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ABSTRACT
Tumor cells trigger angiogenesis through the expression of angiogenic factors. 

Vasohibins (VASHs) are a family of peptides that regulate angiogenesis. Flavonoids 
have antiproliferative antitumor properties; however, few studies have highlighted 
their antiangiogenic potential. This study evaluated the flavonoid isoquercetin 
(Q3G) as an antitumor compound related to colon cancer vascularization and 
regulation of VASH1 and 2. Mice bearing xenogeneic colon cancer (n = 15) were 
divided into 3 groups: Q3G-treated (gavage, daily over a week), bevacizumab-
treated (intraperitoneal, single dose), or untreated animals. Tumor growth, 
histological characteristics, blood vessel volume, and VASH1 and 2 expressions were 
analyzed. Q3G impaired tumor growth and vascularization, upregulated VASH1, and 
downregulated VASH2 in comparison to untreated animals. Mice treated with Q3G 
showed approximately 65% fewer blood vessels than untreated animals and 50% 
fewer blood vessels than mice treated with bevacizumab. Thus, we show that Q3G 
has antitumor activity, impairs vascularization, and differentially modulates VASH1 
and 2 expressions in colon cancer.

INTRODUCTION

Angiogenesis is characterized by the establishment 
of new blood vessels (BV) through stimulation 
of endothelial proliferation. The steps involved in 
angiogenesis include endothelial cell (EC) proliferation, 
sprouting, migration, tube formation, vessel remodeling, 
and pruning. In healthy tissues, angiogenesis is regulated 
by natural signals that prevent or stimulate the overgrowth 
of neovascularization [1].

Angiogenesis is a complex and multifactorial 
process that includes, but is not limited to, (i) stimulation 
by pro-angiogenic factors such as vascular endothelial 
growth factor (VEGF), basic fibroblast growth factor 
(bFGF), and transforming growth factor-beta (TGF-β); 
(ii) repression by anti-angiogenic factors (angiostatin, 
endostatin, and vasoinhibin); and (iii) regulation by 
non-angiogenic factors (O2 consumption rate and 
nutrient deprivation threshold for early necrosis) [2–4]. 
Fibroblast growth factors (FGF) and VEGF-induced 
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signal transduction led to specific biological responses. 
Both, (FGFs) and VEGFs, stimulate endothelial cells to 
secrete several proteases such as vascular endothelial 
growth factor receptor 2 (VEGFR2) and fibroblast growth 
factor receptor 1 (FGFR1). Thereby, signaling mediated 
by angiogenic stimulators, modulate the vasohibin 
(VASH) protein family. VASH1 and 2 are peptides linked 
to opposing angiogenic regulation processes [5]. VASH1 
is an anti-angiogenic factor. It increases tubulin levels and 
thereby suppresses endocytosis, whereas VASH2 is pro-
angiogenic and exhibits tubulin carboxypeptidase activity 
related to microtubule functions and facilitates tubulin 
detyrosination. Small vasohibin-binding protein (SVBP) 
is a protein that regulates the abundance of VASH1 and 
2. VASHs, but not SVBP alone, increase detyrosination of 
α-tubulin, and purified vasohibins remove the C-terminal 
tyrosine of α-tubulin [6]. The activities of VASH1 and 
2 activities are linked to their expression sites. VASH1 
is mainly produced by ECs [7], and VASH2 is mainly 
derived from infiltrating mononuclear cells [8]. VASH2 
has also been detected in tumor cells [9]. VASH1 levels 
are low in proliferating ECs at the sprouting front and 
high in non-proliferating ECs at the angiogenesis 
termination zone where VASH1 possibly interrupts 
angiogenesis. Conversely, high levels of VASH2 are 
found at the sprouting front and lower levels at the 
termination zone [9].

Dysregulation of angiogenesis contributes to the 
development of numerous diseases, including cancer 
[2, 3, 5, 10–14]. Cancer is “angiogenesis-dependent” 
[15] because it depends on neovasculature to fulfill the 
metabolic demands of cancer cell proliferation. Tumor 
vasculature offers an excellent and potentially selective 
target for anticancer therapy. Thus, significant advances in 
cancer treatment have been achieved with the development 
of antiangiogenic agents [16].

The overarching realm of vascular targeting 
strategies include both angiogenesis inhibiting agents 
(AIAs) and vascular disrupting agents (VDAs), which are 
collectively described as vascular targeting agents (VTAs)
[17–21].

