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The field of Membrane Protein Structural Biology has grown significantly since its first landmark in 1985 with
the first three-dimensional atomic resolution structure of a membrane protein. Nearly twenty-six years later,
the crystal structure of the beta2 adrenergic receptor in complex with G protein has contributed to another
landmark in the field leading to the 2012 Nobel Prize in Chemistry. At present, more than 350 unique mem-
brane protein structures solved by X-ray crystallography (http://blanco.biomol.uci.edu/mpstruc/exp/list, Ste-
phen White Lab at UC Irvine) are available in the Protein Data Bank. The advent of genomics and proteomics
initiatives combined with high-throughput technologies, such as automation, miniaturization, integration
and third-generation synchrotrons, has enhanced membrane protein structure determination rate. X-ray
crystallography is still the only method capable of providing detailed information on how ligands, cofactors,
and ions interact with proteins, and is therefore a powerful tool in biochemistry and drug discovery. Yet the
growth of membrane protein crystals suitable for X-ray diffraction studies amazingly remains a fine art and a
major bottleneck in the field. It is often necessary to apply as many innovative approaches as possible. In this
review we draw attention to the latest methods and strategies for the production of suitable crystals for
membrane protein structure determination. In addition we also highlight the impact that third-generation
synchrotron radiation has made in the field, summarizing the latest strategies used at synchrotron beamlines
for screening and data collection from such demanding crystals. This article is part of a Special Issue entitled:
Structural and biophysical characterisation of membrane protein-ligand binding.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
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1. Introduction

Membrane proteins play a vital role in many critical biological
processes. Nearly 30% of proteins in eukaryotic cells are known to
be membrane proteins [1]. Mutations or improper folding of these
proteins is associated with many known diseases such heart disease,
cystic fibrosis, depression, obesity, cancer and many others. Currently
approximately 60% of available drugs target membrane proteins
of which G protein-coupled receptors (GPCRs) and ion channels con-
stitute the largest groups [2,3]. Although most of the drugs commer-
cially available have emerged through conventional drug discovery
methods such as high-throughput screening (HTS), computational
methods and functional assays, it is the structural information pro-
vided by the three-dimensional (3D) atomic structures that dis-
closes details regarding the binding mode of such proteins. This
information is critical in the rational design of better drugs with im-
proved selectivity and pharmaceutical properties [4–7]. Since X-ray
crystallography has been the only tool capable of delivering de-
tailed empirical information on protein structures at atomic level,
its use in drug discovery programs became popular and well
established.

The first membrane protein structure solved by X-ray crystallogra-
phy was reported in 1985 [8]. Since then more than 300 uniquemem-
brane protein structures have been solved using the same method
(http://blanco.biomol.uci.edu/mpstruc/exp/list, Stephen White Lab at
UC Irvine). Many high-resolution 3D structures of integral membrane
proteins have proven to be fundamental for a better understanding of
many biological processes [9–11]. Most recently the crystal structure
of the beta2 adrenergic receptor in complex with the G protein was
solved by Kobilka's group [12]. This structure has made an enormous
contribution not only to biology but also to drug discovery by revealing
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Fig. 1. Bottlenecks in membrane protein structure d
the mechanism of action of GPCRs at the molecular level. However in
spite of recent successes, the path to a high-resolution structure of a
membrane protein still involves several bottlenecks including poor
expression, limited extraction success, low purification yields and
paucity of well-ordered 3D crystals (Fig. 1). Yet, the field of membrane
protein structural biology is in a “log” phase. In recent yearsmuch effort
has been put toward innovative developments to overcome the numer-
ous obstacles associated with X-ray structure determination of mem-
brane proteins. For instance much progress has been made regarding:
(i) overexpression of recombinant membrane proteins in different
expression hosts [13–18]; (ii) development of new detergents and
lipids for more efficient solubilization and crystallization [19–22];
(iii) improvement in protein stability through mutations, deletions,
engineering of fusion partners and monoclonal antibodies, to promote
diffraction quality crystals [23–27]; (iv) developments in automation,
miniaturization and integration which have contributed to the increas-
ing number of initial crystallization conditions and crystal optimization
strategies [28]; and (v) in synchrotron radiation and beamline develop-
ments [29]. This article provides an overview of the most recent
advances regarding the growth of membrane protein crystals and
how to best assess crystal quality-diffraction in a high-throughput
fashion using synchrotron radiation.

