrical behavior of this extracellular medium is assumed to be linear for sim-

plicity. Owing to the linearity property, the principle of superposition is applicable to the RLC

circuit, which results in a parallel configuration of the electronic elements and the total current

passing through one end to the other of a parallel RLC circuit is the sum of the three current

components. This is why it is more appropriate to consider a parallel RLC circuit instead of

other circuit configurations. Accordingly, Fig 1(b) presents an electrical model of the neuronal

coupling medium that consists of a resistor, a capacitor, and an inductor, representing the

well-known parallel RLC circuit, faced by the electrical pulses transmitted between neurons.

The electrical behavior of the inter-neuronal coupling medium is not only resistive but also

further a function of resistance, capacitance, and inductance.

Modeling of coupling medium between neurons

For derivation of a mathematical model of the coupling medium, consider two different FHN

neurons (see also [31–33]) describing the coupling phenomenon under certain coupling

Modeling of inter-neuronal coupling medium and its impact on neuronal synchronization

PLOS ONE | https://doi.org/10.1371/journal.pone.0176986 May 9, 2017 5 / 20

https://doi.org/10.1371/journal.pone.0176986


medium properties:

dx1

dt
¼ x1ðx1 � 1Þð1 � r1x1Þ � y1 � I1;2 þ ða=oÞcosðotÞ;

dy1

dt
¼ b1x1;

ð1Þ

dx2

dt
¼ x2ðx2 � 1Þð1 � r2x2Þ � y2 � I2;1 þ ða=oÞcosðotÞ;

dy2

dt
¼ b2x2;

ð2Þ

where x1 and y1 are the states of the first FHN neuron in terms of the activation potential and

the recovery variable, respectively, and x2 and y2 are the corresponding states of the second

FHN neuron. The FHN model parameters (r1, r2) and (b1, b2) are linked with the nonlinear

part and the recovery variable of the neurons, respectively. The parameter a denotes the ampli-

tude of the external stimulation current for the master and slave neurons, respectively. Time

and the angular frequency of the stimulation current are represented by t and ω = 2πf, respec-

tively, where f denotes the frequency. I1,2 and I2,1 are the currents from the first to the second

and from the second to the first neurons, respectively.

Primarily, the conduction currents were taken to be I1,2 = g(x1 − x2)gx1,2 and I2,1 =

g(x2 − x1)gx2,1, where g is the coupling medium’s resistive conduction strength, as seen in

the literature ([24], [25], and [31–33]). In this paper, however, as per the proposed electrical

structure of the coupling medium, I1,2 is taken to have the form

I1;2 ¼ iR þ iC þ iL; ð3Þ

where iR, iC and iL represent the resistive, capacitive, and inductive currents given by

iC ¼ gc
dx1;2

dt
;

iR ¼ gx1;2;

iL ¼ gl

ðt

0

x1;2dt:

ð4Þ

Here, gc and gl are the capacitive and inductive strengths of the coupling medium. By utiliz-

ing Eqs (3) and (4), the conduction current I1,2 becomes

I1;2 ¼ gx1;2 þ gc
dx1;2

dt
þ gl

ðt

0

ðx1;2Þdt: ð5Þ

And similarly, the expression for I2,1 takes the form

I2;1 ¼ gx2;1 þ gc
dx2;1

dt
þ gl

ðt

0

x2;1dt: ð6Þ

Eqs (5) and (6) represent the mathematical model of the inter-neuronal coupling medium

in terms of the flow of current between neurons; thereby they generalize the conventional cou-

pling medium model given by I1,2 = gx1,2 and I2,1 = gx2,1. By ignoring the capacitive and
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inductive effects, that is, gc = 0 and gl = 0, Eqs (5) and (6) are reduced to the traditional model

given by I1,2 = gx1,2 and I2,1 = gx2,1.