AIAs prevent the formation of new BV without 
acting on the pre-formed BV, and this limits tumor growth 
by blood deprivation [22]. Administration of AIAs can 
result in tumor cell necrosis and secondary tumor cell 
death [17–19, 21]. Bevacizumab (beva) is classified as 
an AIA [23]. Beva is an anti-VEGFR antibody. It is a 
recombinant humanized monoclonal immunoglobulin G1 
(IgG1), that contains a human framework region and a 
murine complementarity-determining region. It targets the 
VEGF receptor signaling pathway and blocks angiogenesis 
through ligand binding and sequestration. Beva causes 
EC apoptosis by blocking VEGFR1 [24], thus impairing 
cell proliferation, migration, survival, and vascular 
permeability [23]. Beva has been approved for several 
cancer indications, including breast cancer [25]; first-line 

non-squamous non-small cell lung cancer [26]; recurrent 
glioblastoma [27]; metastatic renal cell carcinoma [28]; 
persistent, recurrent, or metastatic cervical cancer [29]; 
epithelial ovarian cancer [30]; fallopian tube cancer; 
and primary peritoneal cancer [31]. Beva is the second-
line treatment for patients with metastatic colon cancer 
(CC) who have progressed on a first-line beva-containing 
regimen [18, 19]. Unfortunately, beva, aflibercept, and 
ramucirumab, like many other drugs, such as unitinib and 
pazopanib, that are designed to act specifically on a target 
proteins or receptors [32], may bind to unintended proteins 
and can exhibit off-target activity and adverse effects [18, 
19, 21, 25].

VDAs are an emerging class of anticancer 
agents. They damage and destroy the existing tumor 
vasculature. VDAs depolymerize tubulin to disrupt 
tumor vascularization [20]. One subset of VDA functions 
is inhibition of microtubular tubulin, which leads to 
morphological changes to the ECs lining the tumor 
vasculature and triggers a cascade of cell signaling events 
that result in BV damage. Flavonoids, such as flavone-8-
acetic acid (FAA) [33] and dimethylxanthenone-4-acetic 
acid (DMXAA) or vadimezan are VDAs [34]. Another 
flavonoid, kaempferol, protects against retinal damage 
by regulating VASH1 and destroys retinal neovasculature 
[35]. Thus, the literature suggests that flavonoids are also 
a group of VDAs [33, 34].

Flavonoids have been shown to have effects on 
ovarian [36], breast [37, 38], prostate [39], liver [40], and 
colorectal cancer [41, 42]. Flavonoids are characterized by 
a phenyl benzo(y)pyrone-derived structure with putative 
anticancer effects [43–48]. While clinical use of quercetin 
is limited by its poor bioavailability, quercetin-3-O-β-
d-glucopyranoside (Q3G or isoquercetin) has a better 
pharmacokinetic profile than quercetin [43–51]. It has 
an antiproliferative effect in vitro on CC cells (SW480, 
DLD-1, and HCT116) no significant effect on non-tumor 
colon cells (IEC-18) [52]. Considering this antiproliferative 
effect of Q3G on CC [52, 53], the evidence from flavonols 
as promising angiogenic agents, and also its relationship 
with VASHs [35, 54], we evaluated the antitumoral effect 
of Q3G in vivo and its relationship with vascularization in 
a xenogeneic CC animal model.

RESULTS

CC animal model features

Three (±1,09) days after xeno-transplantation tumor 
had 100 mm3. Untreated animals had tumors that presented 
as deep, fixed, and vascularized masses at the graft 
site. After incision, white tissue was observed, slightly 
lobulated and with a “fish-meat” aspect, which suggested a 
carcinoma tumor. Under microscopy, all tumors consisted 
of poorly differentiated adenocarcinoma with fibrotic 
beams separating the “nest” of desmoplastic tumor cells 
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with frequent mitotic figures, including atypical forms 
and signet ring cells. Medium-and large-sized tumor 
cell clusters, acidophilus and ample cytoplasm, delicate 
chromatin nuclei, and evident nucleoli were also found. 
The connective tissue showed BV structures (Figure 1A 
and 1B).

