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Abstract: Luminescent derivatives of benzanthrone are becoming more useful based on their light-
absorbing and fluorescent-emitting properties. Our previous studies showed that luminescent
staining properties of the same benzanthrone dye differ for variable parasite samples. Therefore, two
types of benzanthrone dyes were prepared. One has a strongly basic amidine group and a halogen
atom, and the other has an amide moiety and a tertiary amine group. Trematoda Parafasciolopsis
fasciolaemorpha is a liver fluke of a moose (Alces alces) and has a significant influence on the health and
abundance of the moose population. Staining protocols for parasite P. fasciolaemorpha specific organ or
organ systems imaging are mostly time-consuming and labor-intensive. The study aimed to compare
the fixation technique and the staining protocol by synthesized benzanthrone luminescent dyes to de-
termine detailed morphology, anatomical arrangement of the organ systems and gross organization of
the muscle layers of P. fasciolaemorpha using confocal laser scanning microscopy. Luminophores were
tested for samples fixed in different fixatives. Developed dyes and staining protocol resulting in imag-
ing of all parts of trematode without additional sample preparation procedures, which usually are
required for parasite examination. Obtained results confirmed that the most qualitative results could
be reached using 3-N-(2-piperidinylacetamido)benzanthrone dye which has amide moiety and a ter-
tiary amine group. Based on obtained results, 3-N-(2-piperidinylacetamido)benzanthrone gave more
qualitative parasite visualization than 2-bromo-3-N-(N′,N′-dimethylformamidino)benzanthrone.

Keywords: Parafasciolopsis fasciolaemorpha; trematode; moose; benzanthrone luminescent dye; confo-
cal laser scanning microscopy

1. Introduction

Luminescent dyes are becoming popular to label specific biological processes, struc-
tures, and molecules [1,2]. Therefore, improvements in dye chemistry are required for
the discovery of the helminth’s detailed structure. In a previous investigation by Kirilova
et al. [3], various benzanthrone derivatives (with substituted amidine or amine groups in
3-position of benzanthrone core) were applied for visualization of the internal and external
structure of freshwater trematodes species such as Diplostomum spathaceum, Diplodiscus sub-
clavatus and Prosotocus confusus. Studied benzanthrone dyes, using AFA fixative, showed
good visualization of internal organ systems and body wall of parasites. Additionally,
developed luminescent dye 3-N-(2-pyrrolidinoacetamido) benzanthrone was applicable for
callus embryo detection [4]. We can explain the obtained results by specific intermolecular
interaction between the applied dye molecules and the stained tissues. As it is known that
the benzanthrone core, consisting of four fused aromatic rings, has a strong hydrophobicity,
primarily interacts with the most lipophilic parts of tissues, namely, with the lipids of
cell membranes. At the same time, the dye molecules also contain basic polar groups,
which allow them to interact (especially after their protonation with an acidic fixative) with
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negatively charged groups of tissues, mainly with proteins. Obviously, this combination
of interactions of different types contributes to good staining and visualization of the
investigated samples. Additionally, benzanthrone luminescent dyes are more photostable,
and the development of such slides is required not only for research needs but also for
training material preparation. Another important step in a staining protocol creation is
sample fixation. The aim of fixation is to keep cellular and extracellular structures as
close as possible to the parasite’s structure in vivo and to prevent damages caused by
autolysis [5]. The commonly used fixation solutions for further trematodes staining are
the ethanol solutions [6]; the Bouin’s solution [7–9]; the Carnoy’s solution [10–13]; the 10%
neutral-buffered formalin [14], and the alcohol-formaldehyde-acetic acid (AFA) [15,16].
The choice of applicable staining method and appropriate fixative depends on the study
object. The incorrect staining or fixation method has an influence on the interpretation of
study results [17]. Continued development of laser technology, digital imaging methods,
the availability of brighter and more photostable fluorescent probes and the confocal laser
scanning microscopy (CLSM) have made feasible novel experimental approaches for vari-
ous label fluorescence, multidimensional and live-cell imaging, and microscopy [18]. The
improvement of microscopy approaches gives more detailed information about parasite’s
organ systems, ultrastructural data for muscle fibers, cell bodies, detailed information
about general morphology and gross anatomical arrangement of the organ systems [19,20].
Moreover, CLSM allows re-examining already mounted specimens from helminthological
collections [21]. The process of staining is important for the understanding of the parasite’s
morphology and species identification. There are numerous staining methods, starting
from old and more natural dyes such as carmine and saffron and ending with unnatural
dyes, hematoxylin and synthesized aniline dyes [22,23]. Staining protocols using com-
mercially available dyes for CLSM usually are complex and time-consuming, as at least
two days are required to obtain results [24]. Through developing specific benzanthrone
luminophores for biological object staining, we are suggesting simple and rapid staining
protocols that would take up to 20 min.

