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Abstract 

Background:  Vascular calcification is the major reason for high mortality of cardiovascular complications for diabe‑
tes. Interleukin (IL)-1β has been implicated in this pathogenesis, but its precise role and clinical evidence have not 
been clearly identified. Hence, this study was aimed to investigate whether high concentration of glucose (HG), which 
mimics the hyperglycemia environment, could initiate vascular calcification through NLRP3/IL-1β inflammasome and 
the underlying mechanism. Recently, 6-shogaol, a major ginger derivate, has been elucidated its pharmaceutic role 
for various diseases. Therefore, the aims of this study also determined 6-shogaol effect in vascular calcification of HG 
initiation.

Result:  Human artery smooth muscle cells (HASMCs) were used in this study. Glucose concentrations at 5 and 
25 mM were defined as normal and HG status, respectively. The results showed that HG could increase the NLRP3, 
cleaved caspase 1, and pro/mature IL-1β levels to induce the expressions of bone-related matrix proteins and subse‑
quent HASMC calcification. This process was regulated by Akt activation and reactive oxygen species (ROS) produc‑
tion. Moreover, 6-shogaol could inhibit the Akt/ROS signaling and NLRP3/caspase 1/IL-1β inflammasome and hence 
attenuated HASMC calcification.

Conclusions:  This study elucidates the detailed mechanism of HG-initiated HASMC calcification through NLRP3/cas‑
pase 1/IL-1β inflammasome and indicates a potential therapeutic role of 6-shogaol in vascular calcification complica‑
tion of diabetes.
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Background
Vascular calcification is highly prevalent for the patients 
with diabetes and chronic renal diseases and contrib-
utes to the further increased morbidity and mortality of 
cardiovascular complications. Although the therapeu-
tic strategy for reducing blood glucose level has been 
extensively investigated, the vascular calcification devel-
opment in diabetes patients have still remained [1–5]. 
Vascular calcification pathogenesis is a complex process 
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with a phenotypic switch of vascular smooth muscle cells 
(VSMCs) to osteoblast- or chondrocyte-like cells, which 
initiates the upregulation and deposition of calcium 
phosphate and mineralization-related proteins, includ-
ing osteopontin (OPN), osteocalcin (OCN), and alkaline 
phosphatase (ALP), in calcification regions and hence 
results in the stiffening of vessel walls [6–8]. Moreover, 
the signaling related to the bone/cartilage growth, includ-
ing the bone morphogenetic proteins, Akt signaling, and 
runx2 transcription activity, has also been associated 
with the occurrence of vascular calcification complica-
tion of diabetes [8–12]. Currently, the precise mecha-
nisms about how high blood glucose affects the vascular 
calcification pathogenesis in diabetes patients has not 
been completely elucidated. Therefore, more detailed 
investigation and understanding is still urgent and nec-
essary for further improving the development of diabetes 
and its vascular calcification complications.

Vascular calcification derived from atherosclero-
sis and diabetes has been demonstrated to be a chronic 
inflammation event, which is regulated by inflamma-
tory cytokines such as tumor necrosis factor (TNF)-α 
and interleukin (IL)-1β. Therefore, inflammasome sys-
tem has recently been implicated in the pathogenesis of 
vascular calcification [13–15]. NLRP3 complex, which is 
composed of NLRP3 protein, adaptor protein ASC, and 
caspase 1, has been indicated as one of important inflam-
masomes because of its regulatory role in autoimmune 
and inflammation [16–18]. After receiving the stimula-
tions, intracellular NLRP3 level upregulation and sub-
sequent caspase 1 activation could cleave the pro-IL-1β 
and pro-IL-18 into mature and active IL-1β and IL-18 
and then consequently elicit inflammatory responses 
and diseases development [16–18]. Accumulating data 
has indicated that inflammasomes, including NLRP3 
complex, are the important regulatory systems for the 
development of chronic metabolic diseases. In this study, 
we further examine whether high concentration of glu-
cose, mimics the hyperglycemia environment of diabe-
tes patients, stimulates vascular calcification through the 
NLRP3 inflammasome system.