2. Overview of detergents

Detergents play a vital role in membrane protein structure deter-
mination. They are essential during the processes of solubilization,
purification and crystallization. Once the protein of interest has
been expressed at the required levels, it is usually necessary to extract
it from its membrane environment. The biological membrane is a
complex mosaic lipid bilayer in which membrane proteins interact
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closely with the nearby lipids and surrounding proteins. Structure
and dynamics of integral membrane proteins (IMP) are intimately
related to the properties of the surrounding phospholipids in the
membrane [30]. Due to their amphipathic nature (hydrophobic tail
and hydrophilic head) detergents used in membrane protein research
are able to extract IMPs by disrupting the phospholipid bilayer with-
out irreversibly disrupting the protein structure [31]. Detergents
mimic the lipid membrane by surrounding the hydrophobic region
of the IMP, generating a water-soluble protein–detergent complex
(PDC). This prevents protein aggregation after its removal from the
natural environment. The ability of a particular detergent to extract
and solubilize a membrane protein is closely related to its aptitude
to form micelles. In aqueous solution, the polar groups of the deter-
gent form hydrogen bonds with water molecules, whereas the hydro-
phobic groups (tail) aggregate due to hydrophobic interactions. This
results in organized spherical structures called micelles. Micelles
in general are a few nanometers in diameter and have molecular
weights of less than 100 kDa [19]. The minimal detergent concentra-
tion at which micelles are observed is called critical micelle concen-
tration (CMC). At detergent concentrations below the CMC, only
detergent monomers exist in solution whereas at detergent concen-
trations above the CMC, equilibrium between detergent monomers
and micelles is observed. The CMC varies with physical factors such
as pH, temperature and ionic strength. Another important physical
property of micelles is the aggregation number. This is defined as
the average number of detergent monomers in a micelle. While
during protein extraction, the detergent concentration should be in
excess of the CMC, during purification detergent concentration
should be kept just above the CMC value [19,32]. Although it is impor-
tant to keep in mind that lack of detergent can lead to protein
aggregation, too much detergent can also lead to protein inactivation
due to excess removal of essential lipids. Excess detergent can also in-
terfere with the crystallization process leading to phase separation
[33]. At high concentrations and low temperature, most detergents
remain in their crystalline form. However, when in solution it is com-
mon for them to separate into two distinct phases (a detergent-poor
and a detergent-rich phase). The temperature at which this occurs is
called the cloud point. Cloud point is a specific characteristic of each
detergent and should be taken into account when selecting a deter-
gent for solubilization [34].

To date, a large number of detergents are commercially avail-
able. Yet many membrane proteins are still difficult to study due
to the limited availability of a suitable detergent, not only for the
solubilization and purification processes but also for the crystalliza-
tion. Therefore, the development of new detergents is greatly wel-
comed by the membrane protein structural biology community
[21].
2.1. Classification of detergents

In biology, detergents are conveniently classified according to the
nature of their hydrophilic groups.

Ionic detergents possess a head group with a net charge that can
either be positive (cationic) or negative (anionic). These detergents
are well known for being harsh, mainly because of their ability to
disrupt the hydrophobic interactions of the protein core leading to
the unfolding or denaturing of the same. The most well known ionic
detergents are sodium dodecyl sulfate (SDS), N-laurylsarcosine and
sodium cholate. Bile acids are examples of anionic detergents with
the cholic acid being one of the most widely used. They are unique
for their “kidney-shaped” structure and also for being milder than
other linear ionic detergents [35]. In general, the use of ionic deter-
gents has been restricted to membrane proteins in which protein
solubilization has proven potentially difficult or when the target
protein is required in its denatured state.
Nonionic detergents contain uncharged hydrophilic head groups
and are the most common detergents used in membrane protein
research for solubilization, purification, stabilization, crystallization
and functional assays. They are considered mild as they break the
lipid–lipid and protein–lipid interactions rather than protein–protein
interactions. Among the most popular nonionic detergents are the
sugar based maltosides and glucosides. However it is important to
note that detergents such as n-octyl-β-D-glucoside (β-OG) with short
chains (C7–C10) may occasionally deactivate the target protein. Hence
they are most commonly restricted to use in the solubilization process.
On the other hand, detergents such as n-dodecyl-β-D-maltoside (DDM)
and n-decyl-β-D-maltoside (DM) are frequently used in membrane
protein research because of their mild and nondenaturing proper-
ties. A general rule has emerged in which shorter length detergents
are considered particularly suitable for solubilization and crystallog-
raphy while the longer chain detergents are used in the reconstitu-
tion procedures. Another advantage of sugar-based detergents is
that they do not interfere with UV measurements, as is the case
for Triton X-100. Although Triton and polyoxyethylene (e.g. C12E8)
detergents are considered mild and nondenaturing, in general, they
are extremely non-homogeneous detergents with large amounts of
impurities.

