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Abstract

Given the high transmissibility of severe acute respiratory syndrome coronavirus 2

(SARS‐CoV‐2) as witnessed early in the coronavirus disease 2019 (COVID‐19)

pandemic, concerns arose with the existing methods for virus disinfection and

decontamination. The need for SARS‐CoV‐2‐specific data stimulated considerable

research in this regard. Overall, SARS‐CoV‐2 is practically and equally susceptible to

approaches for disinfection and decontamination that have been previously found

for other human or animal coronaviruses. The latter have included techniques

utilizing temperature modulation, pH extremes, irradiation, and chemical treatments.

These physicochemical methods are a necessary adjunct to other prevention

strategies, given the environmental and patient surface ubiquity of the virus. Classic

studies of disinfection have also allowed for extrapolation to the eradication of

the virus on human mucosal surfaces by some chemical means. Despite considerable

laboratory study, practical field assessments are generally lacking and need to be

encouraged to confirm the correlation of interventions with viral eradication and

infection prevention. Transparency in the constitution and use of any method or

chemical is also essential to furthering practical applications.
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1 | INTRODUCTION

The containment of severe acute respiratory syndrome coronavirus 2

(SARS‐CoV‐2) infections in the current pandemic requires a

comprehensive strategy including physical, immunological, and

behavioral interventions. Whereas immunity from natural infection

and vaccination are at the forefront of prevention strategies,

protection for virus acquisition with other approaches is nevertheless

imperative for comprehensive containment. Infection routes continue

to be debated for their relevance and for prevention. As previously

elaborated, focus on disinfection and decontamination continues to

be one such critical aspect for infection control.1 Although it may be

debated whether the respiratory acquisition is practically more for

risk than direct acquisition through contact, various scenarios may

lend themselves to more or less risk for any given transmission

mode.2 As supported by a recent study, SARS‐CoV‐2 transmission is

highly likely to occur through both aerosol and nonaerosol contacts.3

Previous studies with other coronaviruses as theoretical and/or

experimental surrogates have provided ample information with

regard to disinfection and decontamination, but SARS‐CoV‐2‐

specific data are desirable to confirm any such extrapolations.1 This

review examines the contemporary SARS‐CoV‐2‐specific science as

it has emerged from the initiation of the current pandemic. Such an

analysis is even more essential, given the projection that SARS‐CoV‐2

may become an endemic respiratory pathogen much like other

established coronaviruses.4

The presence of SARS‐CoV‐2 on human and environmental

surfaces has been determined using both culture and genetic

amplification technologies. Whereas culture methods are assumed

to determine biological virus integrity with the thereafter
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presumption of potential transmissibility, the majority of studies that

