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Abstract

Filarial infections are tropical diseases caused by nematodes of the Onchocercidae family

such as Mansonella perstans. The infective larvae (L3) are transmitted into the skin of verte-

brate hosts by blood-feeding vectors. Many filarial species settle in the serous cavities

including M. perstans in humans and L. sigmodontis, a well-established model of filariasis in

mice. L. sigmodontis L3 migrate to the pleural cavity where they moult into L4 around day 9

and into male and female adult worms around day 30. Little is known of the early phase of

the parasite life cycle, after the L3 is inoculated in the dermis by the vector and enters the

afferent lymphatic vessels and before the moulting processes in the pleural cavity. Here we

reveal a pulmonary phase associated with lung damage characterized by haemorrhages

and granulomas suggesting L3 reach the lung via pulmonary capillaries and damage the

endothelium and parenchyma by crossing them to enter the pleural cavity. This study also

provides evidence for a transient inflammation in the lung characterized by a very early

recruitment of neutrophils associated with high expression levels of S100A8 and S100A9

proteins.
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Author summary

Mansonella perstans is a widespread human filarial parasite in Africa responsible for pleu-

ral and peritoneal cavity filariasis. Compared to other filarial parasites such as Wuchereria
bancrofti, Brugia malayi, and Loa loa, the biology of M. perstans is poorly known. The

blood-feeding vectors inject infective larvae (L3) into the host skin during a blood meal.

Depending on the species, the L3 will then migrate to its specific site. In the murine model

of filariasis Litomosoides sigmodontis L3 also reach the pleural cavity where they moult

twice then mate and produce microfilariae. Migration patterns from the skin to the pleural

cavity are partially known and involve a lymphatic phase. Here we present a sequential

analysis of L3 infection from their inoculation to day 8 when they are settled in the pleural

cavity, revealing the presence of L3 in the lung. Pulmonary damage including haemor-

rhages and granulomas is also observed suggesting that L3 could migrate to the pulmo-

nary circulation and capillaries from where they could exit the lung to reach the pleural

cavity. This induces a local inflammatory response characterized by neutrophil activation

and upregulation.

Introduction

Blood-feeding vectors inject filarial infective larvae (L3) into the host skin during a blood

meal. Most of the filarial species migrate through the host’s body from the skin to their defini-

tive niche, mainly the lymphatic system, the serous cavities, the cardiopulmonary system, or

connective tissues [1]. Rodent models are helpful to investigate the migratory routes of L3

showing an early pulmonary phase for the human Brugia malayi, and for the main animal

models of filariasis e.g. Brugia pahangi, Acanthocheilonema viteae and Litomosoides sigmodontis
[2]. The latter is the sole filaria to undergo full development in immunocompetent BALB/c

mice [3]. In addition L. sigmodontis share various biological features with the human Manso-
nella perstans such as a moulting process into stage 4 within 9–10 days, adults living in the

serous cavity including the pleural cavity, blood circulating microfilariae [3–5]. Both are con-

sidered as ‘derived filariae’ [6].

M. perstans is a vector-borne human filarial nematode, transmitted by Culicoides (biting

midges) [7]. It is responsible for serous cavity filariasis in humans, including pleural cavity

infection [8]. However, very little is known about the biology of this parasite and migration

patterns from skin to serous cavities remain unidentified. The incidence of mansonellosis (due

to M. perstans) is underestimated as it is considered of less pathogenic importance when com-

pared to onchocerciasis, lymphatic filariasis and loasis. The pathogenicity of M. perstans infec-

tion has been recently reconsidered in various studies as it is estimated that almost 120 million

people are infected by M. perstans in Africa [8–10]. Although infections with this parasite

often remain asymptomatic, a vast range of symptoms can also be provoked, e.g. subcutaneous

swellings, aches, pains, skin rashes, hormonal disturbances and hypereosinophilia [8].

In 1967, Wenk [11] hypothesized that the infective larvae (L3) may pass through the lung to

reach the pleural cavity for both Litomosoides carinii (since synonymised as L. sigmodontis)
and Acanthocheilonema perstans (since synonymised as M. perstans). Indeed, the occurrence

in the lung has been established for many filarial nematodes (Onchocercidae [6]) species in a

large range of hosts including birds, crocodiles, dogs, and humans (Table 1). However, most of

these studies documented the presence of either adult worms or microfilariae but very rarely

L3. L. sigmodontis L3 were observed in the mechanically disrupted lungs of BALB/c mice at the

second day post inoculation [12] and earlier in their natural hosts the cotton rats [11].

Transient lung inflammation in early filariasis
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Table 1. Filarial nematodes with evidences of a pulmonary location.

Subfamilly Parasite Host (experimental/accidental) Described

stage

Pulmonary location Ref

Oswaldofilariinae Oswaldofilaria bacillaris (Molin, 1858) Crocodylidae Adults Whole lungs [15]

Oswaldofilaria chlamydosauri (Breinl, 1913) Agamidae, (Agamidae) Adults Whole lungs [16]

Conispiculum flavescens (Castellani et Willey,

1905)

Agamidae Adults Whole lungs [17]

Piratuba queenslandensis Mackerras, 1962 Varanidae Adults Whole lungs [16]

Piratuba varanicola Mackerras, 1962 Varanidae Adults Whole lungs [16]

Dirofilariinae Dirofilaria immitis (Leidy, 1856) Canidae Adults, mf Pulmonary arteries, bronchus [18]

Dirofilaria immitis (Leidy, 1856) (Humans) Adults Whole lungs [19]

Dirofilaria spectans Freitas et Lent, 1949 Mustelidae Adults Pulmonary arteries [20]

Foleyella dolichoptera Wehr et Causey, 1939 Ranidae Adults Lung tissue [21]

Onchocercinae Acanthocheilonema spirocauda (Leidy, 1858) Phocidae Adults Pulmonary arteries, Whole

lungs

[22]

Acanthocheilonema viteae (Krepkogorskaya,

1933)

nd, (Rodents) L3, L4 Whole lungs [2]

Brugia pahangi (Buckley & Edeson, 1956) nd, (Rodents) L3, L4, Adults Whole lungs, pulmonary

arteries

[2,23,24]

Brugia malayi (Brug, 1927) Humans mf Whole lungs [25]

Brugia malayi (Brug, 1927) (Rodents) L4, Adults, mf Whole lungs, pulmonary

arteries

[2,24]

Brugia buckleyi Dissanaike et Paramananthan,

1961

Leporidae Adults Pulmonary arteries [26]

Cardiofilaria chabaudi Dissanaike et Fernando,

1965

Cuculidae Adults Whole lungs [27]

Deraiophoronema evansi (Lewis, 1882) Camelidae Adults Pulmonary arteries [28]

Monanema globulosa (Muller ans Nelson, 1975) nd, (Rodents) L4, Adults Whole lungs, pulmonary

arteries

[2]

Monanema martini Bain, Bartlett and Petit, 1986 nd, (Rodents) L3, L4, Adults Pulmonary arteries [2]

Splendidofilariinae Chandlerella chitwoodae Anderson, 1961 Psittacopasserae, Galloanserae Adults Pulmonary arteries [29]

Chandlerella bosei (Chandler, 1924) Corvidae, Certhidae,

Muscicapidae

Adults Whole lungs [30]

Chandlerella sinensis Li, 1933 Corvidae Adults Whole lungs and trachea [27]