Zwitterionic detergents combine properties of both ionic and nonion-
ic detergents and in general, are milder than ionic detergents. Although
they are not themost suitable detergents formembrane protein purifica-
tion and functional assays, they have been successfully used in crystalliza-
tion and NMR studies. Themost extensively used zwitterionic detergents
are the 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate
(CHAPS), 3-[(3-Cholamidopropyl) dimethylammonio]-2-hydroxy-1-
propanesulfonate (CHAPSO), lauryldimethylamine-N-oxide (LDAO) and
fos-choline 12.
2.2. Detergent purity

In membrane protein research, the use of high purity detergents is
always recommended. Although today most of the detergents com-
mercially available for membrane proteins research are of high purity,
researchers are advised to pay particular attention to the purity value
(N99%). It is also advisable to know by which analytical method the
purity has been assessed, e.g. HPLC or TLC. Detergent impurities not
only interact and modify proteins during extraction/purification,
they are also able to interfere with the crystallization process itself.
The most common impurities in detergents are hydrophobic alcohols,
peroxides and α-isomers. The majority of these impurities are insolu-
ble in water. Therefore, if a detergent solution exhibits cloudiness at a
concentration at which it is known to be soluble, it may be an indica-
tion of contaminants. Because glucoside and maltoside detergents are
prepared from their corresponding alcohols, traces of hydrophobic al-
cohols may appear in the final product. In general, the presence of
these alcohols is not a problem during the protein extraction and sol-
ubilization. But the same does not hold true regarding the existence
of peroxides. Peroxides are a result of oxidation and hydrolysis
of polyoxyethylene detergents (e.g. Triton-100 and Tween) [36].
The presence of peroxides in detergent solutions can be very damag-
ing to biological materials since they react with protein sulfhydryl
(SH) groups and other non-protein molecules. Also important is the
fact that sugar-based detergents are synthesized in both isomeric
forms α and β. The β isomer form is the most common anomer
used in membrane protein research. The main reasons for this are
its higher solubility when comparing with the α-isomer and the
presence of α-isomer at certain levels interferes with crystallization.
Therefore, when using β isomer detergents they should contain as
little as possible of the α form [37]. Finally, it is advisable to always
prepare detergent solutions fresh, filter them before use and keep
protected from exposure to the light.
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2.3. Detergent choice

Unfortunately, the choice of detergent for membrane protein inves-
tigation still remains largely a matter of trial-and-error approach. How-
ever, a rational approachmay be taken based on (i) the properties of the
detergents, (ii) on the downstream work planned (biochemical and
biophysical assays, NMR, CD or crystallographic studies) and (iii) on
the type of membrane protein being studied (α-helical, β-barrel,
GPCR or others). Whereas detergent head groups have a strong influ-
ence on the way detergents interact with proteins, the presence of
acyl chains exerts influence on detergent CMC and aggregation number
[38]. For this reason, anionic and cationic detergents are considered
harsher detergents, followed by the zwitterionic and nonionic deter-
gents. For structure determination of membrane proteins, nonionic
and zwitterionic detergents are most commonly used. Maltosides and
glucosides are the most popular for their mild properties with the
maltosides being milder than the glucosides.

Recently, the use of the Green Fluorescent Protein (GFP) fused to the
membrane protein terminus has proven to be a useful tool for the rapid
selection of themost effective detergent for the extraction/solubilization
[39,40]. Upon ultraviolet light excitation at 395 nm or 498 nm the GFP
fluorophore emits green fluorescence light at 509 nm (emission peak).
Therefore, the membrane protein–GFP fusion is easily monitored and
visualized at any stage during overexpression, solubilization and purifi-
cation by a variety of instruments such asfluorometers andfluorescence
microscopes. The use of the Fluorescence-detection Size Exclusion Chro-
matography (FSEC) provides a rapid and efficient method in detergent
screening by assessing monodispersity and stability of the target
protein. The great advantage of this approach is the requirement of
only nanogram quantities of unpurified protein. A full description of
the method can be found in [39]. Finally, it is important to note that in
many cases the best detergent for protein solubilization is not usually
the most suitable detergent for the purification and crystallization
of the target protein. Often detergent exchange is necessary before
proceeding to the purification and crystallization stages.