Ginger has been widely used as the flavoring agent and 
spice in the beverage and cooking in all over the world. 
Accumulating data has also demonstrated the pharma-
ceutic role of ginger in various diseases such as anti-can-
cer [19, 20], anti-arthritis [21, 22], anti-gastrointestinal 
disease [23, 24], anti-inflammation [25], anti-oxidation 
[26], and anti-atherosclerosis [27–29]. It has been found 
that the pharmaceutic function of ginger is elicited by 
the nature of its bioactive compounds, including gin-
gerols and their dehydrated products, shogaols. Gener-
ally, shogaols have been suggested to be more effective 
than gingerols in attenuating the patients’ uncomfortable 

and status. And, 6-shogaol is the most dominant one 
[30]. However, the molecular mechanism and metabolic 
fate of shogaols, including 6-shogaol, in antagonizing 
and improving the status of these diseases have not been 
clearly identified. Therefore, the precise pharmaceutic 
effects and targets of 6-shogaol should be further eluci-
dated and understood in order to more widely using it in 
the clinical application for various diseases therapy.

In this study, we investigated the role of NLRP3 inflam-
masome in vascular calcification in response to high glu-
cose environment and the possible antagonized role of 
6-shogaol in this process. We found that NLRP3, cleaved 
caspase 1, and pro/mature IL-1β proteins could be upreg-
ulated to initiate human artery SMC (HASMC) calcifi-
cation under high concentration of glucose stimulation. 
Moreover, this NLRP3 inflammasome upregulation was 
resulted from the Akt activation and ROS production. 
Furthermore, we also demonstrated the antagonized role 
of 6-shogaol in NLRP3 inflammasome activation and 
subsequent HASMC calcification. Our findings provide 
new insights into the understanding of NLRP3 inflamma-
some-initiated HASMC calcification under high glucose 
stimulation and indicate a potential pharmaceutic role of 
6-shogaol in cardiovascular complication of diabetes.

Results
High concentration of glucose (HG) initiates HASMC 
calcification
OPN, OCN, and ALP, the well-known bone matrix pro-
teins, inductions have been recognized as the markers of 
vascular calcification. HASMCs were kept as the controls 
or were treated with 5  mM (normal concentration of 
glucose, NG) or 25 mM (high concentration of glucose, 
HG) glucose or 25 mM mannitol (M) for 3, 7, and 14 days 
and then the mRNA and protein expressions of OPN, 
OCN and ALP were examined. Cells treated with HG 
significantly induced the OPN, OCN, and ALP mRNA 
(Fig. 1a–c) and protein (Fig. 1d) expression within 3 days 
and persisted for 14  days in HASMCs compared to the 
controls and NG-/mannitol-treated cells. Moreover, we 
determined whether HG treatment initiates the HASMC 
calcification. Cells were kept as the controls or were 
treated with NG, mannitol, or HG for 14 days and then 
the HASMC calcification was examined. Cells treated 
with NG and mannitol had no effect on the HASMC cal-
cification. However, cells treated with HG initiated an 
increase in HASMC calcification (Fig. 1e).

HG activates NLRP3 inflammasome to modulate HASMC 
calcification
Recently, NLRP3 inflammasome has been implicated in 
various diseases development. We determined whether 
NLRP3 inflammasome constituents, including NLRP3, 
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caspase 1, and IL-1β, expressions could be upregulated 
in HASMCs in response to HG. HASMCs were kept as 
the controls or were treated with NG or HG for 12, 24, 
or 48 h and then the mRNA and protein expressions of 
NLRP3, caspase 1 (pro and cleaved form), and IL-1β (pro 
and mature form) were examined. Cells treated with HG 
significantly induced NLRP3 mRNA (Fig. 2a) and protein 
(Fig. 2b) expression within 12 h and persisted for 48 h in 
HASMCs compared to the controls and NG-treated cells. 
Moreover, HG also increased cleaved caspase 1 and pro/
mature IL-1β protein expressions in HASMCs (Fig. 2b). 
Cells treated with NG had a partial effect on IL-1β pro-
tein expressions in HASMCs (Fig.  2b). Furthermore, 
cell pretreated with NLRP3 inflammasome inhibitor, 
MCC950, significantly inhibited OPN, OCN, and ALP 
mRNA expressions (Fig.  2c) and HASMC calcification 
(Fig. 2d) of HG induction.