Dunnifilaria ramachandrani Mullin et Balasingam,

1973

Muridae Adults Pulmonary arteries [31]

Elaophora sagitta (Linstow, 1907) Bovidae Adults Pulmonary arteries [32]

Paronchocerca ciconiarum Peter, 1936 Ciconidae Adults Pulmonary arteries [33]

Paronchocerca rousseloti Chabaud & Biocca, 1951 Phasianidae Adults Pulmonary arteries [33]

Paronchocerca francolina (Jairajpuri and Siddiqi,

1970)

Phasianidae Adults Whole lungs, air sacs [33]

Paronchocerca papillatus (Ali, 1956) Phasianidae Adults Whole lungs [33]

Paronchocerca sonini Borgarenko, 1984 Scolopacidae Adults Whole lungs [33]

Paronchocerca struthionus Bartlett and Anderson,

1986

Struthionidae Adults Whole lungs [33]

Paronchocerca thapari Deshmukh, 1969 Phasianidae Adults Whole lungs [33]

Splendidofilaria algonquiensis (Anderson, 1955) Hirundinidae Adults Pulmonary arteries [34]

Splendidofilaria caperata Hibler, 1964 Corvidae Adults Pulmonary arteries (wall) [35]

Splendidofilaria falconis (Sonin, 1966) Falconidae Adults Whole lungs [30]

Splendidofilaria periarterialis (Caballero, 1948) Tyrannidae Adults Pulmonary arteries (wall) [36]

Setarinae Setaria equina (Abildgaard, 1789) Equidae, Bovidae, Camelidae Adults Whole lungs [37]

Setaria transcaucasica Assadov, 1952 Bovidae, Cervidae Adults Whole lungs [37]

First column indicates the filarial subfamily and second column the filarial species. Natural hosts are presented in columns 3 and experimental/accidental

hosts are indicated in parenthesis. The filarial stage described in the lung is indicated in column 5; details on the pulmonary location are given in column 6.

nd = not described in lungs.

https://doi.org/10.1371/journal.pntd.0005596.t001
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Furthermore, the recent observation of granulomas, mainly constituted of T cells and macro-

phages, in the lung of L. sigmodontis infected mice at day 8 post inoculation also reinforce this

hypothesis [13]. However, the presence of an inflammatory reaction in the pulmonary tissue

has not yet been addressed. We aimed to shed light on the biology of L. sigmodontis infective

larvae in this early pulmonary phase of infection. Our results support the arrival of the larvae

in the cardiopulmonary system before entering the pulmonary tissue and reaching the pleural

cavity. They also reveal a transient inflammation characterized by a fast recruitment of neutro-

phils into the lung associated with high expression levels of S100A8 and S100A9 proteins.

S100A9 (also known as calgranulin B) complexes with S100A8 to form a heterodimer called

calprotectin. Both are small calcium-binding proteins that are highly expressed in neutrophil

cytosol and are found at high levels in the extracellular medium during inflammatory condi-

tions. In particular, S100A9 is expressed in non-small cell lung cancer [14].

Materials and methods

Ethics statement

All experimental procedures were carried out in strict accordance with the EU Directive 2010/

63/UE and the relevant national legislation, namely the French “Décret No. 2013–118, 1er

février 2013, Ministère de l’Agriculture, de l’Agroalimentaire et de la Forêt”. Protocols were

approved by the ethical committee of the Museum National d’Histoire Naturelle (Comité

Cuvier, Licence: 68–002) and by the “Direction départementale de la cohésion sociale et de la

protection des populations” (DDCSPP) (No. C75-05-15).

Parasites, mice and infection

L. sigmodontis was maintained in our laboratory, and infective third-stage larvae (L3) were

recovered by dissection of the mite vector Ornithonyssus bacoti as previously described

[38–40].

Six-week-old female BALB/c mice were purchased from Harlan (France) and maintained

in the MNHN animal facilities on a 12-hours light/dark cycle. Infective L3 larvae were either

inoculated or transmitted through the bite of the vector mite O. bacoti (“natural infection”).

Mice were inoculated with 40 infective L3 either subcutaneously into the left lumbar area in

200 μl of RPMI 1640 or intravenously into the caudal vein in 50μl of RPMI 1640. For natural

infections mites were left in contact with the mice for 12 h [40]. A group of 100 infected mites

from the same batch was dissected under a binocular microscope to evaluate the average num-

ber of L3 per mite. Since it has been shown previously that no L3 remained in the blood-fed

mites [40], this allowed us to evaluate the number of L3 given per mouse. Kinetics of infection

were followed over 8 days of infection. Mice were sacrificed at 2 hours, 6 hours, 4 days, 6 days

and 8 days post-inoculation (p.i.).

Pleural lavage, pleural fluid isolation, pleural exudate cells and filarial

load

The mice were anesthetized then sacrificed by final bleeding. The pleural cavity was washed 10

times with 1 ml of cold phosphate buffered saline (PBS) to collect pleural fluid, pleural exudate

cells (PleCs) and filariae as previously described [41]. The first 2 ml were collected in a separate

tube to limit pleural fluid dilution. The remaining 8 ml were isolated in a second tube. After 30

min deposition, the top 1 ml of the first tube was collected and centrifuged (5 min, 250g) then

the pleural fluid supernatant was frozen (-20˚C) for subsequent analyses. The PleCs pellet was

taken up in the remaining 1 ml of the first tube and pooled into the 8 ml of the second tube.

Transient lung inflammation in early filariasis
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The filariae rapidly sediment at the bottom of the tube and the upper 8 ml containing the

PleCs were transferred into a new tube and centrifuged (5 min, 250g). PleCs were diluted in

1ml medium and counted.

The isolated filariae were counted, analyzed by light microscopy (Olympus BX63 micro-

scope, Olympus DP72 camera) and measured using the cellSens Dimension 1.9 software. The

recovery rate of filariae, expressed as 100 x number of worms recovered/number of larvae

inoculated (F/L3) was established.

Lungs were macroscopically examined after the pleural lavage and superficial petechiae

were counted.

Bronchoalveolar lavage (BAL)

The trachea was exposed and incised at the cervico-thoracic junction. A cannula was inserted

and fixed with the thread. The bronchoalveolar space was washed with 10ml of cold PBS. The

first ml was collected in a first tube, centrifuged (5 min, 250 g) and the supernatant (i.e. the

BAL fluid) was frozen (-20˚C). The pellet was pooled in the remaining 9 ml of the lavage. After

centrifugation (5 min, 250 g), the pellet containing the BAL cells was diluted in 1ml of PBS–

2% foetal calf serum (FCS) (EUROBIO).

Recovery of L3 in pulmonary lobes

Naïve, subcutaneously (SC) or intravenously (IV) infected mice were sacrificed by final bleed-

ing at 2 hours, 6 hours, 4 days and 8 days post infection. After pleural and bronchoalveolar

lavages with cold PBS, lungs were cut at the left and right principal bronchus to separate each

pulmonary lobe and then removed. Right and left lung were placed separately in 5 cm Ø Petri

dishes each containing 7 ml of PBS and torn up into small pieces (about 2–4 mm2). Petri dishes

were examined under a binocular microscope from 1h up to 24h to allow the L3 to exit the tis-

sue. Recovered L3 were counted and the recovery rate in lungs was established.