2.4. New detergents

New detergents are emerging as additional tools for membrane
protein research. In common with traditional detergents, these can
be used during the processes of protein extraction, purification and
crystallization. However, they have significantly improved protein
stability and endorsement of crystallization. The most successful
new class of detergents is the neopentyl glycol (NG) amphiphilic
class. These are sugar-based detergents that have proved very
effective in the crystallization process because of their innovative
architecture and low CMC values [21,41,42]. Architecture of the NG
amphiphiles features two maltose units in the hydrophilic head and
two n-decyl chains in the lipophilic tail connected to a central quater-
nary carbon. The central quaternary carbon is derived from neopentyl
glycol molecules and thus the name of neopentyl glycol. Another new
class is the cholate-based detergents in which the three parallel
α-hydoxy groups in the cholate skeleton have been replaced by
uncharged polar groups such glycosides [43,44]. These detergent
molecules present high facial amphiphilicity that is distinct from the
end polarity present in the conventional head-to-tail detergents.
Their unique facial amphiphilic structure provides specific properties
advantageous in the processes of protein solubilization, stabilization
and crystallization [43,44].

3. Crystallization of membrane proteins

Every crystal structure must first start with a crystal. This inconve-
nient truth presents a significant problem in the field of membrane
protein structural biology. Crystallization remains one of the most
challenging hurdles that every structural group must tackle and
unfortunately the one aboutwhich least is knownor certain.Membrane
proteins differ significantly from their water-soluble counterparts; they
must be gently cosseted by the protective coat of detergent that shields
the hydrophobic surfaces and allows the crystallographer to extract, pu-
rify and handle the proteins away from their membrane environment.
Therein lies the challenge on how to promote such dynamic ensembles
of protein and detergentmolecules, which are in rapid equilibriumwith
the surrounding solution, into crystal formation.

The traditional approach tomembrane protein crystallization,what-
ever the crystallization method chosen, is the screening of numerous
potential crystallization conditions. Crystallization is multiparametric
process where a great variety of biochemical, chemical and physical pa-
rameters needs to be explored. Examples of these are purity and aggre-
gation state of the protein, buffers and their pH values, temperature,
precipitants and additives. This is an exceptionally challenging and
time-consuming process that is often limited by the amount of protein
available. Automation and miniaturization of the protein crystallization
processes have greatly contributed to the efficiency and effectiveness
of the experimental technique. At present, integrated crystallization
systems can perform more than 100,000 crystallization trials per day
combined with robust automated visualization and powerful interface
for data management [45–48].

3.1. Crystal lattice organization

Membrane protein crystals are classified according to how crystals
are formed: 2D crystals, type I 3D crystals or type II 3D crystals [49].
2D crystals are mainly considered to be reconstituted biomembranes
formed by hydrophobic interactions between detergents and lipids.
These crystals are generally used in electron microscopy and not suit-
able for X-ray crystallography studies. At present, all membrane pro-
tein X-ray structures have been solved from 3D crystals (type I or II)
only. Within type I 3D crystals, proteins are organized in planar sheets
through protein–detergent–lipid hydrophobic interactions (2D crys-
tals) stacked on top of one another by polar interactions. Crystals
grown from bicelles or lipidic cubic phase methods are known to be
type I 3D crystals [50–52]. Type II 3D crystals are commonly observed
when grown by in surfo methods. In this case, crystal packing is mostly
due to the interactions between hydrophilic regions of protein mole-
cules. The presence of detergentmicelles shelters the protein hydropho-
bic region reducing the number of protein–protein contacts essential
for crystal formation, resulting in extremely fragile crystals with large
solvent content.

3.2. Crystallization in surfo

Until now crystallization in surfo has been the most common and
successful method for crystallizing membrane proteins. Techniques
such as vapor diffusion (sitting- or hanging-drop), microdialysis or
microbatch (crystallization under oil) are normally used as the
protein–detergent complex (PDCs) that is manipulated as a soluble
protein. As mentioned above, crystallization in surfo generates type
II 3D crystals. Often, the diffraction quality of these crystals is poor.
The main reason for this is reduced essential protein–protein contacts
due to the presence of the detergent micelles that cover most of the
protein hydrophobic surface. For this reason when crystallizing
in surfo, the choice of detergent is particularly important as the shape
and size of the detergent micelle play a vital role in crystal formation.
While detergents with small micelles such as octyl-β-D-maltoside
(8M) or nonyl-β-D-maltoside (9M) hardly cover the hydrophobic
surface of the protein leading to protein aggregation, detergents with
largemicelles such as tridecyl-β-D-maltoside (13 M) usually tend to en-
gulf the entire protein [53]. The addition of small amphiphiles such as
heptane-1,2,3-triol and benzamidine is frequently able to improve crys-
tallography because they reduce detergent micelles thereby enhancing
crystal contacts [54–56]. Alternative strategies to induce crystallization
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are the use of additives such as small micelle detergents, heavy metals,
salts and organic solvents [57].