search for the surface virus have depended on the detection of viral

RNA, which, in most circumstances, does not have a direct and

reliable infectivity correlation. Furthermore, there is inherent

laboratory‐based variability in both culture and RNA detection

methods that adds another layer of ambiguity for the presumptive

detection of infectious virus.5–7 Culture methods vary considerably

among laboratories in terms of their stringency, and genetic

amplification methods vary considerably in terms of their targets or

thresholds for determination. Whereas there may be a correlation

between amplification threshold values and viral quantitation, the

application of the same to surface sampling is less understood,

and interlaboratory variability in such applications is inherent.8

Paton et al.9 illustrate how virus infectivity as measured by cell

culture decreases considerably on a variety of materials, while the

detection of virus through RNA amplification remains relatively

stable for apparent viral load. There is also the possibility that some

SARS‐CoV‐2 variants may differ in their environmental stability.10

The presence of virus on a patient's skin is ubiquitous and

proportionate to the respiratory burden.11 The latter is consistent

with experimental observations of SARS‐CoV‐2 survival on human

skin.12 Such contamination is determinable by both culture and RNA

detection.13 Post‐mortem virus infectivity is also apparent.14 These

findings are practically expected, and although likely to be variable,

they confirm the need for hygiene applicable to both the patient

directly and the immediate environment. The potential for non-

respiratory sources of virus from humans has been confirmed and will

add to the potential for patient environment contamination.2,15 One

must also be cognizant of the possibility that other common infection

control measures may yet allow for escape of viable virus, given that

some patients may excrete beyond currently enforced quarantine

periods.16–18

Although early studies at times proposed that SARS‐CoV‐2 was

sparsely found in the patient environment, the ubiquity of the

environmental presence of the virus in contiguity to the infected

patient soon became more obvious.1 There has been a plethora of

investigations since that corroborate the common environmental

presence at least of viral RNA.19–36 These positive determinations

have included caregiver garments and accessories. Flooring is often

underappreciated for contamination.32,33,36,37 Diagnostic equipment

may also be a common site for virus contamination.34 Nevertheless,

there is likely to be considerable variability in the degree of

environmental or protective gear soiling with virus, given the

heterogeneity of home, societal, and hospital environments. Further-

more, the risk for such contamination may depend on the patient's

viral load and symptom duration.7,29 Most such viral RNA detections

are not associated with cultivable virus, but the ability for viral spread

through these routes must be tempered by the voluminous

opportunity for the microbe to reach these surfaces if not only for

the short‐term infectivity that may prevail. Under experimental

conditions, viable virus undergoes time‐accrued inactivation that is

variable but can survive for up to several hours, during which

transmission can be contemplated.7,9,38 Although there is variable

attrition for different surface materials, viral persistence for at least

4 h on many such solids must be carefully viewed in the context of

infection control.7,39,40 Apart from the presence directly on environ-

mental surfaces, the virus may survive for long periods in a variety of

fluid suspensions.41 Some have also suggested that in a highly

endemic region for COVID‐19, widespread detection of virus may be

possible for a large variety of public air and surfaces regardless of

their constitution.35,42 The latter study did not include an assessment

for viable virus. Wastewater as a potential source or at least an

indicator of disease prevalence is well studied.43 It is reassuring that

both proximal and distant wastewaters do not yield SARS‐CoV‐2 in

culture, even though viral genome may be abundantly evident.44,45

The latter provides some reassurance that decontamination of such

fluids is not logistically required. Paper, coins, and banknote materials

also allow virus survival.46–49 It is conceivable that inactive virus RNA

may remain on surfaces for many days, thus jeopardizing the

understanding of infectivity.28,37,50 Virus strain variants may not

differ in survival on some surfaces.51 The presence of environmental

virus may also be a marker for eventual human transmission.31

The contamination of environmental and other touch surfaces

with virus may occur directly or through settling from aerosol

distribution. Evidence for potential aerosol distribution continues to

emerge, but the consensus suggests that viral particles, as measured

mainly through RNA detection, do circulate in air with variable

distributions, within variable sizes of air particles, and for varied

distances.20,22,24,26,28,30,32,33,35,37,52–56 Few of these studies have

examined for viable virus, but for those that had, positivity was

determined, although for few samples.25,30,33,53,55 Concerns continue

to be raised for the distance in which aerosol or airborne transmission

can otherwise occur.28,30,32,33,35,54 There are also possible contribu-

tions for heating, ventilation, and air conditioning units.52 Aerosol

transmission via plumbing systems and related air traps has

introduced new hypotheses of spread, although a similar hypothesis

was previously entertained in the SAR‐CoV‐1 era.1,57 There is no

doubt that the variable definitions of aerosol or airborne spread have

been complicated by semantics.2 When considering the latter, it must

be conceded that high touch surface contamination can occur

regardless, and this may confuse the appreciation of routes for

transmission. Nevertheless, when the latter is accounted for, airborne

spread indoors continues to be found and appears to be proportion-

ate to viral loads among patients.26 Exhaled aerosol burden is

generally associated with the infectious state.58

2 | INACTIVATION VIA TEMPERATURE
MODULATION

Virus inactivation with extremes of heat exposure was established

early and as expected.1 Temperatures above 70°C are particularly

effective. There has been considerable work since corroborating this

hypothesis, and additional findings are worth considering.