Moose (Alces alces) is a wild definitive host of Parafasciolopsis fasciolaemorpha (Ejsmont,
1932) [25]. The hepatic Trematoda parasite is a causative agent of parafasciolopsosis [26–28].
The moose liver fluke was first detected in 1932 in Eastern Europe. Nowadays, the parasite
was found in roe deer (Capreolus capreolus) from Poland [29] and in moose from Belarus [30],
from Latvia [31,32], from north-western Russia [33] and from Poland [34]; in red deer
(Cervus elaphus) from Hungary [35] and from Belarus, and in European bison (Bison bonasus)
from Belarus [30]. The parasite is leaf-shaped or lanceolate (about 3–7 mm in length and
about 1–2.5 mm in width) [36,37]. Moose become infected by ingestion of parasite, which
can be swallowed with contaminated water or grass near water basins [34,38,39]. Mature
flukes are found in bile ducts, duodenum, and pancreas [28,34,37]. P. fasciolaemorpha impact
on moose mortality has been clarified in several studies [26–28]. Presence of the infection
of P. fasciolaemorpha in moose has a significant impact on the health of the individual and
a potential threat to domestic animals [29]. The present work was aimed to compare the
fixation technique and the staining protocol by synthesized benzanthrone luminescent dyes
for determination of detailed morphology, anatomical arrangement of the organ systems
and gross organization of the muscle layers for P. fasciolaemorpha using CLSM.

2. Materials and Methods
2.1. Synthesis of Fluorophore 2-Bromo-3-N-(N′,N′-Dimethylformamidino)benzanthrone

The molecular formula of 2-bromo-3-N-(N′,N′-dimethylformamidino)benzanthrone
(AM323) is C20H15BrN2O. The molecular weight is 379.26 g mol−1. The dye AM323 was
obtained from 3-amino-2-bromobenzanthrone accordingly to the described procedure [40].
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2.2. Synthesis of Fluorophore 3-N-(2-Piperidinylacetamido)benzanthrone

The molecular formula of 3-N-(2-piperidinylacetamido)benzanthrone (AZPP) is
C24H22N2O2. Molecular weight is 370.46 g mol−1. The dye AZPP was prepared from
3-(2-chloroacetamido)benzanthrone accordingly to the described method [41].

2.3. Fluorescence Measurements

Spectral parameters were measured in eight organic solvents: hexane, benzene, chlo-
roform (CHCl3), ethyl acetate (EtOAc), acetone, ethanol (EtOH), N,N-dimethylformamide
(DMF), dimethyl sulfoxide (DMSO), and in PBS buffer (pH = 7.4) for solutions with con-
centrations 10−5 M at an ambient temperature in 10 mm quartz cuvettes. All solvents
were of p.a. or analytical grade. The absorption spectra were obtained using a UV-visible
spectrophotometer Specord® 80 (Analytik Jena AG, Germany). The fluorescence emission
spectra were recorded on an FLSP920 (Edinburgh Instruments Co., Ltd., Ediburgh, Scot-
land) spectrofluorometer using 3-methoxybenzanthrone (QS = 0.56 in acetone [42]) as the
reference luminophore [43].

2.4. Collection of Adult Parafasciolopsis fasciolaemorpha

Adult Trematoda worms were collected from naturally infected moose (Alces alces)
livers in the 2018 autumn. Obtained livers were unhealthy; bile ducts were expanded and
clogged; cavities were filled with dark yellow liquid. The bile duct and its cavities were
cut to collect dark yellow liquid containing parasites. The slimy liquid was rinsed with
physiological solution several times until the parasites were completely washed off.

2.5. Chemical Fixation

The fixation process is used to prepare parasites for dye binding. Subsequently, the
obtained trematodes were fixed in six chemical fixatives. The chemicals, their amounts,
pH, fixation and post-fixation times used in this study are shown in Table 1. Fixation was
performed at room temperature for all specimens.

Table 1. Description of specimen fixation and storage conditions.