Histology and immunohistology of the lung

Naïve, SC or IV infected mice were sacrificed 6 hours, 4 days and 8 days post infection. The

lung was filled with and fixed in 4% formalin overnight. Fixative was changed 24 h post-fixa-

tion for a further 24 h. Thereafter, lungs were removed from the fixative and placed in 70%

alcohol for 2–7 days before paraffin embedding. Five-micron-thick serial sections were pre-

pared. For each lung, a hematoxylin-eosin (H&E) staining was performed. To characterize the

peri-vascular space, a Masson’s trichrome staining (Sigma-Aldrich) was performed to visualize

collagen fibers according to the manufacturers’ recommendations. Immunostained sections

were firstly washed in PBS then their tissue’s peroxidase and biotin/avidin were blocked using

dual endogenous enzyme block (Dako, France) and avidin/ biotin blocking kit (Vector,

France) respectively. Neutrophils were stained with the primary antibody against Ly-6G/-6C

(rat monoclonal Ab, clone NIMP-R14, Hycult Biotech) at 1/200 dilution, in blocking serum

(Vectastain kit, Vector, France). Antigen retrieval was performed at pH 6 (Antigen unmasking

solution, Vector, France). S100A9 was stained with the primary antibody against S100A9 (rat

monoclonal Ab, clone MU14-2A5, Hycult Biotech) at 1/200 dilution, in blocking serum (Vec-

tastain kit, Vector, France). Antigen retrieval was performed in a proteinase K solution

(0.004%) diluted in a 1:1 glycerol-modified Tris Buffer (EDTA 3.7%, Triton X-100 0.5%, pH 8)

incubated at 37˚C for 10 min. Detection was performed using the Vectastain Elite ABC kit

(Vector, France). Revelation was made with high sensitivity AEC substrate (Dako, France)

then a quick counterstaining with Mayer’s haematoxylin (Merck, France).

Transient lung inflammation in early filariasis
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Precision cut lung slices (PCLS)

The mice were anesthetized then sacrificed by final bleeding. The thorax was opened and the

trachea was exposed. The lung was filled via the trachea with 2% (w/v in PBS, pH 7.4) low

melting point agarose warmed to 40˚C (Sigma-Aldrich) in phosphate buffered saline. They

were then removed from the thorax and transferred to ice cold PBS, then fixed 2h in cold 4%

paraformaldehyde (PFA) in PBS and finally stored at 4˚C in PBS. The left lung was isolated

and was glued with the hilum facing downwards on cooled aluminium block using super glue.

Then, 400 μm thick sections were cut using a vibratome (Microcut H1200 BioRad).

Immunofluorescence

Precision cut lung slices were incubated with primary antibodies: rat anti-mouse Ly-6G (clone

1A8, Bio X-Cell), hamster anti-mouse CD31 (2H8, Life Technologies), rat anti-mouse S100A9

(MU14-2A5, Hycult Biotech), polyclonal rabbit anti-mouse Ci-H3 (ABCAM) diluted in

PBS-BSA-Triton-for 48h at 4˚C. The sections were washed in PBS and incubated with low spe-

cies cross-reactive fluorophore-conjugated secondary antibodies (Cy3 / Cy5 anti-rat, anti-

hamster, Jackson; AlexaFluor anti-rabbit Life Technologies) for two hours. Sections were

washed in PBS-BSA-Triton, then PBS and post-fixed with 4% PFA for 5 min. After a subse-

quent rinsing step, the slices were transferred into a 24-well imaging plate (IBIDI), covered

with buffered Mowiol 4–88, pH 8.5 (Sigma-Aldrich) then coverslipped. Sections were evalu-

ated by using a confocal laser-scanning microscope (TCS-SP5, Leica).

Analysis of cytokines and S100A9 in pleural and broncho-alveolar

lavage fluids

Pleural and bronchoalveolar lavage (BAL) fluids were analyzed by ELISA for the content of

IFN-γ, TNF-α, IL-10, IL-4, IL-1β, IL-6 and IL-17 ELISA kit (eBiosciences SAS, France), MCP-

1 and CXCL1 ELISA kit (Peprotech, France), S100A9 and IL-33 (R&D, UK) following manu-

facturers’ guidelines. Results are expressed as pg/mL. Detection limits were 15 pg/ml for INF-γ
and IL-33, 30 pg/ml for IL-10, 4 pg/ml for IL-4, IL-6 and IL-17, and 8 pg/mL for IL-1β,

S100A9, CXCL1 and MCP-1.

Cell analysis

PleCs and BAL cells were analyzed. Firstly, red blood cells were lysed by hypotonic shock. The

cell suspensions were then centrifuged at 250 g for 8 min at 4˚C, diluted in 1 ml PBS with 2%

FCS and counted in PBS with 0.04% trypan blue by using a haemocytometer (KOVA Glasstic

Slide). Cells were incubated 20 min with CD16/CD32. Proportions of the different leukocyte

populations were determined by flow cytometry using the following rat anti-mouse antibodies:

anti- F4/80-APC (dilution 1:200; eBioscience, clone BM8), anti-SiglecF-PE (dilution 1:200, BD

Bioscience, clone E50-2440) and Ly6G-FITC (dilution 1:200, BD Bioscience, clone 1A8). Flow

cytometry acquisition was performed using a FACSVerse flow cytometer running the FAC-

Suite software (BD Biosciences). Doublets and debris were excluded. Analyses were performed

with FACSuite Software.

RNA extraction and reverse transcription

Naïve, SC or IV infected mice were sacrificed by final bleeding at 2 hours, 6 hours, 4 days and

8 days post infection. The lung was immersed in RNA later solution (Ambion, France) and

then frozen at -80˚C before extraction. Total RNA was extracted using an RNeasy mini kit

(Qiagen, Germany), according to the manufacturer’s instructions. A DNase (Invitrogen,

Transient lung inflammation in early filariasis
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France) treatment was performed to eliminate remaining DNA. Reverse transcription was per-

formed using non-specific oligo p(dT) (Roche Diagnostics, France) and SuperScript III reverse

transcriptase (Invitrogen, France).

Lung s100a8/9 expression analysis

Real-time PCR gene-specific primers for s100a8, s100a9 and β-actin were designed using

Oligo Calc (Kibbe, 2007) as follow: s100a8, 5’-ACCATGCCCTCTACAAGAA TGACT-3’; 5’-

ACTCCTTGTGGCTGTCTTTGTG-3’; s100a9, 5’-AACCAGGACAATCAG CTGAGCTTT-

3’; 5’-AGGCCATTGAGTAAGCCATTCCC-3’; β-actin, 5’-ACCACAGCTGAGAGGGAAAT

CGT-3’; 5’-AACCGCTCGTTGCCAATAGTGA-3’. Real-time PCR was performed using the

DNA Master Plus SYBR Green Kit (Roche Diagnostics, France) in a LightCycler 2.0 (Roche

Diagnostics, France) with an initial incubation of 10 min at 95˚C, 40 amplification cycles of

ten seconds at 95˚C, of eight seconds at 60˚C, and of ten seconds at 72˚C, during which the

fluorescence data were collected. This program was followed by a step of fusion. The 10 μL

reaction mixture contained 1X DNA MasterPlus SYBR Green (QIAGEN, France), 0.5 μM of

each primer, and 4 μL of template. s100a8 and s100a9 gene expression was determined relative

to β-actin using the 2-ΔΔCT method.