Treatment with Q3G or beva

Tumors were smaller and less vascularized in Q3G- 
and beva-treated mice than in untreated mice (Figure 
2A). There were fewer BVs in the tumors of Q3G- and 
beva-treated animals than in untreated animals (Figure 
2B). Treatment with Q3G lowered tumor BV content to 
a greater extent than beva treatment (Figure 2B). None 
suffer signals were found in animals under Q3G treatment. 
The weight from day 0 to euthanasia day mice was stable. 
Untreated mice showed weight from 19,58 ± 0,75 to 19,98 
± 1,20, Q3G-treated mice from 20,0 ± 0,04 to 20,22 ± 1,56 
and beva-treated mice from 19,01 ± 2,10 to 21,23 ± 4,75 
(p = 0.88).

VASH1 expression was increased by Q3G treatment, 
and VASH2 expression was lower in Q3G- and beva-
treated CC compared to untreated CC, and was higher in 
Q3G-treated CC in comparison to beva treatment (Figure 
2B). The paucity BVs in the Q3G- and beva-treated 
tumors corresponded with their smaller size (Figure 2C).

We found VASH1 or 2 expressions at distinct sites 
in CC (Figure 3A and 3B). VASH1 was found in the 
extracellular matrix close to BVs (Figure 3A) whereas 
VASH2 was found in the cytoplasm (Figure 3B).

In Q3G-treated tumors, VASH1 expression was 
higher (Figure 4C) than untreated (Figure 4A) and Beva 
treated (Figure 4B) tumors, and VASH2 expression was 
lower (Figure 4F) in comparison to untreated (Figure 
4D) and Beva treated (Figure 4E) tumors. On merged 

micrographs, we found a lower expression of VASH1 in 
ECs proliferating at the sprouting front. In turn, high levels 
of VASH1 were detected in non-proliferating ECs in the 
angiogenesis termination zone. High levels of VASH2 
were found at the sprouting front and lowered in the 
termination zone in the cytoplasm (Figure 4G–4I).

DISCUSSION

Q3G and beva inhibited CC growth compared 
to untreated controls.Q3G showed CC inhibition in 
agreement with the known effects of flavonoids on several 
types of tumors and the antiproliferative effect of Q3G on 
CC cells in vitro [36–42, 55].

Q3G was safe to use. The clinical signs were 
used for the animal welfare refinement during animal 
experiments. The mice treated with Q3G showed no 
suffer signs. A 5% body weight loss is a strong empirical 
predictor of pathological findings as a non-invasive tool 
to monitor research animal welfare in toxicity testing 
[56]. Data showed stability of weight in mice treated 
with Q3G.

In addition to smaller tumor size, Q3G treatment 
lowered the amount of BVs within tumors, whereas 
larger untreated tumors had more BVs. CC treated 
with Q3G showed approximately 65% fewer BVs than 
untreated controls and 50% fewer BV than tumors 
treated with beva. The results confirm that cancer is an 
“angiogenesis-dependent” variable [15]. The growing 
tumors need an increase in blood supply to obtain 
sufficient oxygen and nutrients. One way to obtain this 
is by stimulating angiogenesis. As a result of tumor 
expansion, the production of angiogenic occurs. It led 
to an increase in the intravascular distance and placed 
tumor cells beyond the critical oxygen diffusion limits. 
During the initial phase of angiogenesis, the existing 

Figure 1: Photomicrographs of colon cancer histopathological features (A, B) following xenogeneic HT-29/CC cells seeding. (A) Global 
vision. Note the low differentiated adenocarcinoma (less than 25% of glandular formation). (B) Amplification of the square from image 
A. Note the mitotic figures (MF), including atypical and signet ring cells (SRC), fibrotic beams separating the “nests” of tumor cells, 
pleomorphic cells with acidophilic cytoplasm (AC), and the vessel structure in the connective tissue (BV). [HE A, 40×; HE B, 400×].
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little BV become dilated, have increased permeability, 
and their endothelial cells show an increase in 
cytoplasmic organelles and a decrease of endothelial 
junctions. Subsequently, endothelial cells need to 
detach from and subsequently break down the basement 
membrane. They start migrating and proliferating to form 

new sprouts that enter growing tumor nests. Migrating 
endothelial cells align in loose cords and sprouts, 
and lumen formation occurs in the advancing sprout 
by vacuole formation and curving of the endothelial 
skeleton. When these sprouts become connected, blood 
flow will start [57]. These connected sprouts allow the 