Chemical Fixative

Chemical Fixative 70% Ethanol 96% Ethanol AFA Solution Carnoy’s Solution Bouin’s Solution 10% Neutral
Buffered Formalin

Content of chemical
fixative 70% ethanol 96% ethanol

(17:2:1) 85% ethanol:
40% formalin:
glacial acetic;

pH = 4.5

6:3:1 absolute
ethanol: chloroform:

glacial acetic acid

(15:4:1) picric acid,
saturated aqueous

solution: 40%
formalin; glacial

acetic acid

40% formalin;
distilled water;

sodium dihydrogen
phosphate; sodium

hydrogen
phosphate

Time of fixation Until examination Until examination 2 h 2 h 2 h Until examination
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2.6. Staining Procedure for Parafasciolopsis fasciolaemorpha

Adult Trematoda worms, which were fixed in various chemical fixatives, were used
for the staining. The worms were stained with benzanthrone dyes: AM323 and AZPP
for 15 min. Then the specimens were washed with 96% ethanol after they were placed in
ethanol-xylene (1:1) solution for 8–10 min and cleared by 30 s–3 min with 100% xylene
to obtain appropriate transparency controlled under stereomicroscope SMZ800 (Nikon,
Japan). Specimens were mounted in the Canada balsam (Sigma-Aldrich) and then were
covered with a coverslip (24 × 24 mm), dried and kept in the dark until examination.

2.7. Confocal Laser Scanning Microscopy

Finally, the specimens were examined under high-speed multiphoton CLSM Nikon
Eclipse Ti-E configured with an A1 R MP microscope system and equipped with a digital
sight DS-U3 camera (Nikon, Japan). Slides were observed at various magnifications, from
×40 up to ×600. Autofluorescence was measured with 405 with filter 425–580 nm and
488 nm with filter 500–655 nm wavelengths, and to excite autofluorescence, equal intensities
were used. An internal spectral detector performed the registration of the fluorescence
signal. The start wavelength for the fluorescence signal registration was chosen to be 20 nm
higher than the excitation wavelength until the edge of visible red spectra. Fluorescence
was induced by using the following excitation laser wavelengths: (i) λ = 488 nm with the
FITC filter (500–550 nm) and (ii) λ = 638 nm with Cy5 filter (662–737 nm). NIS Elements
Advanced Research 3.2 64-bit software (Nikon, Japan) was used to process data from CLSM,
to make snapshots, Z-stacks (with a 0.9 µm Z step size). The morphological measurements
were carried out with a computer program NIS Elements AR Analysis 3.2 64-bit.

3. Results
3.1. Synthesis

According to the literature and our previous research on the luminescent dyes’ design,
benzanthrone derivatives are known as environmentally sensitive fluorophores exhibiting
bright from green to red fluorescence depending on their chemical structure both in
solutions and in the solid state.

For the development of new efficient luminescent benzanthrone dyes, various organic
chemistry methods and synthetic procedures are applied using mainly as initial substances
3-aminobenzanthrone or its derivatives. One of the applied synthesis methods is based
on the condensation reaction between the primary amino group of 3-aminobenzanthrone
or 3-bromo-9-aminobenzantrone with appropriate unsubstituted and substituted amides
in the presence of a dehydrating reagent (phosphorus oxychloride), resulting in new
luminescent 3-amidino derivatives [44,45]. The main technique for preparing novel
substituted 3-amido dyes is the nucleophilic substitution of the chlorine atom in 3-N-
(2-chloroacetamido)benzanthrone by the reaction with an appropriate heterocyclic sec-
ondary amine in 1,4-dioxane as solvent resulting in corresponding tertiary heterocyclic
amidoamine [41]. In the current research, two novel highly emissive perspective benzan-
throne dyes with amidine group (AM323) and with substituted amide group at 3-position
of benzanthrone system (AZPP) were selected for visualization purposes.

2-bromo-3-aminobenzanthrone was used as the initial substance for the preparation
of fluorophore AM323 by condensation reaction with N,N-dimethylformamide in the
presence of phosphorus oxychloride. Obtained red-colored dye is soluble in many polar
and non-polar organic solvents.

A second dye, AZPP, was obtained from 3-(2-chloroacetamido)benzanthrone in reaction
with piperidine in 1,4-dioxane solution. The prepared yellow-colored dye has better solubility
in non-polar organic solvents. Both compounds have excellent emitting properties.