By substituting Eqs (5) and (6) into Eqs (1) and (2), a generalized model of coupled FHN

neurons can be obtained as

dx1

dt
¼ x1ðx1 � 1Þð1 � r1x1Þ � y1 � gðx1 � x2Þ � gcð _x1 � _x2Þ

� gl

ðt

0

ðx1 � x2Þdt þ ða=oÞcosðotÞ;

dy1

dt
¼ b1x1;

ð7Þ

dx2

dt
¼ x2ðx2 � 1Þð1 � r2x2Þ � y2 � gðx2 � x1Þ � gcð _x2 � _x1Þ

� gl

ðt

0

ðx2 � x1Þdt þ ða=oÞcosðotÞ;

dy2

dt
¼ b2x2:

ð8Þ

In contrast to the conventional coupled neuronal systems ([24], [25], [31–33]), models (7)

and (8) represents a more practical form of coupled neurons, by incorporating the coupling

medium properties and showing that a parallel RLC circuit can exist between the neurons and

such circuit would be responsible for neuronal communication. Primarily, the gap junctions

permit communication between two neurons by capturing the coupling medium’s property of

resistivity. However, the behavior of gap junctions and the coupling medium can be capacitive

and inductive as well. To grasp these characteristics of the coupling medium, the medium of

the modified FHN models (7) and (8) is characterized by the parameters g, gc, and gl. The con-

sideration of the coupling medium as capacitive and inductive, in contrast to the literature

([12–17], [32–37]), provides a more realistic coupled FHN system and, hence, a more natural

coupled neuronal model.

Coupling strength as PID control for synchronization

After obtainment of a model of the underlying coupling medium between neurons, the model

is used to investigate the natural phenomenon of the synchronization of potentials in a neuro-

nal network. The mathematical equations for the coupling medium reveal the existence of nat-

ural three control terms known as the proportional integral derivative (PID) controller. To

demonstrate the existence of a natural PID control between neurons, we assign

f1ðx1Þ ¼ x1ðx1 � 1Þð1 � r1x1Þ; ð9Þ

f2ðx2Þ ¼ x2ðx2 � 1Þð1 � r2x2Þ; ð10Þ

upidðeÞ ¼ kpeþ ki

ðt

0

edt þ kd _e; ð11Þ

where e = x1,2 represents the error between activation potentials of neurons, and kp = g, ki = gl,
and kd = gc refer to the proportional, integral, and derivative gains due to the resistive,
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inductive, and capacitive properties of the coupling medium, respectively. The signal upid(e) =

I1,2 denotes the current due to the coupling between neurons in terms of a PID control signal

obtained by combining the proportional, integral, and derivative operations on the synchroni-

zation error. Employing Eqs (9)–(11), we re-write the coupled FHN neurons in Eqs (7) and (8)

as

dx1

dt
¼ f1ðx1Þ � y1 þ ða=oÞcosðotÞ � upidðeÞ;

dy1

dt
¼ b1x1;

ð12Þ

dx2

dt
¼ f2ðx2Þ � y2 þ ða=oÞcosðotÞ þ upidðeÞ;

dy2

dt
¼ b2x2:

ð13Þ

The models (12) and (13) reveals that the neurons receive a feedback of the error signal e =

x1 − x2, which is processed by the resistive, inductive, and capacitive effects of the coupling

medium as upid(e) and forms a PID controller. It is notable that the dynamics of FHN neurons

Eqs (12) and (13) containing upidðeÞ ¼ kpeþ ki

ðt

0

edt þ kd _e confirms the existence of a PID con-

troller in the model of coupled neurons.

The schematic diagram in Fig 2 shows the existence of a natural PID controller in the

model of coupled FHN neurons when assigning Is = (a/ω)cos(ωt). The occurrence of feedback

and PID control can easily be verified for Neuron 2, as the error signal e is employed as a feed-

back through the PID controller formed by the coupling terms. Similarly, the existence of a

natural PID controller due to the coupling medium properties can be verified for Neuron 1.