In cold storage, SARS‐CoV‐2 is less stable at 4°C than at

−20°C.59 Over the span of ambient temperatures that are associated
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with meteorological fluctuation, infectivity is prolonged whether on

surfaces or in body fluids, although variably.49,60,61 There is evident

time dependency at high temperatures.49,62–64 At 50–55°C, a 90%

reduction or more in virus occurs usually within 4–9min.64–66 At

58–60°C, there is a marked reduction by 10–30min.49,62,67 Total

viral inactivation is achieved at either 65°C over 10–15min or 70°C

for 5min, and the latter has provided some safety guidance for

laboratory processes.49,68–70 Near boiling temperature inactivates

virus in less than 2min.67

Over the range of 24–37°C, there appears to be some

fluctuation in stability for different virus strains and an association

with a few specific laboratory features of viral growth.63 For the

range of 56–80°C over 10min of exposure, stability in the viral

genome has been measured, although exposure to 70°C for

30min leads to some loss of the viral genome.65,70 Holder

pasteurization (62.5°C for 30min) inactivates virus in milk samples.71

The latter has the potential to aid in the mitigation of

maternal–newborn transmission.72 Pasteurized milk food products

also have the same reduction potential.73 Heat treatment of other

food products abrogates virus stability as expected.74 Exposure of

N95 respirators at 70°C for 60min sufficiently inactivates virus

contamination.75

Virus stability with temperature variation must be considered to

be variable depending on the milieu or environment. Some assess-

ments of temperature effect have examined for viral genome only

and not with live virus cultures.76

3 | pH VARIATIONS

As detailed previously, both extremes of hyperacidity and hyperalk-

alinity can have significant anticoronavirus effects.1 pH values less

than 4 or more than 11 are mostly associated with virus reduction

with some variation, especially at lower pH.65,66,73,77–79 Some

variations at these extremes will also depend on ambient tempera-

ture, the presence of organic constituents, or the presence of other

potential inactivating agents.49,80

Substances such as citric acid, lactic acid, salicylic acid, and

hydrochloric acid have been used in various disinfectant

or germicidal products, and all of these are reported to have

some antiviral effects.81,82 In working dilutions, efficacy may trail

that of alcohol‐based products or those with quaternary

ammonium compounds, but the details of pH, working concen-

trations, temperature of use, exposure times, and product

combinations, among other features, have not been explored in

sufficient detail.

Several other factors modulate the antiviral activity of pH

extremes. Bleach products are commonly very alkaline (undiluted

5% bleach pH~11). Other common disinfectants have pH ranges

from 1 to 12. Most commercial products do not post pH values

regardless of whether other content descriptions are detailed.83

Low pH in some foods may slowly reduce viral load during

prolonged refrigeration.73

4 | IRRADIATION METHODS

Blanket acceptance of irradiation methods for SARS‐CoV‐2

inactivation must be tempered by the variation in application. For

example, distance of exposure, intensity of irradiation, and the

presence of different surfaces affect efficacy more or less.

4.1 | Gamma irradiation

Doses of 0.5–1.65 kGy/h induced considerable reduction in viral

RNA when the virus was appended to the materials of two facial

respirators.84 Complete degradation of viral RNA was achieved with

≥30 kGy.

4.2 | Nonultraviolet light exposures

Sunlight exposure may serve to decontaminate SARS‐CoV‐2 experi-

mentally, but will depend on the specific virus milieu.85 Selective use

of visible light with wavelengths of 405–425 also inactivates virus in

a time‐dependent manner.86–88 Chemical photosensitization en-

hances the effects of visible light spectra.89–91 It is conceivable that

several variations of such exposure could contribute to further

practical applications.