Lung cytokine expression analysis

A cytokine array (Mouse Cytokines & Chemokines RT2 Profiler PCR Array, Qiagen, Ger-

many) was performed on a pool of cDNA from 8 naive or 8 D4 subcutaneously infected mice

according to the manufacturer’s instructions. The array comprises 84 probes for secreted cyto-

kines. The arrays were scanned with a 7300 Real-Time PCR System (Applied biosystem). Data

was processed and displayed using the online RT2 Profiler PCR Array Data analysis 3.5 soft-

ware at the sabiociences.com website (Qiagen). Gene expression was normalized to 5 house-

keeping genes (Actb, B2m, Gapdh, Gusb, Hsp90ab1). Transcripts with fold change>2 were

selected. Transcriptional data were evaluated using Ingenuity Pathway Analysis (IPA, Systems

Inc., USA) and prediction (increase of decrease) of biological activities occurring in the tissue

was established. Validation was performed by qRT-PCR for CXCL1 on individual samples

from SC- and IV-infected mice at day 4 p.i. Specific primers for CXCL1 were designed using

Oligo Calc (Kibbe, 2007) as follow: 5’- CACTGCACCCAAACCGAAGTCATA-3’; 5’-TCTCC

GTTACTTGGGGACACCTTT -3’; A DNA Master Plus SYBR Green Kit (Roche Diagnostics,

France) was used in a LightCycler 2.0 (Roche Diagnostics, France) with an initial incubation of

10 min at 95˚C, 40 amplification cycles of ten seconds at 95˚C, of 8 sec at 60˚C, and of 10 sec at

72˚C, during which the fluorescence data were collected. This program was followed by a step

of fusion. The 10 μL reaction mixture contained 1X DNA MasterPlus SYBR Green (QIAGEN,

France), 0.5 μM of each primer, and 5 μL of template. CXCL1 gene expression was determined

relative to β-actin using the 2-ΔΔCT method.

Statistical analyses

The choice of statistical tests was based on sample size, normality (Shapiro-Wilk test) and

homoscedasticity (Bartlett’s test), examined prior to further analysis. Data from independent

experiments were pooled when possible. When normality was established, results were ana-

lyzed by t-test, one-way ANOVA test in order to determine the effect of one factor, i.e., the

group of mice, or two-way ANOVA in order to determine the effects of two factors, i.e., the

group of mice and the time, or their interaction followed by a Bonferroni’s multiple compari-

sons post-tests; otherwise non-parametric Kruskal Wallis test followed by a Dunn’s multiple
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comparisons post-test was used. Representation and data analyses were performed with

GraphPad Prism 5 software.

Results

1. Migration of infective larvae to the pleural cavity: Presence in the lung

and comparison between different modes of inoculation

To define the kinetics of arrival of L3 in the pleural cavity, we analyzed the L3 content of

both mechanically disrupted lungs and pleural cavity of mice in which L3 had either been

transmitted through the bite of the vector mite O. bacoti (“natural infection”) or subcutane-

ously (SC) injected, at various time points from 2 hours (h2) to 8 days (d8) p.i. (Fig 1A and

1B).

A small number of L3 were detected h2, h6 and d4 p.i. in the pleural cavity of the SC- or

naturally-infected mice (recovery rate< 5%). Between d4 and d8 the number of L3 in the pleu-

ral cavity increased (recovery rate up to almost 20%) (Fig 1A and 1B).

We also observed L3 in the lung of infected mice (natural infection or SC inoculation) (Fig

1A and 1B). These results are in concordance with earlier observations by Wenk and Bain,

who had noticed the presence of L. sigmodontis L3 in mechanically disrupted lungs of rodents

[2,11,12,42,43] (S1 Fig). Taken together these data show the progression of L3 from skin to

pleural cavity (S1 Fig). L3 disappear from the skin within a couple of days. They are observed

in the lymphatics hours to days post infection peaking at d2 and d3 p.i, before reaching the

pleural cavity and accumulating there between d4 and d6 p.i. Once in the pleural cavity the

recovery rate remains stable for a period of time depending on the rodent host species, from

10 to 30 days p.i. for SC-infected BALB/c mice as reported in [5,12,44]. Hence the filarial load

is determined after the migration phase of the larvae by counting the number of parasites in

the pleural cavity.

The presence of L3 in the lung was observed throughout the migration phase peaking at d6

p.i (Fig 1B). The number of mice exhibiting L3 in the lung increased over the time from 25%

at h2 p.i. up to 85% at d6 p.i.

The most parsimonious way to explain the presence of L3 in the lung would be that L3 fol-

low the lymphatic flow and thus reach the blood pulmonary circulation, as the lymphatic flow

merges into the blood pulmonary circulation at the level of the thoracic duct.

In order to bypass the skin and the lymphatic migration phase and thus to limit the asyn-

chronic arrival of L3 in the pleural cavity we inoculated L3 intravenously. This is the first time

that this kind of delivery has been tested with L. sigmodontis L3 in rodents. L3 not only sur-

vived to this mode of inoculation but strikingly, the recovery rate of L3 was higher in the pleu-

ral cavity (Fig 1C), almost twice as much as the one observed in SC- or naturally-infected mice

at the same time point. Larvae were observed in the pleural cavity as early as h2 p.i., accumulat-

ing regularly up to d8 p.i (around 2% at h2, 4% at h6 and 10% at d4). During this time frame

we clearly observed a balance between lungs and pleural cavity: recovery rate in the lungs

peaked as early as h2 p.i, decreasing then to d8 p.i. (around 30% at h2, 26% at h6, 13% at d4

and below 1% at d8).

In both models (delivered in the skin versus intravenously) pulmonary locations suggest

that L3 have exited the lung capillaries (as suggested by Wenk [11]) probably migrating

through the pulmonary parenchyma then though the visceral mesothelia to arrive in the pleu-

ral cavity. We observed the presence of L3 inside the lung (Fig 1D), which is associated with

the recruitment of cells including numerous polymorphonuclear neutrophils around the lar-

vae, as well as various damage in the lung of infected mice (Figs 2 and 3) supporting a disrup-

tive transpulmonary migration.
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2. The passage of L3 through the lung induces inflammation

characterized by local haemorrhages, granulomas and neutrophil

accumulation in the perivascular spaces

During necropsy of infected mice, petechiae were recurrently noticed on the surface of the

lung in IV-inoculated mice (Fig 2B, compared to Fig 2A). Therefore, this phenomenon was

Fig 1. L3 presence and loads in the lung and in the pleural cavity. BALB/c mice were inoculated with 40 L3 of L. sigmodontis either

subcutaneously (SC) or intravenously (IV) or L3 were transmitted through the bite of the vector mite O. bacoti (“natural infection”). (A-C) L.

sigmodontis recovery rate (F/L3) on hour 2 (h2), hour 6 (h6), day 4 (d4) and day 8 (d8), once L3 were recovered either in the mechanically

disrupted lungs or in the pleural cavity and counted. (A) Recovery rate in the lung (grey bars) and pleural cavity (white bars) of naturally infected

mice (n = 8 per time point, pool of 2 independant experiments) (B) Recovery rate in the lung and pleural cavity of SC infected mice. (h2: n = 8,

pool of 2 independent experiments); h6-d4-d8: n = 19–24, pool of 5 independent experiments; d6: n = 7). (C) Recovery rate in the lung and pleural

cavity of IV infected mice. h2-h6, n = 8–12 (pool of 2 independent experiments); d4-d8, n = 6–8 (lung, pool of 2 independent experiments), n = 24