Fig 2. The existence of a natural PID control between FHN neurons coupled through a medium. This medium, forming an RLC circuit,

can be represented as natural resistive, inductive, and capacitive properties, which are responsible for the regulation of the synchronous

behavior of the neurons. The natural PID control can be understood as a mechanism for tracking the behavior of one neuron via another.

https://doi.org/10.1371/journal.pone.0176986.g002
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The functioning of PID control in neurons can ensure the tracking of the activation potential

of Neuron 1 by that of Neuron 2, and vice versa. The synchronization phenomenon between

the neurons can be explained in terms of the tracking of the activation potential of a neuron by

another neuron through a PID controller. Hence, a PID controller exists between two neurons

for their synchronization, and the entirety of information processing in the brain is controlled

through multiple PID controllers formed due to communication between neurons via the cou-

pling medium and its resistive, inductive, and capacitive properties.

Effects of PID components in neuronal synchronization

The PID phenomenon existing between neurons acts as a feedback control device that can

enhance the synchronization process in the brain. The numerical simulation showed that

the steady-state performance is within an acceptable limit and that the transient response

follows the variations in the PID components. The model parameters are selected as r1 = 10,

r2 = 10.5, b1 = 1, b2 = 1.2, ω = 0.8796, and the stimulation amplitude α = 0.1 for different val-

ues of g, gc and gl in terms of kp, ki and kd. Please refer to the next section for the simulation

method and software details, which demonstrates the effectiveness of the PID components

on synchronization.

The first numerical simulation was conducted to verify the effect of the proportional compo-

nent kp of the PID on synchronization of FHN neurons. For this, we fixed the integral and

derivative constants of the natural PID as ki = 0.0001 and kd = 0.00001. The effects of kp on syn-

chronization of FHN neurons can be observed in Fig 3, which shows the synchronization error

plots for different values of the proportional component kp. For a small value of kp = 0.1, the

FHN neurons incur a large synchronization error and show a slow convergence. As we increase

Fig 3. Comparison of the errors under various proportional components on the synchronization of

FHN neurons: kp = 0.1, kp = 0.3, kp = 0.6, kp = 1. The synchronization error decreases with increasing kp;

however, an increase in the overshoot is seen as kp gets smaller.

https://doi.org/10.1371/journal.pone.0176986.g003
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the value of the proportional component to kp = 0.3, the synchronization error decreases in the

steady state and approaches to zero. When kp = 0.6, the neurons exhibited almost synchronous

behavior. However, for kp = 1, the steady-state synchronization error further decreased. It is

evident from Fig 3 that the increased proportional gain kp of the natural PID decreases the

steady-state synchronization error between the FHN neurons with a large overshoot.

In the second numerical simulation, we studied the effects of integral component ki of the

natural PID controller on the synchronization of the coupled FHN neurons. The other param-

eters chosen were kp = 1 and kd = 0.00001. Fig 4 plots the synchronization errors under various

values of integral component ki. At the very small value of ki = 0.0001, both FHN neurons

showed a certain synchronization error; however, as the value increased to ki = 0.3, the error

decreased, and by increasing ki further to ki = 0.6 and after once more time to ki = 1, the

steady-state error became zero. It is observed that the synchronization error approaches to

zero as integral gain ki increases. Hence, the integral component of the natural PID control

can eliminate the synchronization error between neurons, and thus plays a vital role in attain-

ment of neuronal synchronization.

In the third numerical simulation, we investigated the effects of the derivative component kd
of the PID on synchronization of FHN neurons. The proportional and integral constants were

taken as kp = 0.01 and ki = 0.01, respectively. Fig 5 plots the synchronization error under differ-

ent parametric values of kd in the natural PID control. Initially, we chose kd = 0.001; at this

small value, the synchronization error oscillated, leading to a non-synchronous neuronal behav-

ior. However, at kd = 0.04, kd = 0.1 and, further, up to kd = 0.3, the overall synchronization error

response was stable, with almost zero steady-state synchronization error. This indicates that the

derivative component of the synchronization error system can improve system stability.

Fig 4. Comparison of integral components to synchronization error: ki = 0.0001, ki = 0.3, ki = 0.6, ki = 1.