HG increases ROS level in HASMCs to trigger NLRP3 
inflammasome and subsequent calcification
HASMCs were kept as the controls or were treated with 
NG, mannitol (M), or HG for 24  h and then the intra-
cellular ROS level was examined. Cells treated with 
HG showed an increase in the ROS level in HASMCs 

compared to the controls and NG-/mannitol-treated 
cells (Fig. 3a). Cells were kept as the controls or were pre-
treated with DMSO or NAC, a ROS scavenger, for 1  h 
and then treated with HG for 2 (inflammasome protein 
expressions) and 14 (OPN/OCN/ALP mRNA expres-
sions and calcification) days. HASMCs pretreated with 
NAC significantly downregulated HG-increased NLRP3, 
cleaved caspase 1, and pro/mature IL-1β protein (Fig. 3b) 
and OPN/OCN/ALP mRNA (Fig.  3c) expressions and 
HASMC calcification (Fig. 3d).

Akt signaling in HASMCs regulates HG‑triggered ROS 
production, NLRP3 inflammasome and subsequent 
calcification
HASMCs were kept as the controls or were treated 
with NG, mannitol (M), or HG for 4  h and then the 
Akt phosphorylation was examined. Cells treated 
with HG significantly induced Akt phosphorylation in 
HASMCs compared to the control and NG-/mannitol-
treated cells (Fig.  4a). Cells were kept as the controls 
or were pretreated with (i) DMSO or LY294008, an akt 
phosphorylation inhibitor, or (ii) pcDNA empty vec-
tor (EV) or dominant negative (dn)-Akt-expressed plas-
mid and then treated with HG for 1 (ROS production), 

Fig. 1  HG initiates HASMC calcification. a–d HASMCs were kept as the controls or were treated with 5 mM (normal concentration of glucose, 
NG) or 25 mM (high concentration of glucose, HG) glucose or 25 mM mannitol (M) for 3, 7, and 14 days and then the mRNA a–c and protein d 
expressions of OPN, OCN and ALP were examined. e HASMCs were kept as the controls or were treated with NG, mannitol, or HG for 14 days and 
then the HASMC calcification was examined by ARS stain and were detected at 405 nm. Data in a–c and e are mean ± SEM from three independent 
experiments. Results in d are representative of three independent experiments with similar results and the bar graphs are mean ± SEM from three 
independent experiments. *P < 0.05 vs. control cells
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2 (inflammasome protein expressions) and 14 (OPN/
OCN/ALP mRNA expressions and calcification) days. 
Akt activity inhibition in HASMCs by LY294008 or dn-
Akt-expressed plasmid pretreatment significantly down-
regulated HG-increased NLRP3 and pro/mature IL-1β 
protein (Fig.  4b) and OPN/OCN/ALP mRNA (Fig.  4c) 
expressions, intracellular ROS production (Fig.  4c), and 
HASMC calcification (Fig. 4d).

6‑Shogaol attenuates HG‑triggered Akt activation, ROS 
production, NLRP3 inflammasome, and calcification 
in HASMCs
Next, we examined whether 6-shogaol, a ginger derivate 
and a natural anti-inflammation factor, regulates HG 
effect on HASMC calcification. HASMCs were kept as 
the controls or were pretreated with ethanol or 6-shagaol 
and then treated with HG for 4  h (Akt phosphoryla-
tion) and 1 (ROS production), 2 (inflammasome protein 
expressions), and 14 (OPN/OCN/ALP mRNA expres-
sions and calcification) days. It was shown that 6-shagaol 
significantly attenuates HG-increased Akt phospho-
rylation (Fig. 5a), intracellular ROS production (Fig. 5b), 

and NLRP3 and pro/mature IL-1β protein expressions 
(Fig.  5c) in HASMCs. Moreover, 6-shagaol also signifi-
cantly attenuated HG-induced OPN/OCN/ALP mRNA 
expressions in HASMCs (Fig. 6a) and HASMC calcifica-
tion (Fig. 6b).