4.3 | UV irradiation

Variable efficacy for ultraviolet (UV) irradiation exposure has long been

associated with different UV wavelengths. SARS‐CoV‐2 is susceptible

to simulated full‐spectrum UV light that approaches natural environ-

mental conditions.92 Broad‐spectrum UV may be effective for

application to many material surfaces.93,94 Although wavelengths of

UV‐A and UV‐B have been considered as less effective, the utility of

non‐UV‐C wavelengths remains controversial.95–97 Combinations of

UV wavelengths and temperature enhancements have also been

studied.98 There is also the potential to combine UV treatment with

sensitizing agents for niche application.99

The exploitation of UV‐C for SARS‐CoV‐2 inactivation has been

studied intensively.62,66,68,69,95,100–104 Although UV‐C is inclusive of

wavelengths spanning 200–280 nm, it has been proposed that

particular wavelengths may be more efficacious.104 Regardless, there

is a dose‐responsiveness, and the time to sufficient viral inactivation

is dependent on the environment, temperature, distance, and timing

for exposure.102,103,105–112 It is not apparent that any particular

SARS‐CoV‐2 strain variant is more or less resistant.110 Differential

effects can depend on surface quality and humidity.100,103,105,106,113

Early in the pandemic, emphasis was placed on the decontamination

of N95 respirators, which were in short supply.101,104 For the latter

use, variable effects of UV‐C were seen on the irregular surface

of these masks, but it must be acknowledged that mask layers may

trap virus at different strata.114,115 Modes of UV‐C‐based viral
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inactivation are left to the ingenuity of design, which includes

disinfection chambers and robotics.102,105,109,114 The mechanism of

action of UV‐C was more correlated with viral RNA effects than

those on structural protein changes.116 Using an animal model

system, aerosol transmission could be interrupted with UV‐C.117

Other measures of virus aerosol inactivation confirm the latter.112

5 | COATING AND IMPREGNATION
BARRIERS

Apart from using disinfectants as constitutive agents in solutions to

inactivate live virus from surfaces, the development of preformed

surfaces that manifest antiviral effect has garnered considerable

interest in the materials production industries. Additives to plastics,

metals, ceramics, and other surfaces have shown antiviral efficacy to

the extent that these surfaces may have inhibitory effects after initial

viral deposition. Several copper‐based products have especially

attracted attention.118–131 Some of the latter surfaces have included

protective gear.121,129 It is not clear how much other foreign

substances may interfere with antiviral efficacy on these coated

surfaces.123 Some have chosen to apply copper together with other

heavy metals.118,124,125,130 Alternatively, the effects of copper may

be augmented with other topical coadditives.129 Silver in itself does

not appear to confer considerable antiviral effects, but silver

nanoparticles have had some efficacy in vitro and there is some

theoretical support for its use.125,130,132,133 Zinc oxide and titanium

dioxide coatings also show antiviral activity.134,135 Antiviral heavy

metals found in nutritional supplements may have some efficacy.136

Quaternary ammonium compound coatings have attracted

study.137,138 Both anionic polymer and surface calcium bicarbonate

generate an antiviral effect based on the extremes of surface

pH.79,139 Other innovations for fabric or mask impregnation have

been cited.131,140,141

While the aforementioned applications of disinfection are

potentially attractive, little has been published on the safety and

toxicity of this in these contexts. For example, direct skin contact may

promote delayed‐type hypersensitivity reactions among some sensi-

tive individuals and with select exposures.