3.2. Photophysical Parameters

To fully characterize the prepared luminescent compounds, their optical properties
were studied in various media. The UV/vis absorption spectra and fluorescence character-
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istics (spectra, quantum yields, Stokes shifts) of studied dyes have been recorded in eight
organic solvents with a wide range of polarities and in water (PBS buffer, pH = 7.4). The
data of absorption and emission band maxima are summarized in Table 2.

Table 2. Photophysical parameters of the investigated fluorophores.

Solvent Dielectric
Constant

AM323 AZPP

Absorption
λabs (lgε),

nm

Emission
λem, nm Φ0

Stokes
Shift,
cm−1

Absorption
λabs (lgε),

nm

Emission
λem, nm Φ0

Stokes
Shift,
cm−1

Hexane 1.89 430 (2.68) 523 0.25 4135 442 (2.62) 531 0.12 3792
Benzene 2.28 446 (2.90) 558 0.23 4500 447 (2.72) 549 0.17 4156
CHCl3 4.70 447 (2.94) 593 0.32 5508 445 (2.88) 561 0.58 4647
EtOAc 6.02 448 (2.88) 576 0.23 4960 438 (2.91) 545 0.32 4482

Acetone 20.70 448 (2.87) 603 0.15 5738 438 (2.95) 554 0.57 4781
EtOH 24.30 464 (2.80) 660 0.01 6400 430 (2.97) 562 0.70 5462
DMF 36.70 464 (2.83) 624 0.03 5526 439 (2.92) 661 0.57 7650

DMSO 49.00 465 (3.00) 627 0.02 5556 434 (2.96) 570 0.58 5498
PBS

buffer 79.00 469 (2.97) 667 0.01 6329 433 (2.98) 658 0.07 7897

In general, it could be seen that absorption spectra do not show substantial variations
with solvents: a bathochromic shift in the absorption spectra on changing the solvent
from hexane to dimethyl sulfoxide is 35 nm for fluorophore AM323, but for dye AZPP the
hypsochromic shift (only 8 nm) is observed. For both studied substances the positions of
absorption maxima are situated between 430–465 nm.

The effect of polarity of the solvent on fluorescence is more pronounced than on the
absorption spectrum: as the emission spectrum reveals positive solvatochromism when
going from non-polar hexane to polar solvent (ethanol, DMF, or DMSO). This is typical
spectral behavior for fluorophores with intramolecular charge transfer, which leads to
a large dipole moment in the excited state and high emission parameters sensitivity to
the polarity of the surrounding [43]. The dye AM323 displays a large bathochromic shift
(137 nm) of fluorescence maximum on changing the solvent from hexane (523 nm) to
ethanol (660 nm). But dye AZPP demonstrates higher fluorescence bathochromic shift
(130 nm), changing the solvent from hexane (531 nm) to dimethylformamide (661 nm). Such
a difference between the studied fluorophores can be explained by the specific interaction
of the dye molecule with the solvent molecules due to the amino group’s different basicity
and the amidino group.

An important photophysical characteristic of fluorescent dye is Stokes shift-difference
between positions of the band maxima of the absorption and emission spectra. Stokes
shift represents differences in the equilibrium geometries (bond lengths, angles, torsional
angles, and vibrational frequencies) of the ground and excited states, i.e., the internal
reorganization energy [43].

As seen from Table 2, the Stokes shifts are higher in the case of more polar solvents,
indicating distinguished stabilization of the excited state in these solvents.

The maximal Stokes shift value for organic solvents is observed for fluorophore AZPP
(up to 222 nm (~7650 cm−1) in dimethylformamide solution). However, for AM323 it is
196 nm (~6400 cm−1) in ethanol.

3.3. Chemical Fixation

In the course of the experiment, 30 trematodes were used for each combination of
chemical fixative (in total, six chemical fixatives) and luminophore (in total, two benzan-
throne luminophores). Three biological replicates were done during this study. Overall,
1080 trematodes were used for the entire experiment.
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It was observed that the specimens’ overall morphology was not changed during
the fixation in all cases. None of the fixed samples changed the color after fixation, but
the specimen was fixed in Bouin’s solution. As Bouin’s solution contains picric acid, the
color of the fixative is yellow, which means that all samples were dyed in yellow. The
chemical fixative assessment was performed twice: at the end of the sample preparation
process to assess if there are physical changes of trematodes and during microscopy to
assess which combination of benzanthrone dye and fixative is the most appropriate (please
refer to Table 3).