By increasing the value of ki, the synchronization error in the steady state can be reduced to zero. That is, a

complete synchronization between neurons can be attained for a large value of the integral constant of the

natural PID control.

https://doi.org/10.1371/journal.pone.0176986.g004

Modeling of inter-neuronal coupling medium and its impact on neuronal synchronization

PLOS ONE | https://doi.org/10.1371/journal.pone.0176986 May 9, 2017 10 / 20

https://doi.org/10.1371/journal.pone.0176986.g004
https://doi.org/10.1371/journal.pone.0176986


The following important conclusion can be drawn from the simulation results, Figs 3–5:

The standard characteristics of a PID control, namely zero steady-state error, fast response,

and good stability properties, can easily be verified in terms of the synchronization error for

FHN neurons communicating through a coupling medium having resistive, capacitive, and

inductive properties. The components of the natural PID controller are responsible for regula-

tion of the synchronization error in the membrane potentials.

Compensation of natural coupling strength deficiency for

synchronization

To cover the strength deficiency of the PID components, an additional control signal from

another PID controller can be incorporated. This new control signal is added to the second

neuron, and accordingly, the dynamics of the overall FHN systems are given as

dx1

dt
¼ f1ðx1Þ � y1 þ ða=oÞcosðotÞ � upid;

dy1

dt
¼ b1x1;

ð14Þ

dx2

dt
¼ f2ðx2Þ � y2 þ ða=oÞcosðotÞ þ upid þ us;

dy2

dt
¼ b2x2:

ð15Þ

Fig 5. Comparison of derivative components to synchronization error: kd = 0.001, kd = 0.04, kd = 0.1, kd

= 0.3. By increasing the value of kd, the oscillatory effects of the synchronization error can be reduced. The

derivative component of the natural PID control can improve the stability of the synchronization error system.

https://doi.org/10.1371/journal.pone.0176986.g005
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The supervisory control signal us should be designed in such a way that the synchronization

error, owing to the natural coupling strength deficiency, convergences either to zero or to

within a small compact set around zero. We hypothesized that the signal us can be delivered to

a neuron through some feedback mechanism of electrical stimulation or drug delivery in a

similar manner as in the literature ([24], [25], [31–33]). In order to enhance the synchroniza-

tion procedure in nervous systems, this paper proposes a supervisory mechanism for compen-

sation of the natural coupling strength deficiency of FHN neurons. The control signal us
generated from the supervisory mechanism can effectively synchronize the master-slave FHN

neurons Eqs (3) and (4) via a capacitive and inductive medium. Using e = x1 − x2, the dynamics

in Eqs (14) and (15) reveals

de
dt
¼ f1ðx1Þ � f2ðx2Þ � y1 þ y2 � ð2upid þ usÞ: ð16Þ

Hence, the new signal us, owing to the term 2upid + us in the synchronization error dynam-

ics, improves the strength of the existing natural PID signal upid. Here, the selection of us
becomes critical for attainment of synchronization between the neurons. In principle, the

supervisory mechanism must be selected as

us ¼ ~kpeþ ~ki

ðt

0

edt þ ~kd _e; ð17Þ

which improves the strength of the natural PID components kp, ki and kd through ~kp; ~ki and

~kd, respectively.

PSO-based supervisory mechanism

Incorporation of a PID controller to address the coupling strength deficiency for synchroniza-

tion of neurons is interesting due to its ability in improving the natural PID components; how-

ever, obtainment of the supervisory PID controller components is a challenging task. In

neuronal systems, almost all the neural parameters are unknown, and even stimulation param-

eters are uncertain due to medium losses and unavoidable phase shifts. The coupling medium

properties also vary with time, resulting in fluctuations in the natural PID parameters kp, ki
and kd. Supervisory mechanism Eq (17) for neuronal synchronization must be designed to

cope with such uncertainties and variations. For this purpose, we employed the particle swarm

optimization (PSO) technique to find the supervisory mechanism parameters ~kp; ~ki and ~kd.
The beauty of the PSO algorithm is that it does not require the values of the neuronal, stimula-

tion, and coupling medium parameters for adaptive determination of the parameters to attain

optimization of a desired objective function.