3.3. Crystallization in meso

Landau and Rosenbush were the first to report that integral mem-
brane proteins could be crystallized from bilayers [58]. This concept
was initially validated by the successful crystallization of bacteriorho-
dopsin [59,60] and halorhodopsin [61]. Since then, more than 114
membrane protein structures have been solved using the in meso
method (http://cherezov.scripps.edu/structures.htm). Lipidic cubic
phases (LCP) are mainly formed by energetically mixing the chosen
lipid with an aqueous buffer (the protein–detergent complex) at
certain ratio and temperature. The cubic phase is formed when the
matrix becomes a transparent and non-birefringent gel-like material.
Structurally, lipidic cubic phases are complex three-dimensional
networks of a bicontinuous lipid bilayer and two separated water
channels [58]. The most common lipidic cubic phases are Im3m,
Ia3d and Pn3m [62]. For the monoolein/water system, the Pn3m
phase has proven to be the most suitable phase for the crystallization
of membrane proteins [63–68]. The addition of salts, high molecular
weight PEGs, lipids and kosmotrope agents dehydrates the Pn3m
cubic phase promoting protein–protein interactions that may result
in crystal formation [69,70]. On the other hand, the addition of low
molecular PEGs, MPD, detergents and chaotrope agents causes the
cubic phase to swell forming a sponge phase. The sponge phase is
most beneficial in the case of larger sized proteins or protein com-
plexes [71,72]. A full collection of assays and methods relating to
the behavior of membrane proteins and their interaction with lipids
in LCP can be found in http://cherezov.scripps.edu/resources.htm.

Crystallization using bicelles is another successful in meso method
thatwas firstly introduced by Bowie and co-workers during the crystal-
lization of bacteriorhodopsin [73]. Since then, several membrane pro-
tein structures have been solved using the bicelle method [74–79].
Bicelles are small bilayer disks formed from a number of lipid:amphi-
phile combinations when mixed at low temperature [73,80,81]. They
offer a native-like bilayer environment to the membrane proteins en-
hancing the growth of type I crystals. Crystallization in bicelles is very
simple to set up [81,82]. And, because of the protein–bicelle mixture
presents a viscosity similar to the detergent-based drop, crystallization
can be carried out in a traditional set up including the use of standard
crystallization robotics and commercial crystallization screens [81,82].

3.4. Heading toward to rational design of membrane protein crystallization
screens

When crystallizing membrane proteins there are many physico-
chemical parameters to be considered (e.g. different buffers and pH,
precipitants, salts, additives and many others). At the present mo-
ment a number of membrane crystallization screens are readily
available from various companies (Molecular Dimensions, Hampton
Research, Jena Biosciences, Emerald Biostructures and Qiagen). How-
ever, with the exponential increase in the number of membrane pro-
tein structures deposited in the Protein Data Bank (PDB) there exists
considerable potential for specific membrane protein crystallization
screens to be developed. Using the information present in the Protein
Data Bank and respective journal articles, a database of crystallization
conditions was generated for all alpha helical membrane proteins up
to and including 2012 [83] (Fig. 2 inset). This database has provided
unique insights into many aspects surrounding successful membrane
protein crystallization. Perhaps unsurprisingly it was discovered that
membrane proteins do indeed crystallize in conditions that are very
different from their water-soluble counterparts [57]. Although PEG
has been the most effective precipitant, as shown for water-soluble
proteins [84], it was the small molecular weight (MW) PEGs (400,
600) rather than their larger MW counterparts (3350, 6000), which
proved most successful for crystallography of hydrophobic channel
and transporter proteins. The effective concentration of the small
MW PEGs was also different, being ~20% higher than traditional
screening kits. The database enabled a more rational approach to
the design of tailored screening kits, MemGold and MemGold2 to fa-
cilitate crystallization of alpha helical MPs. The approach was simple;
conditions previously reported to be successful were recreated and
arranged for the 96 well crystallization formats popular with struc-
tural biology groups. Additionally, data mining could now be under-
taken on successful detergents and these sub-divided by membrane
protein family (Fig. 2). Trends were clearly visible, with ion channels
being more successfully crystallized using shorter chain detergents
such as octyl glucoside, while crystals of transporters and respiratory
complexes were more successful obtained using dodecyl maltoside
and ATPases using polyoxyethylene glycols. Recently the emergence
of mixed detergents has occurred in the reporting of crystallization
conditions. Although too early for any conclusions to be drawn or
trends suggested, the use of mixed detergent micelles for crystalliza-
tion is likely to grow in the coming years.