Table 3. Comparison of chemical fixatives.

Chemical Fixative Physical Changes in Specimen Comments

70% ethanol −
Optimal concentration of ethanol for trematode

sample fixation, no damages to the sample, sample
after fixation became a little darker

96% ethanol +
Specimen became robust; challenging to squeeze
between coverslip and slide, sample after fixation

became a little darker
AFA solution − No physical changes in the specimen were observed

Carnoy’s solution + Specimen became impregnated with fixative, which
caused enlargement of sample (data not shown)

Bouin’s solution + Fixative did not washout; specimen turned yellow
10% neutral buffered formalin − No physical changes in specimen observed

− physical changes in specimen was not observed; + physical changes in specimen was observed.

3.4. Staining and Examination of Parafasciolopsis fasciolaemorpha

Staining of parasites was performed in parallel for direct comparison of both dyes.
Each fixed trematode was stained 3 times with the same benzanthrone dye.

AZPP dye provided excellent imaging of the whole body of trematode in 40×magni-
fication. The surface, along with spikes, was observed in good quality, oral and ventral
suckers were easily detected, the spatial (dimensional) structure was visualized. All three
muscle layers-circular, diagonal and longitudinal, were observed at the same time in
100×magnification. In the arrangement of the oral and ventral suckers’ muscle fibers
besides circular and longitudinal muscle fibers, also radial muscle layer was visualized.
Tegument was visualized in detail like a regular net that covered the parasite. The area
where the spike connected to the tegument was visualized. Clear visible parenchyma cells
were observed in the tail area. Oral sucker continued in short prepharynx then in the
pharynx. The esophagus was split into two caeca. No diverticula were observed, the intes-
tine was smooth. The excretory bladder was clearly visible. The reproductive system was
imagined in detail. Radial muscles, cirrus channel, spikes on cirrus surface were observed.
The ovary was observed only in few specimens. Uterus was poorly visualized and only
with AZZP dye and 70% ethanol combination. Due to fixative eggs were flattened and
were observed in the uterus. Vitellaria created follicles located dorsal against the intestine,
on both sides of the body, starting from the esophagus to the posterior end. Two irregular
testes located under the ventral sucker were observed. Compared to AZPP, the AM323 pro-
vided much poorer results. The obtained data are summarized in Table 4. The entire body
and structure of the suckers were not clear. Spikes were observed but without visualization
of spatial structure. All three muscle fiber types-circular, diagonal, and longitudinal, were
observed in 600× magnification, not in 100× magnification. Muscles of suckers as well
as tegument were not visualized. Digestive tract: pre-pharynx, pharynx, esophagus, and
intestines were obtained in poor quality. From the reproductive system, good visualizations
of cirrus, eggs, and testis, vitellaria, ovary and uterus were not detected.
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Table 4. Comparison of fixatives and benzanthrone dye results obtained by confocal laser scanning microscopy (CLSM).

Characteristic Benzanthrone Dye

Confocal Microscopy Results
Observed (+)/Not Observed (−)

Chemical Fixative

70% Ethanol 96% Ethanol AFA Solution Carnoy’s
Solution Bouin’s Solution 10% Neutral Buffered

Formalin

Contours of the whole body are well outlined AZPP + − + − + +
AM323 + − + + − −

Spikes and layout on the surface are well outlined AZPP + + + + + −
AM323 − − + + − −

Spatial structure of spikes AZPP + − + − − −
AM323 − − − − − −

Tegument AZPP + − − − − +
AM323 − − − − − −

Muscle layers of the body (circular, diagonal, and
longitudinal) at the same magnification

AZPP + − + + − −
AM323 − − + + − −

Muscle fibers of oral sucker, radial symmetry AZPP + − − − − −
AM323 − − − − − −

Muscle fibers of ventral sucker, radial symmetry AZPP + − − − − −
AM323 − − − − − −

Pharynx, muscle fibers of it can be easily distinguished AZPP + + + − − −
AM323 − − + − − −