6 | PEROXIDES AND OZONATION

Building on the success of oxygen radicals in inactivating corona-

viruses, several studies have assessed either hydrogen peroxide or

ozonation.127,142 Exposure to vaporized hydrogen peroxide under

variable conditions leads to marked reduction of both inactive and

cultivable viruses.25,143–145 Time for complete inactivation can be

prolonged depending on the circumstances. Direct gaseous ozona-

tion is also effective on a variety of solid surfaces or for viruses in

clinical samples.146,147 A system of combined ozonation and negative

ions allowed for a reduction in the amount of ozone concentration

required.148 However, the safety of ozone technologies in practical

settings has been questioned.149

Under experimental conditions, hydrogen peroxide in solution up

to 3% achieved mild antiviral activity.150

7 | HALOGENS

As for other coronaviruses, neat or working dilutions of common

household bleach are very effective anti‐SARS‐CoV‐2 treatments and

have been commonly touted in international infection control

standards.49,77,81 Efficacy is achieved in 1–5min exposures. Some

difference in efficacy for various chlorine agents has been pro-

posed.151 Topical application of povidone–iodine has also been

shown to reduce viral titers.49,152 The latter is consistent with the in

vitro action of this compound against the virus.153,154 Sustained

residual effects of povidone–iodine on skin in a model system have

been suggested.152

Environmental fogging with dilutions of hypochlorous acid has

been assessed, and presumed inactivation is concentration and

time dependent.145 Chlorination of waters has attracted attention

whether for wastewater treatment or for swimming pool

disinfection.155–157 Inactivation is time, pH, and concentration

dependent.

8 | PHENOLICS

Variant compositions of products inclusive of chloroxylenol have been

assessed.49,77,81,82 Concentrations ranging from 0.05% to 0.12% have

antiviral properties, but may not achieve comparative efficacy with

alcohol‐based preparations or working bleach dilutions.77 Depending

on the experiment, efficacy for high viral loads can be found in short

time periods.81 Comprehensive details of pH or other constitutive

products in such formulations are often lacking.

9 | ALCOHOLS

Ethanol and propanol have been studied the most and likely due to

the need for developing safe and effective hand disinfectants.

Concentrations of ethanol ranging from 40% to 80% show strong

antiviral properties whether for surfaces or for skin.49,72,75,77,158–168

Exposure in vitro to 70% ethanol results in rapid reduction of virus as

early as 15–30 s.154 Concentrations less than 30%, although having

some effect, are limited for the rapidity of virucidal effects.158,162

Isopropanol has generally been assessed at 70% vol/vol unless in

combinations with ethanol.158,160,161 Time‐dependent efficacy is

evident.77 Studies on model systems of skin preparations did not find

residual activity after alcohol exposures.152

In commercial products, it is not uncommon to see ethanol or

propanol combined with other potentially effective agents such as
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surfactants or quaternary ammonium compounds.81,82,142,161,167,169

It is proposed that a concomitant surfactant may enhance efficacy.161

10 | DETERGENTS AND SURFACTANTS

The use of these agents may have several purposes in commercial

products. Apart from direct antiviral activity, chemical agents that

facilitate disruption or increase the solubility of organic debris may

have an additive benefit. There is a large collective of such chemicals

in disinfection products.83 These may include ready‐to‐use solutions,

concentrates, handwashes, and soaps, among other products.