(pleural, pool of 5 independent experiments). (d) Haematoxylin-Eosin staining of lung sections at 6 hours post inoculation showing one L3 in lung

tissue (white dotted circle). Bars represent the mean ± SEM.

https://doi.org/10.1371/journal.pntd.0005596.g001

Transient lung inflammation in early filariasis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005596 May 9, 2017 9 / 25

https://doi.org/10.1371/journal.pntd.0005596.g001
https://doi.org/10.1371/journal.pntd.0005596


quantified at h6, d4 and d8 p.i. (Fig 2C). Small haemorrhagic areas were rarely observed on the

lung of SC-infected mice whereas the lung of all the IV-infected mice exhibited a high number

of such areas at both h6, these decreased at d4 p.i and even more d8 p.i A clear correlation

(r2 = 0.9148) was observed between the number of petechiae and the number of recovered L3,

independently of the mode of inoculation and the time of infection (Fig 2D).

As we previously observed [13], granulomas were found at d8 p.i. in the lung of 50% of SC-

infected mice. Such granulomas were also observed in IV-infected mice at d8 p.i and in both

SC- and IV-infected mice at d4 p.i. but with lower prevalence (Fig 3A–3D). At these time

points, granulomas mainly consisted of F4/80+ macrophages and CD3+ lymphocytes.

Fig 2. Hemorrhages in the lung of infected mice. BALB/c mice were inoculated with 40 L3 of L. sigmodontis either

subcutaneously (SC) or intravenously (IV). Representative picture of (A) a normal lung, (B) a lung with superficial numerous

roundish well-delineated red hemorrhages. (C) Number of superficial pulmonary hemorrhages in lungs at six hours (h6), four

days (d4) and eight days (d8) post inoculation. n = 6, bars represent the mean ± SEM; two-way ANOVA followed by Bonferonni,

*** = p<0.001 (difference between IV- and SC-infected mice), ## = p<0.01(difference between timepoints in IV-infected mice).

(D) Correlation test (Pearson) between the number of L3 recovered in the lung and the number of hemorrhages, r2 = 0.9148.

https://doi.org/10.1371/journal.pntd.0005596.g002
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Fig 3. Granulomas and neutrophil-infiltrated peri-vascular space in the lung of infected mice. BALB/c mice were

inoculated with 40 L3 of L. sigmodontis either subcutaneously (SC) or intravenously (IV). After two hours (h2) six hours (h6),

two days (d2), four days (d4) and 8 days (d8) post inoculation, lung sections were prepared. (A) Haematoxylin-Eosin staining

of a naïve lung section showing normal parenchyma and mesothelium. (B) Haematoxylin-Eosin staining of a lung section

showing a granuloma in SC-infected mice at d8 p.i. (C) Ly6G/C (clone NIMPR-R14) immunostaining of lung sections at d8 p.i.

(from a SC-infected mouse) were performed showing absence of neutrophils within the granuloma but presence in the

surrounding tissue. Neutrophils were differentiated from monocytes by their nuclei shapes (cf corner zoom) (D)
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Neutrophils were absent as evidenced by the lack of Ly6G/C positive polymorphonucleic neu-

trophils (Fig 3C) and the lack of S100A9 neutrophils (Fig 3D).

However, neutrophils were present in higher number in specialized areas of the lung. Lym-

phatic and blood CD31+ capillaries formed a meshwork within the connective tissue sur-

rounding respiratory bronchioles and larger airways. Larger blood vessels and lymphatic

vessels can be found close to large airways in a perivascular space containing collagen fibers

[45]. 1A8+ neutrophilic infiltrates were observed in these perivascular spaces only in infected

mice at later time points (d4 and d8 p.i.), independently of the mode of inoculation of L3 (Fig

3E and 3F).

An increase in neutrophils was also noticed in the cells from the bronchoalveolar lavage

(Fig 4A) at d4 and d8 p.i in SC-inoculated mice and to a lesser extent only at d4 p.i. in IV-inoc-

ulated mice. Neutrophil numbers increased in the pleural cavity at d8 p.i. in both SC- and IV-

inoculated mice (Fig 4B).

Similarly, at these time points (d4 and/or d8 p.i.) an increase in eosinophils and macro-

phages was both noticed in the bronchoalveolar lavage (Fig 4C and 4E) and the pleural cavity

(Fig 4D and 4F).

3. Increase of S100A9+ neutrophils in the lung

Although the presence of neutrophils in perivascular spaces was observed days p.i., neutrophils

surrounding L3 were observed hours p.i. in the pulmonary parenchyma (Fig 1E). Within the

first hours of the filarial infection, neutrophils were observed inside the lung tissue, most often

in the pulmonary capillaries and more rarely in the alveolar space (Fig 5A and 5B). Scoring

neutrophils revealed a transient increase number of these cells on lung sections at h6 p.i. in

both SC and IV infected mice (Fig 5C).

We then checked for S100A9 and S100A8, small calcium-binding proteins that are found at

high levels in the extracellular medium during inflammatory conditions. Immunostaining of

lung sections revealed that all S100A9 positive cells were morphologically identified as neutro-

phils (Fig 5D and 5E) and a large percentage of neutrophils were also S100A9+ (Fig 5F). We

distinguished two states of S100A9+ neutrophils according to their content in S100A9, either

low (Fig 5D, zoom) or high (Fig 5E, zoom). Scores of S100A9+ neutrophils (Fig 5F) and

S100A9high neutrophils (Fig 5G) were established revealing a peak of S100A9+ neutrophils at

h6 p.i. in both SC- and IV-infected mice with a majority of S100A9 high neutrophils (74% and

70% respectively).

4. Increase in S100A9 protein in both bronchoalveolar and pleural fluids

and in s100a8/9 transcription in the lung

To further analyze the S100A9 response in the lung, the S100A9 protein level was determined

in both bronchoalveolar and pleural fluids (Fig 6A–6D). The protein was similarly increased at

h6 p.i. in both IV and SC infected mice in both fluids. However, the levels were much higher

in pleural than bronchoalveolar fluids.

Representative maximum intensity projection from a confocal z-stack of S100A9 (an abundant neutrophil protein, magenta)

immunostaining of lung precision cut lung slices (PCLS) at d8 p.i. (IV-infected mouse) showing absence of neutrophils within

the granuloma but presence in the surrounding tissue; CD31 (green) stain for endothelial cells and histone H3 (red) for cells.

(E-F) Representative maximum intensity projection from a confocal z-stack of a lung PCLS with CD31+ capillaries (red)

surrounding larger airways (LA) and a peri-vascular space (PVS) (the boundaries of which are marked by dashed line)

containing a blood vessel (BV) and a lymphatic vessel (*) with (E) the absence of Ly6G+ (clone 1A8) neutrophils (green) in the

PVS of naïve mouse; and (F) the presence of Ly6G+ neutrophilic infiltrates in the PVS and around airways in a d4 IV-infected

mouse.

https://doi.org/10.1371/journal.pntd.0005596.g003
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Fig 4. Quantification of macrophages, eosinophils and neutrophils in the bronchoalveolar and pleural spaces.