Esophagus can be easily distinguished AZPP + − + − − −
AM323 + − − − − −

Intestine can be easily distinguished AZPP + − + − − −
AM323 − − + − − −

Parenchyma cells are well outlined AZPP − − − + − −
AM323 − − + + − −

Cirrus is well outlined
AZPP + − − − − −

AM323 − − + − − −
Ovary is well outlined AZPP + − − − − −

AM323 − − − − − −
Uterus filled with eggs AZPP + − − − − −

AM323 − − − − − −

Vitellaria is well outlined
AZPP − − - − − +

AM323 − − − − + −
Testis can be easily distinguished AZPP − − + − − −

AM323 − − + − − −

Total +/− (16) AZPP 13/3 2/14 8/8 2/14 2/14 3/13
Total +/− (16) AM323 2/14 0/16 7/9 4/12 1/15 0/16

− specified characteristic was not observed; + specified characteristic was observed; +/− ratio of total pluses against total minuses.
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P. fasciolaemorpha are relatively thick compared to other trematodes species, e.g., Proso-
tocus confusus, which means that during the fixation process, the P. fasciolaemorpha specimen
impregnated more Bouin’s or anther fixatives than ticker trematodes. After the fixation in
Bouin’s solution, it was observed that fixative could not be washed out completely, and
during the confocal microscopy, fixative’s has a major impact on data quality. Based on var-
ious benzanthrone dye and chemical fixative combinations experiments, the experiments
highlighted that AZPP and 70% ethanol following AZPP and AFA combinations were the
most suitable for parasite’s imaging.

The developed method using synthesized AZPP benzanthrone dye is applicable
for P. fasciolaemorpha examination, make staining protocols less labor-intensive and time-
consuming to save resources.

4. Discussion

Nowadays, fluorescence bioimaging based on emissive organic molecules has gained
great attention as an indispensable tool in research to visualize tissue structures. The
spectral changes observed on the binding of fluorophores with cell structures are an im-
portant tool for investigating these issues. It becomes necessary to continuously search for
new compounds and synthesize new fluorescent dyes covering a wide spectral range of
excitation and emission. Therefore, considerable efforts are focused on the development,
synthesis, and properties of new luminescent dyes. But the synthesis of new lumines-
cent markers still has several challenges to provide low-toxic dyes for biological objects.
In literature, there are described various Trematoda stainings methods such as Gower’s
carmine [24], Ehrlich’s acid hematoxylin and Celestin blue-b [13] actin-antibodies and fluo-
rescently labeled phalloidin staining [46–48]. Recently we reported that benzanthrone dyes
are a useful tool for imaging freshwater trematodes [3], for callus embryo determination [4]
and for sex determination of Trichinella larva [49]. Therefore, we continue our research
on the synthesis of new benzanthrone markers that bind to actin elements to determine
internal organs and systems of trematodes.

Derivatives of benzanthrone are well known as p-conjugated compounds with donor–
acceptor architectures. Modification of benzanthrone structure has given rise to the synthe-
sis of many derivatives with tenable optical properties. They are typical intramolecular
charge transfer luminophores. The optical properties of such molecules depend mainly
on the polarizability of the electrons localized in p-bonding molecular orbitals [43]. The
polarizability of a molecule is determined mainly by its chemical structure, particularly
by the length and the structure of the p-conjugated spacer and the electronic nature of the
donors and acceptors attached. As is known, the photophysical properties of 3-substituted
benzanthrone derivatives mainly depend on the electron-donating properties of groups
connected to nitrogen atoms at the C-3 position [42].

In our previous research, we synthesized several benzanthrone derivatives with
various chemical groups such as substituted amidines, secondary and tertiary amines,
substituted aminoamides etc. [1,41,44]. These substances luminescence intensely, have high
quantum yields, and their spectral properties are sensitive to the local microenvironment’s
polarity enabling sensing applications. The spectral properties of the developed fluorescent
dyes were investigated in detail [3,4]. As a result, two promising compounds were selected
for the current research of the possibilities of studying parasites. In line with our previous
studies mentioned before, we prepared AZPP and AM323.

For synthesized derivatives, spectral analysis was undertaken, such as absorption
spectra, steady-state fluorescence spectra, Stokes and solvatofluorochromic shifts and emis-
sion quantum yields were evaluated and analyzed (Table 2). Developed fluorophores have
bright emission in organic solvents from green color in non-polar media to red fluorescence
in a polar environment, thus showing excellent fluorosolvatochromism, i.e., sensitivity to
the polarity of the medium, that results from solvent relaxation during the excited-state
lifetime caused by the essential change of the dye dipole moment after excitation. Parasites
need to develop specialized attachment organs for ecto- and endoparasitic survival. Hence
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a well-developed muscular system is essential. The system provides locomotion, specific
feeding, reproduction, and attachment ability within-host [46,47,50,51]. Therefore, syn-
thesized dyes have large Stokes shifts and can be used in super-resolution microscopy of
various biological structures. Based on the results obtained, it can be concluded that the de-
veloped fluorophores can be used in super-resolution microscopy because super-resolution
imaging methods need fluorescent dyes with large Stokes shifts [52]. In continuation of
our further work, the developed luminescent dyes were used to visualize P. fasciolaemorpha
trematode.