Crystal optimization is a common requirement following initial
success in the broad screens; indeed analysis of the recent literature
strongly suggests that additive screening is likely to be required
for optimal diffraction [57,71]. Using this information a table was
constructed based on successful additives reported in the PDB for
membrane proteins and formatted into a recent additive screen,
MemAdvantage [83], for the purpose of providing an ‘off the shelf’
option for crystal optimization. This analysis has shown that all
types of alpha helical membrane proteins have benefited from the
presence of additional additives, suggesting additive screening should
always be attempted to increase resolution. Multivalent salts and poly
alcohols appear particularly advantageous in our analysis, accounting
for 10 and 15% of all structures analyzed. Of note is the rapid increase
since 2008 in the use of secondary detergents, which account for 19%
of all structures reported in 2012 [83], making secondary detergent
screens a promising avenue for optimization strategies.

3.5. Dehydration (automated) of membrane protein crystals

Since the early days of crystallography crystal dehydration has
been noticed, studied and often put in good use [85–95]. Along with
other post-crystallization techniques such as soaking, cross-linking
and annealing it is used to try to improve the diffraction properties
of crystals in order to permit structural resolution [93–101].
Dehydration has been successful in many cases when applied to
membrane proteins [102,103]. Given the cost and time spent in
obtaining membrane protein crystals it is worth exploring every
option available for optimizing diffracting conditions. As membrane
protein crystals have, in general, very high solvent content, dehydra-
tion success is dependent on being able to extract part of the available
water, inducing reorganization in the diffracting molecules. This may
lead to new contacts between the hydrophilic areas of the proteins
potentially leading to better general order. There are currently a num-
ber of classic protocols to achieve dehydration based on either simple
air drying, vapor diffusion or soaking with dehydrating salts and/or
precipitants [98,99,101]. The advantage of classic methods is that
salt standards are well characterized [104], the experiment can be
performed with very small humidity steps, over long periods of
time and that a large number of crystals can be treated at the same
time. The limitation is that the outcomes of the dehydration experi-
ments are generally unknown until cryo data are collected. Further-
more, at practical level there are a number of complex protocols
involved that are quite difficult to establish and assess. This problem
was addressed by developing a system that despite using a different
methodology (dew point control) correlates well with the classic ap-
proaches [105] and easy to use. The Humidity Control device (HC)
[106,107] system allows diffraction monitoring while dehydration is

http://cherezov.scripps.edu/structures.htm
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Fig. 2. Analyzing current trends in alpha helical membrane protein crystallization. Inset, pie charts showing the change in the proportion of structures between 2008 and 2012 and
used in the analysis of their crystallization conditions. Respiratory complexes (brown), Channels (black), Transporters (green), Photosynthetic and Light Harvesting Complexes
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crystallizing new MP targets.
Reproduced with permission from [83].
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being induced on the samples either within the lab environment
(home source) or within the constraints of modern MX beamline
environments.

The HC device generates an airstream around the samples at con-
trolled relative humidity based on dew point. Vapor saturated water
is passed through a cooled condenser where excess water is removed
prior reaching the sample. By monitoring the airflow temperature as
it reaches the sample the temperature of the condenser (dew point)
is altered such that the resulting airflow will be at the correct relative
humidity when it reaches the sample. The airflow is delivered over
the sample via a nozzle, with a very similar footprint to most gas
nitrogen cryo-stats, so it requires no alteration to the sample environ-
ment or the experimental considerations. Sample relative humidity is
determined using the mother liquor of the grown crystals by direct
observation of droplet upon different relative humidity values.
Users later mount their samples by hand on Kapton meshes at the
predetermined initial relative humidity, where crystals will be stable.
The meshes allow wicking the excess mother liquor around the
crystal preventing crystal slippage and improving the dehydration
process. From this point onwards data collections are carried out in
a standard manner. Diffraction images are collected while the HC
device alters the hydration status of the samples and users follow
the progress of the experiment by analyzing the subsequent diffrac-
tion patterns.