Benzalkonium chloride is commonly representative for the

subcategory of quaternary ammonium products.1,49,152,158,168 Work-

ing concentrations of the latter vary from 0.05% to 0.2%. Although

there is some efficacy in short durations of treatment, large viral

loads usually require several minutes of exposure or higher

concentrations.49 Some have found greater efficacy on human skin

in contrast to in vitro experimental exposures.158

In general, these chemicals may be less effective than alco-

hols.158 In fact, they may be better combined with other

agents.81,82,142 Commercial solutions or other products not uncom-

monly include a combination of more than one quaternary

ammonium agent or a combination of quaternary ammonium agents

with other surfactants.1,81,83,142,167

Several products listing surfactants only, such as some soaps or

washing liquids, have efficacy, and the latter may complicate the

understanding of active ingredients when products are being

assessed.1,49,77,82,83,161 Some studies list a single active agent when

indeed a product may have several chemicals that have potential

antiviral effects. The additive or synergistic combinations are also

difficult to assess. One study found that varying degrees of total fatty

matter in soap bars influenced virus reduction.159 The impregnation

of apparel with surfactants has also attracted attention.163

As previously suggested, there is better appreciation for any such

products through an open designation of pH, working dilution,

temperature for use, and full product constituent disclosure.1,83 It

must also be considered whether, for these products or others, there

may be a residual antiviral effect that persists after application and

that has the potential for prolonged prevention.152,167

11 | MISCELLANEOUS ANTIVIRALS

Chlorhexidine products do variably achieve anti‐SARS‐V‐2 activity in

products with concentrations ranging from 0.05% to 1%.49,152,158,169

They appear to be less effective than alcohols and have differential

action depending on the milieu.158 Some residual antiviral activity

may be possible.152 Potassium peroxymonosulfate exerts an antiviral

effect as previously demonstrated for other coronaviruses.1,77

Coniferous tree rosin oils have been shown to exert virucidal activity

in aqueous formats.170 Formaldehyde with 4%–10% concentrations

used in the laboratory is very effective.67,77 Cold plasma exposure, as

differentiated from ionizing atmospheres, has been assessed experi-

mentally.164 The use of a very high osmotic pressure on the virus

does not appear to have any effect on survival.66 The utility of

negative ion ionizers has also been studied.171

12 | DISINFECTANTS AND TOPICAL
MUCOSAL APPLICATION

As an extension of applying topical disinfectants, several studies

have assessed various topical mucosal anti‐SARS‐CoV‐2

agents.150,165,169,172,173 Conceivably, such use could be of potential

value for the prevention of both infection acquisition or secondary

spread. For example, the focused use of these agents in dental offices

to mitigate potential transmission has been considered to be useful.

Extending the latter, others have conceived uses for possible

treatment.166

Active agents in oral or nasal rinse preparations have been varied

as have their carrier vehicles or other associated ingredients. Both

duration of administration and sampling site affect perceptions of

efficacy. Formulations including hydrogen peroxide, benzalkonium

chloride, dequalinium chloride, chlorhexidine, cetylpyridinium chlo-

ride, octenidine dihydrochloride, povidone–iodine, alkaline solutions,

ethanol, hexetidine, cyclodextrin, polyaminopropyl biguanide, bio-

flavonoids, hypochlorous acid, delmopinol, silver nanoparticles,

combination surfactants, essential oils, hydroxyapatite, glycyrrhizic

acid, and/or sodium fluoride have been assessed.150,154,169,172,174–186

Efficacy during in vitro or in vivo experiments has yielded variable

results. Komine et al.175 did not find efficacy for chlorhexidine.

Others found reduced efficacy for hydrogen peroxide and chlorhexi-

dine.150,177,179,180 Cetylpyridinium chloride in various dilutions

inactivates virus, and the mechanism of action in part appears to

be related to the interruption of the Spike protein/receptor

complex.150,169,186 The degree of product dilution has a considerable

impact.150,176 Methods of virucidal determination have also been

variable and have included genetic amplification (reverse

transcription‐polymerase chain reaction [RT‐PCR]), antigen detection,

and viral culture. Non‐culture methods may be more associated with

lack of efficacy.174 Although viral culture is often cited as the

standard for virucidal activity, differences among laboratories even

for this approach must be considered.5

Many such studies have assessed antiviral effects in a short time

span for exposure and have often not provided data on sustained

efficacy. Suggested applications for oral or nasal rinsing, or both, have

also been variable. In vivo cellular cytotoxicity has not been

consistently considered.

There are few controlled trials of efficacy. Carrouel et al.178

showed a modest benefit of virus reduction with an oral preparation

in a placebo‐controlled study. The clinical implications of their

findings are uncertain. Chaudhary et al.181 also reported modest

reductions in viral load, but it is noteworthy that substances

containing hydrogen peroxide, chlorhexidine, or povidone–iodine

fared no better than saline rinses. Meister et al.150 found that
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benzalkonium chloride had only a mild effect on virus reduction. In a