Discussion
This study has characterized the mechanisms whereby 
high glucose initiates HASMC calcification development 
through NLRP3 inflammasome and the antagonized role 
of ginger derivate, 6shogaol, in this process, as summa-
rized in Fig. 7. The systematic experiments demonstrated 
that (i) HG initiates an osteogenic switch of HASMCs 
through upregulating the expressions of osteogenic 
matrix proteins, i.e., OPN, OCN, and ALP and the devel-
opment of calcification. (ii) This calcification-initiating 
development in response to HG is regulated by Akt sign-
aling, ROS production and subsequent NLRP3/caspase 
1/IL-1β inflammasome activation. (iii) 6-shogaol effec-
tively antagonizes the HG effect on NLRP3 inflamma-
some activation and consequent HASMC calcification. 
Our findings provide new insights into the regulatory 

Fig. 2  HG activates NLRP3 inflammasome to modulate HASMC calcification. HASMCs were kept as the controls or were treated with NG or HG for 
12, 24, or 48 h or 14 days and then the mRNA a and protein b expressions of NLRP3, caspase 1 (pro and cleaved form), and IL-1β (pro and mature 
form), the mRNA expressions of OPN, OCN, and ALP c, and HASMC calcification d were examined. Data in a and c, d are mean ± SEM from three 
independent experiments. Results in b are representative of three independent experiments with similar results and the bar graphs are mean ± SEM 
from three independent experiments. *P < 0.05 vs. control cells. #P < 0.05 vs. DMSO/HG-treated cells
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mechanism of NLRP3 inflammasome in vascular calcifi-
cation development under high glucose stimulation and 
suggest a potential nature product, 6-shogaol, in antago-
nizing this process.

Vascular calcification accompanies the development of 
atherosclerosis and diabetes and is associated with the 
mortality risk in patients with these two diseases [31]. 
Both atherosclerosis and diabetes have been recognized 
as the chronic and low-grade inflammation events and 
therefore the increased cytokines in blood has been indi-
cated as an important initiator for diseases pathogenesis. 
Our present results indicated that HG could initiate the 
HASMC calcification development through upregulating 
the NLRP3/caspase 1/IL-1β inflammasome. Although 
IL-1β is one of well-demonstrated atherosclerosis- and 
diabetes-stimulating cytokines, its precise role and secre-
tion mechanism in vascular calcification complication 
of diabetes have not been clearly detected [31]. In con-
trast, accumulating data has highlighted the importance 

and regulation of NLRP3 inflammasome activation and 
subsequent IL-1β secretion in hyperglycemia. For exam-
ples, (i) it has been indicated that NLRP3-knockdown 
mice which decrease the secreted level of IL-1β has an 
improved status for insulin resistance development [32, 
33]; (ii) Stienstra et  al. found that the inhibition of cas-
pase 1 activity, which is involved in NLRP3 inflamma-
some system and could cleave the pro-IL-1β to mature 
form, affects the adipocyte differentiation and insulin 
sensitivity [34]; (iii) Maedler et al. demonstrated that high 
concentration of glucose could stimulate IL-1β secretion 
from the β-cells and hence elicit glucotoxicity in human 
pancreatic islets [35]; and (iv) Zhou et  al. elucidated 
that high concentration of glucose could also upregu-
late the thioredoxin-interacting protein expression (one 
of NLRP3 binding proteins) to increase IL-1β level [32]. 
Taking all of these findings together, including ours, 
although it still has a limitation in the clinical evidence, 
we strongly indicated the indispensable role of IL-1β 

Fig. 3  HG increases ROS level in HASMCs to trigger NLRP3 inflammasome and subsequent calcification. a HASMCs were kept as the controls or 
were treated with NG, mannitol (M), or HG for 24 h and then the intracellular ROS level was examined. b, c HASMCs were kept as the controls or 
were pretreated with DMSO or NAC, a ROS scavenger, for 1 h and then treated with HG for 2 and 14 days. The NLRP3, caspase 1 (pro and cleaved 
form), and IL-1β (pro and mature form) protein expressions b, OPN, OCN, and ALP mRNA expressions c in HASMCs, and HASMC calcification d 
were examined. Data in a and c, d are mean ± SEM from three independent experiments. Results in b are representative of three independent 
experiments with similar results and the bar graphs are mean ± SEM from three independent experiments. *P < 0.05 vs. control cells. #P < 0.05 vs. 
DMSO/HG-treated cells
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secreted from NLRP3 inflammasome-dependent system 
in vascular calcification development under high glucose 
environment.