Flow cytometry phenotypic analyses of Ly6G neutrophils (clone 1A8), F4/80 macrophages (clone BM8) and Siglec F

eosinophils (clone E50-2440) were performed at different time points (h2, h6, d4 and d8) post inoculation on pleural cells

(PleC) or cells isolated from broncho-alveolar lavage (BAL) from IV- and SC-infected mice. (A-B) Number (nb) of F4/80+

macrophages in the broncho-alveolar lavage (A) and in the pleural cells (B); (C-D) Number of Siglec F+ eosinophils in

broncho-alveolar lavage (C) and in the pleural cells (D);.(E-F) Number of Ly6G+ neutrophils in the broncho-alveolar lavage
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We also evaluated the level of s100a9 and s100a8 transcription at h2, h6, d4 and d8 p.i. in

lung tissue. Transcripts were increased after a few hours p.i. before decreasing over days in

either SC- or IV- infected mice (Figs 6E and 5F). Peaks were detected earlier for IV-inoculated

mice (h2 p.i. instead of h6 p.i. for SC-inoculated mice), but the level of the peaks was slightly

higher in SC-inoculated mice.

5. A proinflammatory cytokine/chemokine response is mounted hours

after filarial infection followed within days by a process of regulation

Our results suggest two different responses through the migratory phase of L3, an early one,

which takes place within the first hours after infection, and a later one, which is seen within

days after infection. In addition to the proinflammatory protein S100A9, different cytokines

known to be involved in inflammation or T helper cell pathways were tested in both pleural

and bronchoalveolar fluids collected at h6, d4 and d8 p.i. in mice (Fig 7 and Table 2). In the

pleural fluids, IL-1β and IL-33 increased at h6 p.i. in both SC and IV infected mice (Fig 7A)

supporting an early inflammation likely due to the initial lung crossing by L3. These cytokines

were not detected in the BAL fluid.

To further characterize the inflammatory environment in the second phase i.e. days post

infection, cytokine/chemokine transcripts were analysed in mouse lungs at d4 p.i. (Fig 7C)

showing a strong down regulation of the inflammatory response and functions such as chemo-

taxis and recruitment of neutrophils and phagocytes. For example, CXCL1, a potent chemoat-

tractant for neutrophils, is down regulated in both SC- and IV- inoculated mice in the lung

tissue.

The levels of IL-4 and MCP-1, involved in the recruitment of eosinophils and macrophages

respectively, also increased significantly later during the infection at d4 and/or to d8 p.i. and

their production was correlated. By acting on macrophages which are critically involved in

inflammation, IL-4 and MCP-1 could induce alternative macrophage activation promoting tis-

sue repair. CXCL1 was increased in the pleural fluid at d8 (Table 2).

Discussion

Within 8 days the infective larvae migrate from the cutaneous inoculation site via the lym-

phatic drainage through the heart and lung into the pleural cavity. There L. sigmodontis L3

moult into L4 around day 9–10 post-inoculation in the pleural cavity of BALB/c mice, slightly

earlier in jirds or cotton rats [1,15].

Due to their complex route of migration, the L3 have to cross various anatomical bottle-

necks resulting in a loss of synchronicity concerning their arrival inside the pleural cavity

where they accumulate over the days until day 6–8 post infection, depending on the rodent

host species. Hence the filarial load is already determined after the migration phase of the

larvae.

Whether L3 are transmitted through the bite of the haematophagous vector or subcutane-

ously injected, most of the incoming L3 are counteracted in the skin of the rodent. It was sug-

gested that the successful L3 could escape the inflammatory response of the skin by entering

the afferent lymphatic system [2]. Once in lymphatics, L3 are distributed through afferent lym-

phatic vessels [2,46], there they have to go beyond the draining lymph nodes to reach the

(E) and in the pleural cells (F). Number of cells in uninfected mice are represented by a dashed horizontal bar. The results

are expressed as mean ± SEM, n = 4–6, Kruskal-Wallis followed by a Dunns (*p<0.05. **p<0.01, ***p<0.001 between

infected and naive mice, #p<0.05 difference between SC- and IV-infected mice for a given time point).

https://doi.org/10.1371/journal.pntd.0005596.g004
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Fig 5. Transient early increase of S100A9 expressing neutrophils in the lung of infected mice. BALB/c mice were

inoculated with 40 L3 of L. sigmodontis either subcutaneously (SC) or intravenously (IV). Lung sections were analysed six

hours (h6), four days (d4) and 8 days (d8) post inoculation. (A) Ly6G/C (clone NIMPR-R14) immunostaining of lung sections

were performed showing a few interstitial neutrophils in naive mice (A) and an increase of neutrophils in h6-infected mice (B).

Neutrophils were differentiated from monocytes by their nuclei shapes (B, corner zoom). (C) Number of neutrophils per mm2

on Ly6G/C immunostained sections; bars represent mean ± SEM, n = 4–6 (pool of 3 independent experiments), two-way

ANOVA followed by a Bonferonni (**p<0.01, ***p<0.001). Uninfected mice are represented by a dashed horizontal bar.
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efferent lymphatic vessels. Disrupting lymph nodes at various time points from rodents

infected by L. sigmodontis revealed the continuous presence of L3 in the lymphatic system

from hours to days post infection, with a peak at d2 and d3 (S1 Fig) [2,11,12,42,43]. Under-

standing the passage of L. sigmodontis L3 to the pleural cavity requires to take into account the

cardiopulmonary system, firstly because of its anatomy and secondly because of necropsy

results. The latter would be consistent with previous studies [2,12] revealing the presence of L3

in the cardiopulmonary compartment hours to days after their subcutaneous inoculation,

although it was not possible to confirm their specific presence in the lung rather than in the

heart. Analyzing the lung only has allowed us to demonstrate the presence of L3 in this tissue

(Fig 1). How to explain the presence of L3 in the lung? The structure of bicuspid valves in the

lymphatic vessels makes it difficult to move backwards. Valves acts as unidirectional gates for

filaria migrating within the lymphatic vessels. The lymphatic vessels merge into the thoracic

duct and the right lymphatic duct that are drained into the subclavian veins. After passage

through the right ventricle of the heart, the blood and therefore the L3 are drained into the pul-

monary arteries then into the pulmonary capillaries irrigating the lung, which are only 10 μm

in diameter [47]. L3 are large organisms (750–800 μm length, 10–12 μm diameter) displaying a

powerful musculature [48] allowing their motility. They can also release excreted/secreted

molecules [49], which might facilitate their passage from the pulmonary capillaries through

the lung to the pleural cavity. It is therefore possible, that a part of the inoculated L3 either get

trapped in the lung and is unable to make their way to the pleural cavity, or that some L3

remain in the blood and reach the general blood circulation. These L3 could then be destroyed

in the organs of clearance such as the liver or the spleen which are both highly vascularized.

To bypass the skin and lymphatic steps, we chose a new mode of inoculation to infect mice

with L. sigmodontis L3. The intravenous inoculation revealed itself as very successful as shown

by the recovery rate (i.e. the percentage of recovered worms compared to the number of inocu-

lated L3). Twice as many larvae were recovered in the pleural cavity of IV-inoculated mice

compared to naturally or SC-infected mice. However even in IV-infected mice more than half

of the inoculated L3 are lost post-inoculation supporting the hypothesis that a significant por-

tion of the L3 is located elsewhere and do not develop further into gravid adults. In this IV

model, all larvae are delivered at the same time in blood, which could explain why so many lar-

vae are recovered in the lung as early as hours after their injection. Indeed, the removal of skin

and lymphatic bottlenecks favours a quick synchronized arrival of L3 in the lung. This model

also suggests that that migration through the lung is fast as larvae start to accumulate in the

pleural cavity as early as 2 hours after injection.