The HC device is currently operational in several laboratories and
synchrotrons across the world including the European Synchrotron
Radiation Facility (ESRF), MaxLab, Helmholtz-Zentrum Berlin (HZB),
Diamond Light Source (DLS), the Advanced Light Source (ALS), the
Advanced Photon Source (APS) and the Canadian Light Source (CLS).
3.6. High-throughput seeding of membrane protein crystals

Seeding techniques have been successfully applied to membrane
proteins [108,109]. Random Microseed Matrix-Screening (rMMS),
where seed crystals are added automatically to random crystallization
screens, is a significant recent breakthrough in protein crystallization
[110]. The rMMS allows more crystals to grow in the metastable zone
[111,112] and is therefore a useful method of finding new crystalliza-
tion conditions. We have applied the rMMS to the crystallization of
membrane proteins following the adapted protocol: (i) seed stocks
were made as soon as the crystals stopped growing; (ii) crystals were
thoroughly crushed in the wells with a rounded glass probe without
adding any extra solution; (iii) seed-stock was transferred to an
Eppendorf tube and used as quickly as possible, with the remainder
being frozen for future use; (iv) sitting drops were set up automatically
with the Oryx4 robot (Douglas Instruments, Hungerford, Berkshire).
Drops comprised 0.3 μl (protein sample in detergent) + 0.29 μl (reser-
voir solution) + 10 nl (seed stock). Only 1.5 μl of seed-stock was used
per 96-well crystallization plate. Initially, five different test membrane
proteins were used (Mhp1 transporter, antibiotic transporter A, antibi-
otic transporter B, enzyme protein and a bacterial cytochrome). While
the transporter A gave no apparent improvement with rMMS, the
method yielded significant increased crystallization successes for the
cytochrome (16 extra new crystallization conditions), the enzyme pro-
tein (12 extra new crystallization conditions) and Mhp1 (8 extra new
crystallization conditions).

The main success of this method is to provide a larger number/
selection of crystallization starting points that can be used for optimiza-
tion. Combining the improved technique with in situ plate screening



84 I. Moraes et al. / Biochimica et Biophysica Acta 1838 (2014) 78–87
(see Section 4.2) we believe that rMMS has strong potential for crystal-
lizing membrane proteins.

4. Synchrotron radiation in membrane protein
structure determination

For more than 50 years, synchrotron radiation (SR) has been funda-
mental in many areas of science discovery including physics, material
sciences, chemistry, biology andmedicine. In the field of structural biol-
ogy, SR has been crucial for the structure determination of numerous
important biological macromolecules including the atomic structure
of the ribosome [113,114], structure of large virus [115] and structures
of membrane protein complexes [116,12]. The third-generation of
X-ray sources, with their associated insertion devices (undulators and
wigglers), high brilliance beamlines with tunable X-ray wavelength
and state-of-the-art end-stations incorporating multi-axes goniom-
eters, cryo-cooling devices, microbeams, pixel array detectors and
automated sample exchange [29,117–119] has transformed macro-
molecular the technique of crystallography (MX). The arrival of
high-throughput structural genomics and proteomics initiatives si-
multaneously with an increase in the awareness of the value of SR
in biology has led to a high demand in the number of synchrotron
MX beamlines [29,119]. Today, more than 120 MX beamlines from
22 different synchrotrons around the world are available to re-
searchers (http://biosync.sbkb.org/) [29,119].

In the field of membrane protein structural biology, advances in SR
have also been significant. Despite the advent of many innovative crys-
tallization approaches (see Section 3) the growth of well-ordered mem-
brane protein crystals is still a major problem. Crystals are often very
small, extremely fragile, poorly ordered (highmosaicity) and very sensi-
tive to radiation damage. Collecting data from such crystals is not a
straightforward task and the resolution of the X-ray diffraction data
not only depends on the crystal quality but also on the characteristics
of the data collection apparatus. A major breakthrough in addressing
these difficulties has been the arrival of dedicated microfocus beamlines
and the use of in situ diffraction [120,132]. The challenges associated
with the structure determination of membrane proteins are still numer-
ous but the combination developments in crystallization automation
and synchrotron instrumentation and softwaremake the future brighter.

The Membrane Protein Laboratory (MPL) at Diamond Light Source
was created to help researchers address the difficulties highlighted
above. The MPL is a state-of-the-art research and training user facility
open to scientists from laboratories anywhere in the world interested
in determining 3D membrane protein structures by X-ray crystallog-
raphy. The lab combines recently developed high throughput tech-
nologies for protein production and crystallization with the latest
developments in X-ray diffraction data collection systems at Diamond
MX beamlines (http://www.diamond.ac.uk/Home/MPL.html)

