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This study is aiming at the nonlinear mapping relationship between the groundwater level and its influencing factors. Through the
design and calculation process of matlab7 platform, taking the monitoring wells distributed in an open-pit mining area as an
example, the short-term prediction of groundwater dynamics in the study area is carried out by using BP neural network model
and BP neural network model based on genetic algorithm. Root mean squared error (RMSE), Mean absolute percent-age error
(MAPE) and Nash-Sutcliffe efficiency (NSE) are used coefficients,, and the results were compared with BP neural network and
stepwise regression model. From the results of the comparative analysis, the genetic algorithm optimized the BP neural network
model in the training phase and the test phase, the RMSE was 0.25 and 0.36, the MAPE was 6.7 and 8.13%, and the NSE was 0.87
and 0.72, respectively. The BP neural network model optimized by genetic algorithm is obviously superior to the BP neural
network model, which is an ideal prediction model for short-term groundwater level. This model can provide a prediction method

for groundwater dynamic prediction and has a good application prospect.

1. Introduction

The change of groundwater level is a very complex natural
process, and it is the comprehensive effect of groundwater
system stimulated by multiple inputs [1]. Factors such as
precipitation, evaporation, and artificial mining can be
regarded as inputs to the system, and the groundwater level
can be regarded as the output of the system [2]. At the same
time, due to the spatial variation of the aqueous system, there
will be data variability in the actual research process, and
some precise research methods often fall into a variety of
dilemmas when describing the nonlinear relationship of
groundwater systems [3]. Numerical methods can describe
irregularly shaped regions and aquifers with heterogeneity,
anisotropy, and complex boundary conditions, can deal with
river infiltration, atmospheric precipitation replenishment,
changes in the temporal and spatial distribution of various
pumping, drainage and evaporation, so as to solve complex
problems that are not easy to solve by other calculation

methods; however, the numerical method as a distributed
parameter model has high requirements on the quantity and
accuracy of the data [4]. The degree of research in some areas
cannot meet the calculation requirements of the distributed
parameter model, and it is more suitable from a system point
of view, treat them as a whole, apply system theory to es-
tablish a centralized parameter model, analyze, study, and
solve problems as a whole [5]. In recent years, the neural
network method due to its powerful ability to deal with
nonlinear dynamic systems, and it has been widely used and
promoted in groundwater dynamic prediction [6]. In re-
sponse to this research question, Supreetha et al.. elaborated
on the advantages of artificial neural network models
compared with traditional simulation models [7].
Mohammadrezapour and Kisi used neural network models
to select precipitation, evaporation, surface runoft, and other
information related to shallow groundwater dynamics and
used them to predict phreatic groundwater dynamics [8].
Xia et al. successfully predicted the groundwater dynamics of
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semiconfined aquifers using the neural network method
based on extraction volume and hydrometeorological factors
[9]. On the basis of the current research, through the design
and calculation process of MATLAB 7 platform, taking the
monitoring wells distributed in an open-pit mining area as
an example, the short-term prediction of groundwater dy-
namics in the study area is carried out by using BP neural
network model and BP neural network model based on
genetic algorithm. Root mean squared error (RMSE), Mean
absolute percent-age error (MAPE) and Nash-Sutcliffe ef-
ficiency (NSE) are used as coefficient, and the results were
compared with BP neural network and stepwise regression
model. According to the results of comparative analysis,
RMSE of BP neural network model optimized by genetic
algorithm were 0.25 and 0.36, MAPE were 6.7 and 8.13%,
AND NSE were 0.87 and 0.72, respectively, in the training
stage and test stage. The BP neural network model optimized
by genetic algorithm is obviously superior to the BP neural
network model, which is an ideal prediction model for short-
term groundwater level.

2. Method
2.1. Based on GA-BP Neural Network Model

2.1.1. BP Neural Network. Back-propagation (BP) neutral
network was studied and designed by RUMELHART,
MCCELLAND and their research group in 1986. It is a
multi-layer forward neural network composed of input
layer, hidden layer, and output layer. Nodes from the front
layer to the back layer are connected by network weights,
and there is no coupling in nodes of the same layer. Acti-
vation functions of input layer and hidden layer are usually
Sigmoid type, as shown in the following formula:

(1)

flx) = l+e ™

The learning and training process of BP neural network
is divided into two parts, and they are the forward propa-
gation network input signal and the backward propagation
error signal, trained according to the way of having a tutor.
In the process of forward propagation, the input factor is
passed from the input layer to the output layer through the
hidden layer calculation layer by layer, each neuron in the
output layer outputs the network response corresponding to
the input mode, If the output layer cannot get the expected
output factor, at this time, the error is transferred to the back
propagation, according to the principle of reducing the error
between the expected output and the actual output, from the
output layer back to the middle layers, and finally back to the
input layer, and modify the weights and ratings of each
connection layer by layer. As this error back propagation
training continues, the correct rate of network response to
input patterns has also been continuously improved, and so
on, until the output error reaches the allowable range or the
number of training times reaches the predesigned number of
times [10].
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2.1.2. GA-BP Neural Network Model. In the application of
BP neural network example, most models adopt the form of
error back propagation; however, the BP neural network
model will have local minima and overfitting in the training
and prediction process, and it can only be carried out
according to the set parameters, and it is impossible to
search for the optimal solution for the weights and
thresholds of the hidden layer [11]. The basic idea of GA-BP
neural network is to find the most suitable network con-
nection weight and network structure by taking advantage of
the global search characteristic of genetic algorithm and
changing the way that BP algorithm adjusts the weight of
neural network depending on the guidance of gradient
information. The algorithm has the global search technology
of adaptive probability, breaks through the traditional rule
search method, makes the search process more flexible, and
simultaneously in the multipeak problem has the ability to
grasp the overall situation.

2.1.3. Stepwise Regression. The stepwise regression model
first considers the degree of influence of each variable on the
dependent variable, introduces the significance of the in-
dependent variables into the equation in order from strong
to weak, and the less significant ones will not be introduced.
But in the process of introducing variables, independent
variables with higher significance in the original equation
may lose significance due to the introduction of new vari-
ables and be discarded. In this way, the culling is contin-
uously looped, until the independent variables in the
regression equation are all significant to the dependent
variable, and at the end of the loop, the optimal regression
equation is obtained. The steps of stepwise regression are as
follows [12].

Set up multiple linear regression equations, establish
multiple linear regression equations, and use the least square
method to calculate the undetermined coefficients of the
linear regression equation as shown in the formula:

s Y (i- 5’1’)2
€ n-m-1 "
(2)
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In the formula, s, is the standard estimation error; s;; is
the standard deviation of b;; b; is the regression coeflicient; y;
is the original value of the dependent variable; y; is the
predicted value of the dependent variable; x; is the inde-
pendent variable; X is the average value of the independent
variable; n is the number of samples; m is the number of
constraint conditions, and the test value is calculated.
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In the formula, t; is the test value of x;.
Through the significance level a« and the degree of
freedom f, check the two-sided percentile table of the ¢
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distribution to find the critical value ¢,. The formula is as
follows:

f=n-m-1 (4)

In the formula, fis the degree of freedom.

If the independent variable t test |t;],,;, <t,, then this
variable is not significant, after removing this variable,
return to formula (2) loop calculation, until |t;];, >, it
shows that all independent variables have high significance
to the dependent variable.

The stepwise regression is over, and the optimal re-
gression model is obtained as follows:

Vi =0ag+a;X] + 0%, e + A, X (5)

i-m

In the formula, y; is the groundwater dynamic predic-
tion at time 7; x,, ...,x; is the value of the input variable from 1
to I, and a;, ...,a;_; is the undetermined coeflicient.

2.1.4. Evaluation Index of the Model. In order to better
evaluate the prediction effect of the established model, the
following indicators are used to evaluate the model.

Overall Prediction Accuracy. The validity and capability of
the model were predicted accurately, and the prediction
accuracy was expressed by RMSE:

Py (J’i - )A’i)z_ (6)

n

RMSE =

In formula (6), y; is the measured value; y; is the pre-
dicted value; and # is the number of samples.

Mean absolute error. MAPE calculates the relative error
variable between the predicted value and the actual value
through comparison term by term. Therefore, MAPE is an
unbiased statistic, and the prediction ability of the model can
be seen as follows:

n
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Nash efficiency coefficient (NSE ey coefficient) model is
used to evaluate the predictive power of hydrological
models, and it can describe the tracking ability of the
predicted value to the measured value, and the calculation
method is as follows:

Yo (i- 5’1’)2,
i (yi- ?)2

where ¥ is the average value of measured values and the
value range of NSE is (—co, 1]. When the calculated value is
close to 1, the stability of prediction is higher. When the
value of NSE is close to 0, the predicted results are closer to
the mean value of the measured samples. When the value of
NSE is less than 0, it indicates that the model prediction
results are unreliable.