The overall closed-loop system formed by the FHN neurons Eqs (14) and (15), coupling

medium Eq (11), and supervisory PID mechanism Eq (17) is shown in Fig 6. The two systems

of the FHN neurons are in coordination through a coupling PID according to the intrinsic

properties of the coupling medium, while an additional feedback signal us is added to the neu-

rons through a supervisory mechanism. The neuronal coupling medium exhibiting natural

PID characteristics can be characterized by parameters kp, ki and kd. The neurons communi-

cating through the coupling medium might exhibit an asynchronous behavior owing to the

natural coupling strength deficiency. A supervisory mechanism augmented in the system of

FHN neurons can compensate for the natural coupling strength deficiency and as such repre-

sent an effectual means of improving coordination in neuronal functions.
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The supervisory mechanism, which works according to the policy of learning and adapta-

tion, solves the parametric estimation problem of the supervisory PID controller by utilizing the

PSO technique to ensure synchronization. The optimum parameters ~kp, ~ki and ~kd of the PID

controller are obtained for the convergent minimum value of the objective function defined as

J ¼
ðt

0

e2dt; ð18Þ

where τ is the time of integration and J is the objective function. Let α 2 S be defined such that

a ¼ ½ ~kp ~ki ~kd � represents a particle, where s = {α 2 R3; 0� αi� αmax, i = 1,. . ., 3} is the

search area. The optimum solution for the parametric vector α is such that α� 2 S minimizes the

objective function J. The simulation results in the subsequent plots of Fig 7 verify the efficacy of

the proposed supervisory mechanism. The three derived optimal gains were ~kp ¼ 0:9, ~ki ¼ 0:7

and ~kd ¼ � 0:1 to shape the output signal us of the supervisory control mechanism for synchro-

nization of the FHN neurons by compensation of the natural coupling strength deficiency. Fig 7

(a) plots the activation potentials of both neurons (dashed line for x1, dotted line for x2) without

any supervisory mechanism. Both activation potentials show non-coherent behaviors due to

strength deficiency in natural coupling between the neurons. The adaptive estimation of the

supervisory mechanism gains ~kp, ~ki and ~kd for compensation of the natural coupling strength

deficiency is indicated in Fig 7(b). By the PSO technique, these parameters converged to

Fig 6. Supervisory mechanism for PID-controlled synchronization of neurons. By employing PSO and an additional PID control

strategy, the coupling deficiency between the neurons can be improved. The proposed controller can increase the strength of the natural

PID mechanism. The parameters of the new PID control can be tuned through adaptation for attainment of synchronization. PSO is

employed to determine the optimal PID parameters for neuronal synchronization.

https://doi.org/10.1371/journal.pone.0176986.g006
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~kp ¼ 0:9, ~ki ¼ 0:7 and ~kd ¼ � 0:1. By application of the proposed supervisory mechanism, the

activation potentials of both FHN neurons were synchronized as shown in Fig 7(c). Hence, it

can be concluded that the proposed PSO-based approach is effective for neurons’ synchroniza-

tion via estimation of the coupling strength deficiency between them.

The aim of this paper is to address the modeling of the coupling medium and its behavior

at a very basic level of two neurons to provide a more fundamental model. In the future, the

proposed methods can be extended to the synchronization of multiple neurons with complex

coupling paradigm.

Methods

Faraday’s law of induction

Discovery has played a vital role in the development of the modern electrical technologies. Fara-

day’s law is a fundamental theory that acts as a working principle for many of the devices such as

inductor, electric motors, and generators and provides a foundation for the evolution of applied

Fig 7. Controlled synchronization by application of the proposed supervisory mechanism. By application of this

mechanism, non-synchronous neurons can be adaptively synchronized through adaptation of the proportional, integral, and

derivative components: (a) Non-coherent activation potentials without the supervisory mechanism, (b) PID gains’ convergence

curves for the proposed PSO approach, and (c) activation potentials using the optimal gains ~k~p ¼ 0:9, ~k~i ¼ 0:7 and ~k~d ¼ � 0:1 of the

proposed supervisory mechanism.

https://doi.org/10.1371/journal.pone.0176986.g007
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science and real-world engineering. Faraday’s law states that a time-varying magnetic field estab-

lishes an induced voltage in a closed circuit, which causes a flow of induced current [42].