Experimental results showed that using laser excitation of 488 nm (with filter
500–655 nm), it was possible to achieve 23-fold attenuation of the autofluorescence signal
if we compared it with 405 nm (with filter 425–580 nm) wavelength excitation. To evalu-
ate the autofluorescence, several regions of interest (ROI) were selected, and these were
compared to background ROI. Based on obtained data, a 488 nm laser with the FITC filter
(500–550 nm) and a 638 nm laser with Cy5 filter (662–737 nm) were the most convenient
lasers to suppress unwanted autofluorescence. The autofluorescence image of the sample
is shown in Figure 1.
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Figure 1. Adult Parafasciolopsis faciolaemorpha unstained sample autofluorescence corresponding to
different excitation wavelengths (single stack).

In line with previous studies [19,20,48,53–55] our obtained results confirm the arrange-
ment of somatic musculature for adult P. fasciolaemorpha. Three main muscle layers were
obtained: an outer circular layer, intermediate longitudinal and diagonal layer. Images of
Z-series are shown in Figures 2–4.
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testes, O—ovary, INT—intestine, V.S.—ventral sucker, U.W.E.—uterus filled with eggs.
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Figure 4. Adult Parafasciolopsis faciolaemorpha stained with AZPP dye, fixative 70% ethanol (single
stack). O.S.—oral sucker, V.S.—ventral sucker, S—spikes, C—cirrus, E.D.—ejaculatory duct, L.M—
longitudinal muscle fibers, D.M.—diagonal muscle fibers, C.M.—circular muscle fibers.

Muscle layers are shown in green. The outer circular layer was organized in flat
strips that run parallel to each other; also, the intermediate longitudinal muscle layer
was organized in thicker strips than circular muscle fibers. As per below, the circular
and longitudinal muscles diagonal muscle fibers organized in bundles were visualized.
Diagonal muscles crisscross each other.

We have verified that using our synthesized benzanthrone dyes and developed stain-
ing protocol produces similar results to results obtained using fluorescein isothiocyanate
or tetramethylrhodamine B isothiocyanate-conjugated phalloidin staining for actin [48].
When comparing our results to those of Kumar et al. [47] study, it shall be pointed out
that we detected muscle cell bodies connected to muscle fibers in the diagonal muscle
layer. However, we did not observe cell bodies in longitudinal or circular muscles. The
musculature of adhesive organs, such as suckers, is mostly very complex, including several
muscle types derived from body-wall [20]. Our results showed that both suckers consist
of circular, longitudinal and radial muscle layers. A similar conclusion was reached by
Terenina et al. [48]. Halton and Maule [50] have demonstrated that the reproductive system
and part of the digestive system organs consist mostly of circular muscle fibers, including
several longitudinal muscle fibers. After a detailed examination of confocal images, we
concluded that we obtained the same results. We also noted that circular muscle fibers
are more densely located within cirrus and cirrus sac-like Fasciola hepatica [46]. Overall
morphology was generally similar reported by Skrjabin [56]. Glycogen reserves were
detected in the entire parenchyma below the tegument, however, more in the vitellaria area.
Scattered deposits of glycogen were observed in the attachment apparatus. As eggs mostly
consist of glycogen and lipids, they have bright fluorescence. Furthermore, glycogen
reserves and lipids serve as an energy source, a regulator for cellular activities and building
materials for biological membranes [57].

Previous research of parasites was conducted using luminescent dyes of three groups-
aminobenzanthrone (P8), amidinobenzanthrones (AM1, AM2, AM4, AM16 and AM323)
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and aminoamidobenzanthrones (AZP5 and 3-N-(2-piperidinylacetamido) benzanthrone)
for various Trematoda species staining. Based on previous study results, only amidinoben-
zanthrone (AM323) andaminoamidobenzanthrone (AZPP) were used to optimize fixation
technique and staining protocol (see Table 5).

Table 5. Trematoda staining with dyes from different luminophore groups.