NSE=1- (8)

2.2. Selection and Preprocessing of Input Variables

2.2.1. Selection of Input Variables. A certain county is
located in the west of the Huaibei Plain, with flat and open
terrain, the groundwater type is a single loose rock pore
water. According to the relationship between ground-
water burial conditions, hydraulic characteristics,
atmospheric precipitation, and surface water, ground-
water is divided into shallow groundwater and deep
groundwater from top to bottom. The data of a county
from 1974 to 1999 is used to train the model, and the data
from 2000 to 2010 is used to test the model [13]. The
selection of model input samples has an important in-
fluence on the calculation results of the model, precipi-
tation is the main source of groundwater, and the
previous groundwater has a strong correlation with the
groundwater of the month, the groundwater 3 months, 4
months, 5 months, 6 months, and 7 months before the
forecast period are used as input samples in the GA-BP
neural network. The accuracy of fitting and forecasting
groundwater as the input sample in the first 5 months of
the period to be predicted in a certain county is the
highest; therefore, the rainfall in the month before the
forecast period in a certain county and the groundwater
in the first 5 months are selected as input samples, as
listed in Table 1 [14].

2.2.2. Pretreatment. Due to the different dimensions of the
selected input samples, it cannot be directly used as an input
sample; therefore, it must be normalized. Its purpose is
mainly to accelerate the convergence speed of the neural
network, eliminate errors caused by different dimensions,
and use linear function conversion to process the original
data, the specific processing methods are as follows:

y= 7(95" o) (9)

max min)

In formula (9), x and y are the original input data and
preprocessed data, respectively; x,.. and x_; are the
maximum and minimum values of the original data,
respectively.

3. Results and Analysis

3.1. Model Establishment and Training. Use MATLAB
R2014a to write a program to establish a GA-BP neural
network model for a county in Anhui Province.

For groundwater simulation and prediction, divide the
data into training samples and test samples, and in order to
make the model have a higher fitting accuracy, use monthly
data from 1974 to 1999 for training samples. At the same
time, the monthly data of a certain county from 2000 to 2010
is used for the inspection sample, and establish GA-BP
neural network model. The nodes in the input layer of the
model consist of rainfall during the period to be predicted (1-
1), and the groundwater (#—1) composition for the first 5
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TaBLE 1: Relative errors of groundwater before different prediction periods by GA-BP neural network.
Pro Groundwater before the forecast period
roject The first 3 months The first 4 months The first 5 months The first 6 months The first 7 months
Training relative mean error 14.79 10.26 7.61 11.22 11.35
Relative mean error of prediction 18.52 14.21 9.22 14.52 17.82
months to be predicted, and the output layer node of the 60 -
groundwater in a certain county during the period to be
predicted. The number of nodes in the hidden layer of the = |
neural network has a great impact on the neural network, if
the number of nodes is small, the network performance may 5
be extremely poor, if the number of nodes is too much, the 5 404
training is easy to fall into the local minimum [15]. In order §
to avoid the blindness of selection, on the basis of BP neural S 30
network, write the loop code for the number of hidden layer g
nodes. according to experience, the initial value of the & 20
number of nodes in the hidden layer is 15, the number of
termination nodes is 40. When the number of nodes in the
hidden layer is 19, the relative average error of the model 10
training and prediction phase is the smallest. The relative - - - - - -
15 20 25 30 35 40

average error of nodes in the hidden layer of the GA-BP
neural network model from 15-40 training and prediction
stages is shown in Figure 1. The structure of BP neural
network is 7:19: 1. Set the population number to 10 during
the evolution of the genetic algorithm, the evolutionary
algebra is 20, the mutation probability is 0.1, and the
crossover probability is 0.1. According to the above GA-BP
neural network model, the weights and thresholds between
the layers of the BP neural network optimized by the genetic
algorithm can be obtained [16].

3.2. Model Test. After the GA-BP neural network model is
established, its accuracy needs to be tested. In order to test
the effect of the GA-BP neural network model, compare the
model with the stepwise regression model 4 and the BP
neural network model, perform groundwater fitting and
prediction during the period to be predicted [17]. Stepwise
regression will gradually eliminate the factors of the GA-BP
input layer, the ranking of the contribution of the correlation
is as follows: groundwater in the period to be predicted
(t—2)>rainfall in the period to be predicted in a county
(t—1) > groundwater in a certain county during the time to
be predicted (¢ — 1) > groundwater in a certain county during
the time to be predicted (t — 3) > the groundwater during the
period to be predicted in a county (¢ — 1) > the groundwater
during the period to be predicted in county A (t—4) > the
groundwater in a certain county during the period to be
predicted (f—5), excluding the last two input samples, the
first 5 input samples are retained [18]. The reason is that the
rainfall (#—1) and the previous (¢—1), (t—2) and (t-3)
months of the area to be forecasted during the period of
rainfall (t—1) are close to the groundwater in the period to
be predicted, the impact is strong. Early groundwater in
County A reflects the development trend of groundwater
levels in adjacent areas [19]. Use stepwise regression to select
impact factors for simulation and prediction, and the final
regression equation is shown in the following formula [20]:

OneThe number of hidden layer nodes is 1

—m— Training relative mean error
—e— Relative mean error of prediction

FIGURE 1: The average relative error of different nodes in the hidden
layer of the GA-BP neural network model during the training and
prediction stages.

y =0.6335-0.0016x, + 0.9629x, — 0.1856x5
+0.1118x, — 0.1319x.