Principle of superposition

The principle of superposition has a variety of applications in many fields such as engineering

and physics. The method provides an easier way to analyze and understand complex systems.

It is based on the homogeneity and additive properties. Mostly, it is applicable to the physical

systems that can be modeled as linear systems. The significance of a linear system is that it can

be analyzed easily. By definition, the superposition principle simply states that, for a linear sys-

tem, the overall effect of several loads applying at the same time is equal to the algebraic sum of

the effects of individual loads acting simultaneously [43].

FitzHugh-Nagumo model

Neurons are the principal functional units of the brain; as such, their dynamical investigation

is central to the investigation and treatment of various brain disorders [25–27]. Accordingly, a

variety of mathematical models have been developed to capture neurons’ firing behaviors in

the brain. Hodgkin-Huxley, Hindmarsh-Rose, and FitzHugh-Nagumo are the most successful

models in the dynamical systems perspective of neurons in terms of chaos, bifurcation, oscilla-

tions, spikes, and other complex behaviors. The FitzHugh-Nagumo (FHN) model, under sinu-

soidal electrical stimulation, is widely utilized in neuronal synchronization studies due to its

utility in representing the different dynamical aspects of neurons. Consider the following FHN

model of a neuron under external electrical stimulation [31]:

dx
dt
¼ xðx � 1Þð1 � rxÞ � y þ ða=oÞcosot;

dy
dt
¼ bx þ vy;

ð19Þ

where x and y are the states of the FHN neuron in terms of activation potential and recovery

voltage, respectively. Parameter r represents the nonlinearity in the model, b and v are the

parameters linked with the recovery voltage, and parameter a indicates the amplitude of the

external stimulation current. We utilized this fundamental neuronal model to study the effects

of the coupling medium on neuronal synchronization.

Synchronization

By definition, synchronization is the adjustment of the rhythms of oscillating systems through

their (weak) interactions [44]. There are three requirements for synchronization: (i) periodic

or aperiodic oscillatory motion of systems, (ii) unidirectional or bidirectional interaction

between them, and (iii) the rhythms of the oscillatory systems must be adjusted. In brain

dynamics, neuronal firing is independent and simultaneous; however, synchronization even-

tually occurs [45]. Usually, synchronization is observed in different areas of the brain such as

the visual cortex and the olfactory bulb (see [46–48]). This section demonstrates some funda-

mental mathematical essentials of synchronization. Consider the nonlinear system

dx
dt
¼ f ðt; xÞ;

xð0Þ ¼ x0:

ð20Þ
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Now, consider another nonlinear feedback control system, given by

dy
dt
¼ gðt; yÞ þ bu;

yð0Þ ¼ y0;

ð21Þ

where x 2 <n
and y 2 <n

represent the states of the systems. The nonlinear functions f ðt; xÞ 2
<

n
and gðt; yÞ 2 <n

are time-varying vectors. Here, u 2 <m
represents the control input vec-

tor. The initial conditions are taken as x0 and y0. The above-mentioned systems in Eqs (20)

and (21) are said to be synchronized, if the synchronization error e = x − y converges to zero.

The synchronous behavior of the systems can be achieved through a proper selection of con-

trol input u.

Proportional integral derivative (PID) control

Proportional integral derivative (PID) control is a well-known technique in various domains

of engineering [38–41] for regulation of the behavior of a dynamical system. It can be

expressed as

upid ¼ kpeþ ki

ðt

0

edt þ kd _e; ð22Þ

where kp, ki and kd are the PID controller’s proportional, integral, and derivative parameters,

respectively. The synchronization error signal e is shaped by individual PID terms kp, ki and

kd. For instance, error e is proportional to the controller in that as it increases, the feedback

controller devotes more effort to reduce it. The integral term has to guarantee the zero steady-

state error, but it can cause often an overshoot. The derivative term, contrastingly, has marvel-

ous stability properties; therefore, it is required to eliminate the oscillations.