In addition to being a pungent flavor, the pharmaceutic 
role of ginger has also been demonstrated for many years. 
6-shogaol is the dominant constituent in ginger to con-
tribute to uncomfortable release and ailment alleviation. 
It has been suggested that the anti-oxidation and anti-
inflammation properties of 6-shogaol could effectively 
attenuate the status of metabolic and inflammatory dis-
eases, including the cancer, arthritis, and atherosclerosis 
[19–29]. Our results found that 6-shogaol could attenu-
ate HG-initiated HASMC calcification development. 
Moreover, this attenuation is elicited through attenuating 
the ROS production and subsequent NLRP3 inflammas-
ome activation in HASMCs. Our data supported the idea 
that ginger and 6-shogaol contribute to the anti-oxida-
tion and anti-inflammasome activities in disease therapy. 

Recent diabetic mice/rats (including type I and II models) 
studies have shown the beneficial effects of ginger or its 
derivates, including 6-shogaol, on homeostatic control 
of blood glucose and/or insulin [36–38]. Moreover, the 
clinical trials have also found the blood glucose-lowering 
potential of ginger in patients with type II diabetes [39]. 
Although the importance of ginger/6-shogaol in diabe-
tes has already been found, their precise mechanism in 
blood glucose control and even more in vascular com-
plications development have not been elucidated clearly. 
Our study has provided one of antagonized mechanisms 
of 6-shogaol in vascular calcification under high glucose 
condition and further supported the possibility of its 
clinical application in diabetes patients.

The aberrant activation of NLRP3 inflammasome has 
already been implicated in the pathogenesis of many 
diseases, including the diabetes. Therefore, targeting the 
NLRP3 inflammasome has been proposed as a promised 

Fig. 4  Akt signaling in HASMCs regulates HG-triggered ROS production, NLRP3 inflammasome and subsequent calcification. a HASMCs were kept 
as the controls or were treated with NG, mannitol (M), or HG for 4 h and then the Akt phosphorylation was examined. b–d HASMCs were kept as 
the controls or were pretreated with (i) DMSO or LY294008, an akt phosphorylation inhibitor, or (ii) pcDNA empty vector (EV) or dominant negative 
(dn)-Akt-expressed plasmid and then treated with HG for 2 and 14 days. The NLRP3 and IL-1β (pro and mature form) protein expressions b, ROS 
production c, and OPN, OCN, and ALP mRNA expressions c in HASMCs, and HASMC calcification d were examined. Results in a, b are representative 
of three independent experiments with similar results and the bar graphs are mean ± SEM from three independent experiments. Data in c, d are 
mean ± SEM from three independent experiments. *P < 0.05 vs. control cells. #P < 0.05 vs. DMSO/ or EV/HG-treated cells
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Fig. 5  6-Shogaol attenuates HG-triggered Akt activation, ROS production, and NLRP3 inflammasome in HASMCs. a, b HASMCs were kept as the 
controls or were pretreated with ethanol or 6-shagaol and then treated with HG for 4, 24, and 48 h. The Akt phosphorylation, ROS production, and 
NLRP3/IL-1β (pro and mature form) protein expressions in HASMCs were examined. Results in a and c are representative of three independent 
experiments with similar results and the bar graphs are mean ± SEM from three independent experiments. Data in b are mean ± SEM from three 
independent experiments. *P < 0.05 vs. control cells. #P < 0.05 vs. EtOH/HG-treated cells

Fig. 6  6-shogaol attenuates HG-triggered HASMC calcification. a, b HASMCs were kept as the controls or were pretreated with ethanol or 6-shagaol 
and then treated with HG for 14 days. The OPN, OCN, and ALP mRNA expressions in HASMCs a and HASMC calcification b were examined. Data in a, 
b are mean ± SEM from three independent experiments. *P < 0.05 vs. control cells. #P < 0.05 vs. EtOH/HG-treated cells
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method to improve these diseased. However, the thera-
peutic strategies specifically antagonizing the NLRP3 
inflammasome have not been effectively developed 
and applied in patient treatment. The current study has 
reported that HG condition could result in vascular cal-
cification through inducing the bone-related matrix pro-
tein, i.e., OPN, OCN, and ALP, expressions in HASMCs, 
which is regulated by the Akt activation, ROS production, 
and subsequent NLRP3/caspase 1/IL-1β inflammasome. 
Also, it has been further demonstrated that 6-shogaol, a 
nature ginger extract, could have an antagonized effect 
in HASMC calcification through inhibiting HG-activated 
NLRP3 inflammasome.