Fluorescent
Dye Chemical Fixator Used Structure Object and Description on Stained Systems References

P8 AFA solution
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Prosotocus confusus adults
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cirrus

AM1 AFA solution

Biomolecules 2021, 11, x  13 of 17 
 

AFA solution 

O

N
N

overall view: spikes, oral 
and ventral suckers; in-
tegumentary system: ra-

dial and longitudinal 
muscle fibers; digestive 

system: prepharynx, 
pharynx, esophagus, in-

testine, excretory bladder, 
excretory pore; reproduc-
tive system: ovary, testis, 

vitellaria, uterus with 
eggs, cirrus 

AM2 AFA solution 

O

N
N

 

Diplostomum sp. 
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intestine; primary excre-
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AM4 AFA solution 

Prosotocus confusus adults 

[3] 

overall view: spikes, oral 
and ventral suckers; in-
tegumentary system: di-
agonal and longitudinal 

muscle fibers in poor 
quality; digestive system: 

prepharynx, pharynx, 
esophagus, intestine; re-

productive system: ovary, 
testis, vitellaria, cirrus, 

eggs 

AM16 AFA solution 

O

N

NH

Diplostomum sp. 

[3] 

overall view: oral and 
ventral suckers, pseudo-

suckers (very bright), 
holdfast; digestive sys-

tem: pharynx, esophagus, 
intestine; primary excre-
tory system (very bright) 

AM323 AFA solution 

O

N
N

Br

 

Parafasciolopsis fasciolae-
morpha adults 

Current study 

overall view: spikes, oral 
and ventral suckers; in-

tegumentary system: 
three muscle layers and 

radial muscles of suckers 
in poor quality; digestive 

system: prepharynx, 
pharynx, esophagus, in-
testine, reproductive sys-

tem: testis, eggs, cirrus 

AZP5 AFA solution 

O

N
H

O
N

N

Parafasciolopsis fasciolae-
morpha adults 

[55] 
overall view: spikes, oral 
and ventral suckers; in-

Prosotocus confusus adults

[3]
overall view: spikes, oral and ventral suckers;

integumentary system: radial and longitudinal
muscle fibers; digestive system: prepharynx,

pharynx, esophagus, intestine, excretory bladder,
excretory pore; reproductive system: ovary, testis,

vitellaria, uterus with eggs, cirrus

AM2 AFA solution
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Overall view, spikes, oral and ventral suckers of parasites were clearly visualized
in all three dye groups. In addition, using protocol with AZPP dye, the dimensional
structure of the whole body was clearly visualized. The staining protocol using P8 dye was
not suitable for integumentary system visualization. Using dye of amidobenzanthrones
group made it to some extent observe the integumentary system, yet images were either
not detailed or in pore quality. Compared to dyes mentioned above, usage of aminoami-
dobenzanthrones group dyes made it possible better visualization of tegument in detail,
connected with spikes and all three muscle-fiber types: circular, diagonal and longitudinal.
Usage of various dye groups did not affect visualization of Trematoda’s digestive system.
Imaging of the reproductive system of adult P. fasciolaemorpha was clearer and detailed
using AZPP luminophore dye. Opposite amidinobenzanthrones AM1 and AM4 using for
P. confusus staining show detailed visualization of the reproductive system, and vitellaria
was clearly visible.
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In contrast to earlier findings, we confirmed that the developed method using synthe-
sized AZPP dye is applicable for P. fasciolaemorpha examination, make staining protocols
less time-consuming, and save resources.

5. Conclusions

Our findings in mutual comparison demonstrate the use of the AZPP luminophore
and ethanol 70% or AFA solution as fixatives are a more suitable tool for studies of organic
substances–carbohydrates, lipids, and proteins, moreover, for anatomical and muscular
arrangement of trematodes than AM323. Our work has led us to the conclusion that
specimens fixed in 70% ethanol required an additional 1 to 2 min for sample wash out
with xylene compared to specimens fixed in AFA solution. This paper has highlighted that
AZPP and 70% ethanol combination is more suitable for external surface and muscle layer
examination and AZPP and AFA combination for internal structure assessment. Taken
together, the findings suggest that Bouin’s solution is not suitable for P. fasciolaemorpha
fixation in cases when samples will be used for examination by confocal microscopy.

For further studies, we should investigate the musculature arrangement of the attach-
ment organs of adult P. fasciolaemorpha. Our investigations into this area are still ongoing.
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