4.1. The use of microfocus beamlines

Microfocus beamlines combined with modern developments in
sample handling [121], sample visualization [122], automatic crystal
centering [123,124], cryo-cooling systems [125,126], fast readout detec-
tors [127–129], new data collection strategies [130] and the appearance
of new algorithms for merging data collected from different crystals
[131] have recently yielded many novel high-resolution membrane
protein structures (http://blanco.biomol.uci.edu/mpstruc/listAll/list).
In fact, all GPCR structures in the past few years have been solved
using microfocus beamlines. Microfocus beamlines are highly devel-
oped to target very small and/or weakly diffracting crystals [120].
While a small sized beam can reduce the background scattering resul-
tant from the mother liquor surrounding a crystal and allow the mea-
surement of data from more ordered regions of inhomogeneous
crystals, the high flux increases the scattered reflection intensities and
makes measurements from a crystal possible in seconds — an essential
requirement when hundreds or thousands of crystals are required to
obtain the 3D structure. The combination of these two features is essen-
tial for structure determination. However, radiation damage can be a
limiting factor in data collection at microfocus beamlines. This is partic-
ularly true for membrane protein crystals because of their high solvent
content. Nevertheless, the combination between cryogenic cooling of
the protein crystals and the use of a micro or submicron beam to
explore different unexposed zones of a crystal has overcome many of
the challenges associated with the radiation damage. The use of raster
scanning is also advantageous [120,127]. The raster scanning system
takes a series of X-ray snapshots across the sample and determines
the best diffraction region of a disordered crystal. It is also useful for
locating crystals when they cannot be seen with visible light, as often
happens in the case of crystals in lipid cubic phase. Furthermore, using
fast read-out detectors (Pilatus 6M) large areas can be scanned, for
example a grid scan of 225 images at 0.2 s per exposure takes only 99 s.

4.2. In situ data collection of membrane-protein crystals

A critical aspect of crystal production is the optimization of crystal
quality to achieve diffraction that will yield a structure. In order to
improve crystal quality, a large number of crystallization conditions
must be explored to increase the number and quality of protein crys-
tals produced. However, dealing with large number of crystals that
are small in size and extremely fragile to loop mounting (due to me-
chanical shocks) can be challenging. In situ screening of membrane
protein crystals has proved to be valuable during early stage charac-
terization of crystal diffraction properties [132]. This technique allows
crystals to be tested directly in their crystallization plates at room
temperature without any physical manipulation of crystals. The in
situ screening approach consists of a gripper attached to a goniometer
that supports most SBS-format plates including glass LCP plates. The
plates are positioned perpendicular to the X-ray beam and are able
to travel along a vertical and horizontal axis in order to accurately
position each drop, and each crystal within a drop, onto the rotation
axis (ω-axis) (Fig. 3). At the MPL in situ screening using the I24
microfocus beamline (Diamond Light Source) is routinely used to
assess the diffraction quality of the membrane protein crystals prior
to any handling or optimization.

4.3. The use of free electron lasers (FEL)

Although the use of conventional synchrotron radiation has revolu-
tionized the field of membrane protein structure determination, the
growth of well-diffracting crystals of sufficient size for X-ray studies is
still a challenge. In addition, as described above radiation damage is an-
other prominent barrier present during data collection [133]. New high
brilliant X-ray sources such free-electron lasers (XFEL) have provided
innovative new opportunities in the field of structure determination
of membrane proteins. This new technology is able to obtain structural
information from tiny crystals without interference from radiation
damage [134]. XFELs produce pulses of light that are a million times
more intense than those from standard synchrotron facilities. The com-
bination of intense and ultra-short pulses (b10 femtoseconds) by XFELs
offers the great advantage of “diffraction before destruction” [134,135].
During the experiment, the incident pulse terminates before the de-
struction of the sample (femtosecond exposure time). This permits
the acquisition of structural information before the disintegration of
the sample [134,135]. At present, development of XFEL sources in US,
Japan and Europe is moving fast to the beginning of a new era: “The
femtosecond nanocrystallography” [136].

5. Conclusions

For many years membrane protein structure determination was
seen as a “near-impossible mission” and therefore considered to be
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Fig. 3. Picture showing the environment setup used for the in situ data collection at I24 beamline, Diamond Light Source. Inset, on-axis microscope image of an in situ crystal hit is
shown. The red circle and cross-hair represent the beam size and position.
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one of the “last frontiers” in the field of structural biology. Neverthe-
less, in recent years we have seen many new exciting technologies
leading to an exponential rate increase in solved membrane protein
structures. As a result, many more research groups are working in
the field with great dedication and enthusiasm. Therefore, today
membrane protein structural biology presents itself to the scientific
community as an exciting field with a bright future.

“…The structure of proteins is the major unsolved problem on the
boundary of chemistry and biology to-day. We have not yet found
the key to the problem, but in recent years a mass of new evidence
and new lines of attack have enabled us to see it in a far more con-
crete and precise form, and to have some hope that we are near to
solving it…” J.D. Bernal, Nature 143 (1939).
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