Conclusion
The presented study provides new insights into under-
standing the mechanisms of NLRP3 inflammasome-
regulated vascular calcification in HASMCs under 
hyperglycemia conditions. The results concerning the 
antagonized role of 6-shogaol might lead to the design 
and development of ginger-containing dietary therapy 
and/or new drugs for treating vascular calcification 
complication of diabetes through targeting the NLRP3 
inflammasome.

Methods
Materials
Rabbit polyclonal antibody (pAb) against ALP and 
mouse monoclonal antibody (mAb) against OPN and 
OCN were purchased from Santa Cruz Biotechnology 
(Santa Cruz, CA). Rabbit pAbs against NLRP3, caspase 1, 
IL-1β, pAkt, Akt and β-actin were purchased from Cell 

Signaling Technology (Beverly, MA). Intracellular ROS 
assay kit was purchased from Cell Biolabs (San Diego, 
CA). MCC950 (NLRP3 inflammasome inhibitor), N-ace-
tylcysteine (NAC, ROS inhibitor), and LY294002 (PI3K/
Akt inhibitor) and other chemicals were purchased from 
Sigma (Temecula, CA).

Cell culture
HASMCs were purchased from ATCC cell bank (Rock-
ville, MD) and were cultured in medium (F12K, 10% FBS, 
and 1% antibiotics). Only 3–7 passages of HASMCs were 
employed for the experiments.

HASMC calcification
SMC calcification is a mineralization process. It could be 
examined by Alizarin Red S (ARS) stain, a tool for detect-
ing calcium deposition [40]. HG-treated HASMCs were 
fixed with formaldehyde (10%) and stained with ARS rea-
gent (40 mM). Then, the stained HASMCs were extracted 
with acetic acid and then were neutralized with ammo-
nium hydroxide. The samples were centrifugated and the 
supernatants were collected and measured at 405 nm by 
colorimetric detection.

Quantitative real‑time PCR
The cDNA extracted and converted from purified RNA of 
HASMCs was employed to determine the mRNA expres-
sion of the specific genes. The ABI StepOnePlus machine 
and SYBR Green kit (Applied Biosystems) were employed 
in the real-time PCR assay. The primers employed in the 
experiments included NLRP3 (positive: 5′- GAT​CTT​
CGC​TGC​GAT​CAA​CA-3′; negative: 5′- GGG​ATT​CGA​
AAC​ACG​TGC​ATTA-3′), OPN (positive: 5′-GGA​CAG​
CCA​GGA​CTC​CAT​TG-3′; negative: 5′-TGT​GGG​GAC​
AAC​TG GAG​TGA​A-3′), OCN (positive: 5′-GTG​ACG​
AGT​TGG​CTG​ACC​-3′; negative: 5′-CAA​GGG​ GAA​
GAG​GAA​AGA​AGG-3′), ALP (positive: 5′-CTC​CCA​
GTC​TCA​TCT​CCT​-3′; negative: 5′-AAG​ACC​TCA​ACT​
CCC​CTG​AA-3′) and GAPDH (positive: 5′-AGG​TGA​
AGG​TCG​GAG TCAAC-3′; negative: 5′-CCA​TGT​AGT​
TGA​GGT​CAA​TGA​AGG​-3′) genes. The GAPDH gene 
expression was indicated as the internal control.

Western blot
HASMCs (controls and HG-treated) were lysed with lysis 
buffer (1% NP-40/0.1% SDS/0.5% sodium deoxycholate/
protease and phosphatase inhibitor cocktail). The lysates 
(30 µg) were separated and examined by SDS-PAGE (10% 
running and 4% stacking) and the indicated antibodies.

Plasmid transfection
HASMCs were cultured overnight and then transfected 
with the pcDNA empty vector or dominant negative 

Fig. 7  Schematic representation of signaling pathways regulating 
HG-triggered vascular calcification in HASMCs and the attenuated 
effect of 6-shogaol
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Akt (dn-Akt)-expressed plasmids [41] by using the 
Lipofactamine 3000 Transfection Regents.

Statistical analysis
The results were shown as mean ± SEM and the statisti-
cal analysis was measured by an independent Student 
t-test for two groups of data and analysis of variance 
(ANOVA) followed by Scheffe’s test for multiple com-
parisons. The P value < 0.05 was shown significant. 
Results were assayed from at least 3 repetitions which 
were collected from individual experiments.

Abbreviations
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glucose; NG: normal concentration of glucose.
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