Simulation method and software

In this modern era of technology, the state-of-the art methods in modeling and simulation of

engineering systems have received more attention owing to their extensive support to the

design and development process. Modeling and simulation help to achieve the desired goal vir-

tually rather than through physical experiments. Simulation experimental studies have a vari-

ety of applications in multi-disciplinary systems in which different components are tightly

coupled to attain an optimal performance. In neuroscience studies (or computational neuro-

science), modeling and simulation is more useful owing to the more physical limitations (diffi-

culties in physical experimental measurements). Indeed, simulation experimentation has

emerged as a key tool of dynamical analysis in contemporary research, especially in the field of

neuroscience. In the present work, numerical simulations were performed with a mathematical

model to explore the neuronal coupling medium properties to understand the impact of the

coupling medium on the synchronization of the neuronal potentials in a neuronal network.

For simulation of coupled FHN models, a complete SIMULINK/MATLAB model was

developed. Functions can be written in any programming language for SIMULINK model.

However, for a built-in MATLAB S-function, any familiar function of MATLAB can also be

used. S-functions, written in programming languages like C, are employed to embed an object

code into a SIMULINK model. There are two steps: First, the FHN models are programmed

using S-functions with easily adjustable coupling parameters of model. In the second step, the

S-functions are called into the SIMULINK model. Using this approach, numerical simulation

on the effects of the coupling medium on synchronization was performed.
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Particle swarm optimization (PSO)

Particle swarm optimization (PSO) is well known for its provision of an alternative solution to

nonlinear complex optimization problems. It has gained an interest from the researchers for

its simplicity of implementation as well as its ability to swiftly converge to an optimal solution.

Inspired by the social behavior of bird flocks, it finds the optimal solution by exploiting the

population of particles in a search space [49], see also [38–41]. In this method, each particle

moves in the search domain and updates its velocity, according to both its own flying experi-

ence and that of its neighbors, toward its personally and globally best location. Rather than the

conventional methods of [46–48] and [50–51], we have employed PSO in our analysis for the

synchronization of neurons. The fundamental PSO algorithm is as follows:

1. Generate a population of particles and initialize their positions and velocities randomly.

2. Evaluate the objective function for each particle and compare each fitness value with the

particle’s personal best (pbest). If the current fitness is better than the pbest, assign the pbest

value to the current one and the pbest location to the current location.

3. Likewise record the global best position (gbest).

4. Update each particle’s velocity and position according to the given equations

Vi ¼WVi þ C1RandðPbest � XiÞ þ C2RandðGbest � XiÞ; ð23Þ

Xi ¼ Xi þ Vi; ð24Þ

which define the PSO algorithm’s key mechanism. Here, Vi and Xi are the velocity and posi-

tion of the ith particle, and W is the inertial weight, which balances the searches. The learn-

ing constants are denoted by C1 and C2. Pbest is the current optimal position of each

particle, and Gbest is the current optimal position among all particles.

5. Return to step (ii) until the stop criterion (i.e., a good fitness) is achieved.

Conclusions

In this paper, we discussed a new inter-neuronal coupling medium model and introduced a

controlling mechanism based on the policy of learning and adaptation to ensure the synchro-

nization of various processes in the brain. This approach is of interest for several reasons. First

of all, a neuronal coupling medium model that accords with the neuron’s intrinsic electrical

properties was derived by utilizing the knowledge of electrical circuits and biological-experi-

mental evidence. Amazingly, the incorporation of such properties revealed the existence of a

natural three-term control strategy known as the proportional integral derivative (PID) con-

troller. Further, we studied the impact of such properties on synchronization, and observed

that brain-information processing can rely on a large number of PID controllers resulting

from the coupling medium properties. The end product of the present research is the proposed

novel scheme that compensates for the natural coupling strength deficiency by introducing a

supervisory mechanism that works on the basis of a learning and adaptation policy and solves

the parametric selection problem of the PID controller by utilizing the particle swarm optimi-

zation technique.
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