randomized‐controlled trial, both 1% povidone–iodine and 0.2%

chlorhexidine reduced viral marker load and were superior to the use

of a distilled water control.182 In a randomized trial of a silver

nanoparticle suspension for oral and nasal rinsing and prevention,

some early success was reported.184 Another study showed a

reduction in oral virus with cetylpyridinium chloride, but not

povidone–iodine, and yet, others have suggested value in using

povidone–iodine in a treatment format.169,173 Ogun et al.172 found

some reductions with hexetidine‐ and hydrogen peroxide‐containing

products. Overall, and despite in vitro or in vivo efficacy, the actual

contribution to practical disease prevention or reduction is not well

established. Use of oral rinse products must also be tempered with

the potential for continuing nasal excretion of virus and its potential

consequences on infectivity. With the latter in mind, Amoah et al.187

reported on the nonrandomized use of combined oral and nasal

hydrogen peroxide lavage for prevention. The authors proposed

some clinical benefit for both patients and healthcare workers. The

potential for placebo‐containing rinses to be associated with some

viral reduction due to lavage must also be considered.172

13 | GENERAL CONSIDERATIONS AND
CONCLUSION

In general, the findings in the considerable number of studies

identified above mirror those previously found for other corona-

viruses, and there have been few, if any, surprises.1 Tables 1 and 2

provide some generalizations of method and/or product equivalency

for the inactivation of SARS‐CoV‐2, but specific applications or

product specifications may affect efficacy and must be thoroughly

considered. Table 3 presents some comparative antiviral efficacies

for disinfectants.

Some investigators have found value for the use of surrogate

viruses such as coliphages or non‐SARS‐CoV‐2 coronaviruses in

comparative assessments and given the desire to use less pathogenic

microbes during experimentation.65,81,92,138–140 Despite the evolving

literature on this topic to date, there is a dearth of focused

publications on field trials. The latter could include both virucidal

efficacy and human prevention assessments. Lesho et al.23 have

provided some insight into the relative benefits of different

disinfection and decontamination methods in situ. Zhang et al.188

reported on the detection of virus with genetic amplification from

hospital rooms that accommodated patients with active SARS‐CoV‐2

infection. It is noteworthy that the combination of terminal chemical

TABLE 1 Extrapolations for SARS‐CoV‐2 inactivation where
different stringencies are required

Low‐ to intermediate‐level inactivation

Alcohols

Halogens—chlorine, iodine

Phenolics

Peroxide solutions

Quaternary ammonium compounds

Surfactants (in combination with other active agents)

High‐level inactivation

Aldehydes

Heat—pasteurization

Ozonation

pH extremes

Sterilization

Heat

Gamma irradiation

UV‐C (with or without sensitizing agents)

Note: Uses are tempered by specific materials that will tolerate the
physicochemical inactivation method. Uses are also tempered by the
anticipated viral loads.

Abbreviations: SARS‐CoV‐2, severe acute respiratory syndrome
coronavirus 2; UV, ultraviolet.

TABLE 2 Comparative efficacies of SARS‐CoV‐2 inactivation methods in solution

Note: Commercial products should be considered for their multicomponent contents and variable pH.

Abbreviation: SARS‐CoV‐2, severe acute respiratory syndrome coronavirus 2.
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TABLE 3 Comparative efficacies of disinfectants against SARS‐CoV‐2

Agent Agent dilution Experimental milieu
Exposure
time

Starting viral
load Virus reduction Comments Reference

Alcohols

Ethanol

70% Solution 5min 7.8 log Complete 49

75% Solution 1min 6.5 log ≥1.83 log Determination
limited by

toxicity

77

5min 6.5 log >2.00 log

70% Solution 15 s ? 4 log 154

30 s ? >4 log

60 s ? >4 log

5min ? >4 log

40%–80% Solution 5–60 s ? >4.5 log 158

70% Polyvinylchloride‐
coated disc

1min Variable 5–7 log 161

>30% Solution 3min 7 log 6 log 162

Isopropanol

70% Solution 5–60 s ? >4.5 log 158

70% Polyvinylchloride‐
coated disc

1min Variable 5–7 log 161

Mixed ethanol/isopropranol

35%/35%
Polyvinylchloride‐
coated disc

1min Variable 5–6 log 161

Aldehydes

Formaldehyde

2% Solution 15min >5 log Complete 67

10% Solution 1min 6.5 log Complete Determination
limited by
toxicity

77

Paraformaldehyde

4% Glass slides ? 6.5 log Complete 77

Halogens

Hypochlorite

10% Solution 1min 6.5 log ≥3.25 log Determination
limited by
toxicity

77

5min 6.5 log ≥3.25 log Determination
limited by

toxicity

8 ppm Solution 10 s‐3min 6–7 log 2–3 log 151

80 ppm Solution 10 s‐3min 6–7 log 4–5 log
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TABLE 3 (Continued)