The major differences observed between SC- and IV-inoculated mice could be due to this

very early higher number of L3 in the IV-inoculated mice. Regarding the pathology, there is a

strong correlation between the number of haemorrhages and the number of L3 recovered in

lungs, the highest number of haemorrhages being observed at h6 in IV-infected mice. Lung

capillaries blocked by L3, as well as the movement of the L3 themselves, could cause the hae-

morrhagic areas observed in the lung. Such a correlation is not true for neither the presence of

granulomas nor the accumulation of neutrophils in the perivascular space of lungs. These two

(D-G) S100A9 (clone MU14-2A5) immunostaining of lung sections were performed showing (D) low staining of S100A9 in

neutrophils (black arrows). Alveolar macrophages (dotted arrows) are S100A9-. Top left corner: zoom on S100A9low

neutrophil, (E) high staining of S100A9 in neutrophils. Top left corner: zoom on S100A9high neutrophil. (F) Total number of

S100A9+ neutrophils and (G) number of S100A9high neutrophils per mm2 of lung. Uninfected mice are represented by a

dashed horizontal bar. Results are expressed as mean ± SEM; n = 4 mice, 2–3 slides per mouse and 2–4 sections per slide

were analyzed.

https://doi.org/10.1371/journal.pntd.0005596.g005
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Fig 6. Transient early increase of S100A9 in bronchoalveolar and pleural fluids and of s100a8 / s100a9

transcripts in lungs. BALB/c mice were inoculated with 40 L3 L. sigmodontis either subcutaneously (SC) or

intravenously (IV). Two hours (h2), six hours (h6), four days (d4) and 8 days (d8) post inoculation, mice were

sacrificed. Bronchoalveolar and pleural lavages were performed then lungs were isolated and frozen. (A—D)

Bronchoalveolar fluid (BAL) (A & B, respectively SC and IV infected mice; n = 6) and pleural fluid (PL) (C & D,
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phenomena are observed much later in the infection (d4 and d8), when the number of larvae

in both IV- or SC- infected mice are similar.

This is accompanied by an increase in pro inflammatory cytokines (Fig 7) such as IL-1β
and IL-33 (a crucial cytokine for Th2-mediated host defense playing a central role in control-

ling immune responses in barrier tissues [50,51]). The second phase, which occurs 4–8 days

post infection, is characterized by the presence of granuloma and neutrophils in the perivascu-

lar spaces of lungs (Fig 3), an accumulation of L3 in the pleural cavity (Fig 1) and an increase

of neutrophils, eosinophils and macrophages in both the bronchoalveolar and pleural spaces

(Fig 4). This is associated with an increase of regulatory cytokines such as IL-9 (a pleiotropic

cytokine involved inter alia in the ability of many cells to regulate inflammation and immunity

by affecting many cell types [52]) in lung transcripts or protein levels of IL -4 and MCP-1 in

bronchoalveolar lavage. In addition, transcripts of proinflammatory cytokines, such as IL-6,

CXCL1 and CXCL5, were downregulated (Fig 7). Consistent with this expression pattern,

treatment with anti-CXCL5 antibody attenuates lung neutrophil accumulation in rodent mod-

els of lung inflammation [53].

In L. sigmodontis-infected mice, neutrophilic infiltrates were observed in the lung capillaries

as early as h6 p.i. and were resolved by d4. At that time point and up to d8 neutrophils are seen

in the lung perivascular spaces. Neutrophils can promote the development of alternatively acti-

vated macrophages [54]. Then the macrophage immunoregulatory phenotypes that develop

during filarial infection can divert the early immune response to induce the repair of injuries

to the lung tissue caused by infective larvae. Following the arrival of L3 in the pleural cavity,

recruitment of neutrophils in the pleural space through CXCL1 chemoattraction, working in

coordination with other cell populations, including eosinophils and macrophages, could target

the infective larvae. These cells contribute to the genesis of pleural granuloma, a cellular reac-

tion mounted against the worms that would gradually eliminate them [5].

A large part of these intrapulmonary neutrophils also showed high level of intracellular

S100A9, and both S100A8 and S100A9 transcripts are detected within hours in the lung of

infected mice. No monocyte/macrophage or any other mononuclear cells were observed

expressing S100A9 in the lung of L. sigmodontis infected mice. Intracellular proteins S100A8

and S100A9 belong to the large group of S100 calcium-binding proteins and form a heterodi-

mer, calprotectin, (also called Mrp8/14-complex or S100A8/A9) which is abundant in neutro-

phils. This complex represents 40 to 60% of the neutrophil cytosolic granules content and has

been shown to be present in lung pathologies [55–57] as well as in onchocercian nodules in

which neutrophils are recruited [58]. Moreover, S100A8 and S100A9 are essential in the

response to vascular injury [59] and this process is likely to happen in the lung of L. sigmodon-
tis infected mice in which L3 exit the capillaries, thus damaging the endothelium. The release

mechanism and the mode of action of calprotectin by neutrophils remains unknown in L. sig-
modontis infected mice. However, S100A8 and S100A9 are known to be released from neutro-

phils as part of Neutrophil Extracellular Traps (NETs), during NETosis, promoting the anti-

infectious activity of neutrophils [60]. Neutrophils can sense microbe size and selectively

release NETs in response to large pathogens such as fungi [61]. The NETs have been shown to

respectively SC and IV infected mice; n = 10–12, pool of 3 independent experiments) were tested for S100A9 by

ELISA. The results are expressed as mean ± SEM. One way ANOVA followed by a Bonferonni, ** = p<0.01, * =

p<0.05 (difference between infected and naïve mice). nt: not tested. (E-F) A q-RTPCR was performed for (E)

s100a8 and (F) s100a9 transcripts. Normalization was made with β-actin housekeeping gene by 2-ΔΔCT method,

n = 5–6 (pool of 3 independent experiments). The results are expressed as fold-change mean ± SEM; a two-way

ANOVA followed by a Bonferonni was performed, *p<0.05 difference between IV-and SC- infected mice,
##p<0.01, ###p<0.001 difference between timepoints.

https://doi.org/10.1371/journal.pntd.0005596.g006
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Fig 7. Inflammation and regulation. Dosage of IL-1β (A) and IL-33 (B) in the pleural fluid (PL) by ELISA, n = 4–8

(pool of 2 independent experiments). Uninfected mice are represented by a dashed horizontal bar. (C) Cytokines/

chemokines transcripts (cut-off: >2-fold change, FC) induced in the lung of SC-infected mice at d4 p.i and

associated functions. The effects of the gene expression changes in the lung were predicted using Ingenuity

Pathways Analysis (IPA); regulation of the functions is indicated by arrows. (D) A q-RTPCR was performed for

Cxcl1 transcripts to validate the array results; n = 12 (SC) and 5 (IV). Dosage of IL-4 (D) and MCP-1 (E) in the
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trap the larval nematode Strongyloides stercoralis facilitating parasite killing by cells of the

immune system [62], but their role on filarial L3 has not been fully evaluated yet, although two

recent studies underline the induction of NETS by filariae. We have shown that L. sigmodontis
L3 are able to promote the release of neutrophil extracellular traps in vitro [63]. Also, a mecha-

nism of NETosis has been demonstrated in human onchocerciasis with an induction via Wol-
bachia endobacteria and direct ligation of Wolbachia lipoprotein by neutrophil TLR2/6 [64].