(10)

In formula (10), x, is the rainfall during the period to be
predicted in a certain county (f—1); x, is the groundwater
(t—1) during the period to be predicted in a county; x; is the
groundwater (¢ —2) of a certain county during the period to
be predicted; x, is the groundwater in a certain county
during the period to be predicted (t — 3); x, and groundwater
for the period to be predicted in Lixin County (1-1) [21].

The input variables of the BP neural network and the
GA-BP neural network are the same, and the output results
are compared [22]. Taking into account that the ground-
water is too deep or too shallow will bring greater harm,
separately for the 10% maximum (deepest) and 10% min-
imum (shallowest) samples of the long series of groundwater
series—the above three indicators are used to evaluate the
maximum and minimum groups predicted by the three
models [23]. The process of predicting groundwater by the
above three models is shown in Figure 2, and the evaluation
indicators of each plan are listed in Table 2 [4].

From the analysis of Figure 2 and Table 1, it can be seen
that, the GA-BP neural network has better results than the
BP neural network and the stepwise regression model in the
values of the indicators in the two stages. The accuracy of
simulation and prediction is the highest among the three
models. It shows that the GA-BP model fully combines the
advantages of genetic algorithm and neural network,
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Year

—m— Genetic optimization BP

—e— BP neural network
—A— stepwise regression

FIGURE 2: Groundwater prediction process of a county from 2000 to 2010 based on three models.

TaBLE 2: Model simulation and prediction performance parameter analysis and comparison.

Model RMSE MAPE NSE
ode

Predict Train Max Minimum Predict Train Max Minimum Predict Train Max Minimum
Genetic algorithm optimization, 0.33  0.21 0.31 0.10 920 7.61 8.6l 9.60 084 091 0.62 0.39
that is, BP neural network returns  0.41 0.26 0.34 0.41 13.42 10.39 12.69 19.59 0.83 0.81 0.51 0.35
home 0.47 0.34 0.48 0.52 21.39 13.49 10.61 32.65 0.71 0.76 —-0.95 -0.93

overcome the problems of local optima and poor conver-
gence ability, and the prediction accuracy and fitting ac-
curacy are close and high, which fully demonstrates the good
generalization ability of the GA-BP model [24].

Based on the above analysis, the accuracy and stability of
prediction from high to low are ga-BP model > BP neural
network > stepwise regression. The RMSE of stepwise re-
gression training and prediction stage was 0.71 m lower than
that of BP neural network, MAPE of two stages was 8.15%
and 3.13% higher than that of BP neural network, and NSE
of neural network was 0.1 higher than that of stepwise re-
gression. At the same time, the NSE of stepwise regression is
less than 0 in the stability of maximum and minimum
prediction, which fully shows that the stability of stepwise
regression is not reliable in the stability of maximum and
minimum prediction, and the BP neural network is superior
to the stepwise regression model in the values of RMSE and
MAPE of maximum and minimum prediction. The reason is
that stepwise regression is based on linear theory to solve
linear problems. However, due to the influence of hydrology,
water use, artificial mining, and other factors, groundwater
presents a complex nonlinear relationship, and stepwise
regression cannot achieve good results in solving the non-
linear relationship, so the phenomenon of poor prediction
accuracy appears in this paper. However, BP neural network
mainly relies on these long-term observation data and has
strong learning ability. When the input factors change and

the complex nonlinear relationship is presented, it only
needs to let the model learn again to track the changes of the
system. Therefore, BP neural network model is superior to
stepwise regression model in solving this problem.

4. Conclusion

BP neural network model and BP neural network model
based on genetic algorithm, a short-term forecast of the
groundwater dynamics in the study area was carried out.
RMSE, MAPE, and NSE were used to compare the results
with BP neural network and stepwise regression model. The
combination of genetic algorithm and BP neural network
not only gives full play to the generalization mapping ability
of BP neural network and the global convergence ability of
genetic algorithm but also overcomes the phenomenon that
the local regulation ability of genetic algorithm is weak,
which further improved the forecasting ability and stability.
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