Agent Agent dilution Experimental milieu
Exposure
time

Starting viral
load Virus reduction Comments Reference

1mg/L Solution ≥8min 5 log 4–5 log 156

Free chlorine

1.5 ppm Solution 30 s 4 log >3 log 157

Povidone–iodine

7.5% Solution 5min 7.8 log Complete 49

0.05% Solution 30 s 6 log <1 log 150

0.1% Solution 30 s 6 log <1 log

0.5% Solution 30 s 6 log <1 log

>0.5 mg/ml Solution 30 s‐5 min 6 log/ml 99% 153

0.1% Solution 20min ? >97.0% 186

Peroxides

Hydrogen peroxide

0.5% Solution 30 s 6 log <1 log 150

1% Solution 30 s 6 log <1 log

2% Solution 30 s 6 log <1 log

3% Solution 30 s 6 log <1 log

Quaternary ammonium (cationic)

Benzalkonium chloride

0.1% Solution 5min 7.8 log Complete 49

0.025% Solution 30 s 6 log 1 log 150

0.05% Solution 30 s. 6 log 3 log

0.075% Solution 30 s 6 log >3.7 log

0.1% Solution 30 s 6 log >3.7 log

0.05% Solution 5–60 s ? 1.3–2.2 log 158

0.2% Solution 5–60 s ? 1.8–3.0 log

Cetylpyridium chloride

0.025% Solution 30 s 6 log <1 log 150

0.05% Solution 30 s 6 log <2 log

0.075% Solution 30 s 6 log <3 log

0.1% Solution 30 s 6 log >2.7 log

0.05% Solution 60min ? >97.0% 186

0.1% Solution 20min ? >97.0%

0.3% Solution 20min ? >97.0%

Dequalinium chloride

0.025% Solution 30 s 6 log <1 log 150

0.05% Solution 30 s 6 log <1 log

0.075% Solution 30 s 6 log <1 log

0.1% Solution 30s 6 log <1 log

(Continues)
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disinfection and UV exposure was not associated with considerable

reduction in the virus target, and there was some variation depending

on the surface sampled. While somewhat sobering in terms of the

findings, one must remember that such virus detection does not

necessarily correlate with live virus detection. In order to be

reassured about the practical applications of disinfection and

decontamination, more such field trials will be required.

Many variables could affect efficacy including different viral

loads, contact times, predisinfection cleaning, patient volume and

contiguity, frequency of application, and the specific environment,

among others. There is also the confounding variability in the

products themselves, as discussed above. Some surfaces may

inactivate cleaning agents. Live virus determinations better suit the

need to assess for infection potential. The need to simultaneously

eradicate other microbial pathogens, especially nosocomial patho-

gens, may also complicate the necessary treatments.189 Again,

direct real‐life experiences with standard protocols would be

desirable.

There is also the potential for environmental disinfection and

decontamination to present hazardous exposures. Chemical agents

may persist after application. There needs to be due regard for their

potential flammable, caustic, corrosive, and/or allergenic nature. As

the COVID‐19 pandemic continues and as there has been increasing

use of consumer products for disinfection and sanitization, there are

more reports of toxic exposures.190 The latter adds to the potential

for direct skin toxicity or irritation.191

In making laboratory assessments transferable to clinically useful

prevention, it may not necessarily be that all‐or‐none eradications of

virus are required. It cannot be assumed that all eradications must

have the same equivalency as any detailed gold standard, given the

lack of direct clinical assessments. The continuing COVID‐19

pandemic offers considerable opportunity for future studies. With

the current knowledge at hand, an abundance of caution should be

exercised in the interim and in the context of necessary and

inevitable practical limitations.
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