Thus, the release of S100A9 could be due to two phenomena: i) one in which S100A9 is a dan-

ger signal released in response to the presence of a filarial pathogen and is responsible for cell

recruitment, and ii) one which is linked to NETosis and to the release of the content of the

cytosolic granules. These two circumstances could be additive and the NETosis could lead to

the release of more S100A9, both mechanisms contributing to both parasite killing and tissue

repair.

Other parasitic Nematodes have been reported to have similar patterns of lung migration,

in particular Nippostrongylus brasiliensis. Although N. brasiliensis is a Clade V gastrointestinal

broncho-alveolar lavage (BAL) by ELISA, n = 5–6. Uninfected mice are represented by a dashed horizontal bar. The

results are expressed as mean ± SEM; a two-way ANOVA followed by a Bonferonni was performed for A, B, D and

E, *p<0.05, **p<0.01, ***p<0.001 differences between infected mice and naive, ##p<0.01 difference between SC-

and IV-infected mice at h6 for IL-1 β; a t-test was performed for Cxcl1, **p<0.01.

https://doi.org/10.1371/journal.pntd.0005596.g007

Table 2. Cytokine overview.

Cytokine Injection h6 d4 d8 h6 d4 d8

IL-1β SC 0 0 0 + = =

IV 0 0 0 +++ = =

IL-4 SC + ++ ++ = = =

IV + ++ ++ = = =

IL-6 SC 0 0 0 0 0 0

IV 0 0 0 0 0 0

IL-10 SC = = = = = =

IV = = = = = =

IL-17A SC = = = = = =

IV = = = = = =

IFN-γ SC = = = = = =

IV = = = = = =

MCP-1 SC + ++ ++ = = =

IV + ++ ++ = + =

TNF-α SC = = = = = =

IV = = = = = =

IL-33 SC 0 0 0 + = =

IV 0 0 0 + = =

CXCL1 SC = = = = = ++

IV = = = = = ++

BALB/c mice were inoculated with 40 L3 of L. sigmodontis either subcutaneously (SC) or intravenously (IV). Six hours (h6), four days (d4) and 8 days (d8)

post inoculation, mice were sacrificed and broncho-alveolar and pleural washes were performed. ELISAs were realized in the broncho-alveolar fluid (BALF)

and the pleural liquid (LP). First column indicates the tested cytokines. The second column gives the mode of L3 inoculation in mice (SC or IV). The third

and fourth columns show the results for the BALF and the LP respectively. These two columns are subdivided in three sub-columns according to the

considered time point (h6, d4 or d8). Scores were as follows: 0, no detection; =, detected but no difference between uninfected and infected groups; +,

detection (from low + to high +++). n = 5–6 for BALF (pool of 2 to 3 independent experiments); n = 10–12 for LP (pool of 2 to 3 independent experiments).

https://doi.org/10.1371/journal.pntd.0005596.t002
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parasite of rats, its L3 penetrate through unbroken skin and migrate to the lung where the

third moult occurs. Similar lung damage has been reported in mice infected with N. brasiliensis
by d2 p.i., which were resolved by d7 [54]. In addition, extensive neutrophil inflammation was

observed in this nematode infection [54]. Furthermore, many inflammatory cytokines were

detected: IL-1β, IL-17, potentially involved in the increase of the number of neutrophils, but

also IL-4 and IL-5. These interleukins could alternatively activate the alveolar macrophages

and block the acute lung injuries by limiting IL-17 production by RELM-α, YM-1 and arginase

[65]. It is interesting to point out that even if these two very different species of nematodes (a

tissue-dweling filariae versus a gastrointestinal strongyle roundworm) present a common

behaviour regarding the migration of L3, there are many important differences. One of the

major distinctions between the species is the damage to the lung during an infection. Whereas

infection by N. brasiliensis can result in the development of COPD and emphysema, the pres-

ence of L. sigmodontis in the lung is rather asymptomatic, which could also explain the lack of

documentation on this early phase. Much of the pathology associated with filariasis has indeed

been correlated with the presence of microfilariae during the patent phase. Mature gravid filar-

iae periodically release microfilariae which can be trapped within the pulmonary microcircula-

tion [44]. The degenerating microfilariae then release their antigenic constituents which

triggers a specific immune response known as tropical pulmonary eosinophilia [66].

Even though migrating filarial L3 cause only transient damage to the lung, further investi-

gation would be helpful to decipher the consequences of such injuries on the development of

chronic filariasis including the behaviour of released microfilariae in this pleural environment.

Supporting information

S1 Fig. L3 tissue repartition. Overview from [2,11,12,42,43] and current data (from Fig 1). L3

were recovered from either mice, jirds or cotton rats; number of recovered L3 were normalized

as F/L3 and pooled per time point. SC: subcutaneous tissue; Lymph: lymph nodes; Pleural:

pleural cavity.
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laria Gönnert, 1937. Canadian Journal of Zoology 33: 107–112.

35. Hibler CP (1964) New Species of Onchocercidae (Nematoda: Filarioidea) from Pica Pica Hudsonia

(Sabine, 1823). J Parasitol 50: 667–674. PMID: 14215489

36. Bartlett C, Anderson RC (1985) On the filarioid nematodes (Splendidofilaria spp.) from the pulmonary

arteries of birds. Canadian Journal of Zoology 63: 2373–2377.

37. Sonin MD (1977) Filariata of animals and man and diseases caused by them. Filarioidea. Moskow:

Nauka Publishers.

38. Diagne M, Petit G, Liot P, Cabaret J, Bain O (1990) The filaria Litomosoides galizai in mites; microfilarial

distribution in the host and regulation of the transmission. Ann Parasitol Hum Comp 65: 193–199.

https://doi.org/10.1051/parasite/1990654193 PMID: 2085265

39. Martin C, Al-Qaoud KM, Ungeheuer MN, Paehle K, Vuong PN, et al. (2000) IL-5 is essential for vaccine-

induced protection and for resolution of primary infection in murine filariasis. Med Microbiol Immunol

189: 67–74. PMID: 11138639

40. Nieguitsila A, Frutos R, Moulia C, Lhermitte-Vallarino N, Bain O, et al. (2013) Fitness cost of Litomo-

soides sigmodontis filarial infection in mite vectors; implications of infected haematophagous arthropod

excretory products in host-vector interactions. Biomed Res Int 2013: 584105. https://doi.org/10.1155/

2013/584105 PMID: 24089685

41. Martin C, Saeftel M, Vuong PN, Babayan S, Fischer K, et al. (2001) B-cell deficiency suppresses vac-

cine-induced protection against murine filariasis but does not increase the recovery rate for primary

infection. Infect Immun 69: 7067–7073. https://doi.org/10.1128/IAI.69.11.7067-7073.2001 PMID:

11598082

42. Hoffmeister K, Wenk P (1991) Experiments on the regulation of the worm load at the rodant filariae Lito-

mosoides carinii (Nematoda Filaroidae) in Sigmoda hispidus. Mitt Österr Ges Tropenmed Parasitol 13:
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