Figure 2: (A) Tumor size (mean ± SD) in untreated mice and beva- or Q3G-treated groups following inoculation of xenogeneic HT-29 
tumor cells at the day of treatment (initial) and after 7 days (final). At the initial time (day 0), the tumor size is the same in untreated or Q3G- 
or beva-treated mice, whereas, after 7 days of Q3G- or beva-treatment, the tumors are smaller in both beva and Q3G groups compared to 
the untreated group. (n = 15, non-parametric ANOVA (Kruscal Wallis), *p < .05). (B) VASH1 and 2 CC expression and blood vessel content 
in untreated (control) and beva- or Q3G- treated groups. Expression of VASH1 is higher in Q3G-treated tumors compared to untreated 
mice. VASH2 is lower in Q3G-treated tumors compared to untreated and higher compared to beva-treated mice. Blood vessels amount is 
lower in Q3G-treated tumors compared to untreated and beva-treated mice. (n = 15, non-parametric ANOVA (Kruscal Wallis), *p < .05). 
(*compared to VASH1, +compared toVASH2, #,&compared to blood vessel number. = *,+,#,& = p < .05). (C) Relationship between tumor size 
and blood vessel content. Note the tumor size as an “angiogenesis-dependent” variable (n = 15, Spearman test, R2= adhesion to curve, rs= 
0,79, p < .05).

Figure 3: VASH1 (A) and VASH2 (B) expression in untreated CC. VASH1 was found in the extracellular matrix and endothelial cells, 
whereas VASH2 was found in the intracellular space. [Anti-VASH1 and anti-VASH2, 400×].
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invaded tumor nests to grow and will themselves develop 
blood vessels and new sprouts leading to expansion of 
the tumor BV and tumor growth [58]. Therefore, cancer 
(growth, progression, and spread) is an angiogenesis-
dependent variable. Unprecedentedly, Q3G interfered 
with the vascularization of CC. In addition, Q3G-treated 
animals had higher VASH1 and lower VASH2 levels 
compared to untreated animals. The literature shows 
that inhibition of tumor growth occurs in response to 
impairment of angiogenesis by rutin [59, 60]. Rutin 
is a flavonoid from the same class of Q3G, which 
corroborates its antiangiogenic activity. Furthermore 
the literature reported that kaempferol interferes with 
VASH1 expression [36] and that engeletin regulates 

VASH2 [54], which is consistent with the regulation of 
both angiogenic factors by flavonoids.

VASH1 and 2 have opposing activities that are 
linked to their expression sites. Antiangiogenic agents 
inhibit VASH production by blocking and sequestering 
VEGFR, which leads to EC apoptosis and vessel number 
reduction [61]. However, VASH1 expression is induced 
by numerous stimuli [62], including VASH2, and not 
exclusively by VEGFR.

Untreated tumors showed VASH1 mainly close to 
vascular structures in the extracellular matrix, whereas 
VASH2 was found within tumor cells. VASH1 impairs 
EC proliferation, migration, survival, and vascular 
permeability, which leads to angiogenic remodeling by 

Figure 4: Tissue expression of VASHs (A–F) and VASHs-HE merged (G–I) in untreated (A, D, G), beva-treated (B, E, H), or Q3G-
treated CC (C, F, I). VASH1 shows higher expression (C) and VASH2 lower expression (F) in Q3G-treated CC compared to the control 
[Anti-VASH1 and anti-VASH2, 100x]. HE-Merged (G, H, I) images show VASH1 (red- in the front proliferation zone) and VASH2 
(green- in the termination zone) tissue expression in distinct sites in CC. VASH1 was detected in the perivascular matrix, and VASH-2 was 
intracellular. [HE, 40×].
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inhibiting angiogenic sprouting and vessel growth [63]. 
In untreated animals, we found low tissue expression 
of VASH1 and high VASH2. Q3G-treated animals 
showed higher tissue VASH1 expression localized in the 
extracellular matrix close to the EC proliferating zone in 
comparison to the control. In turn, VASH2 was found in 
the cytoplasm of tumor cells and was downregulated in 
comparison to cancer cells from control mice. The VASH1 
was detected in the extracellular matrix (ECM) and EC 
but not in tumor cells. The spatial in ECM is crucial 
to ensure the proper assembly and maturation of new 
vascular structures by angiogenic signals. Consequently, 
the presence of VASH in ECM was expected. Distinct 
from VASH1, VASH2 was also found in the tumor cells. 
It is an exciting characteristic and suggests VASH2 as 
an inhibitor of angiogenic development mediated by 
the tumor cell. There are therapeutic challenges for 
delivering antiangiogenic, including controlling the 
microenvironmental distribution of their levels in tissue 
[64]. The VASH2 as a potential therapeutic strategy 
is less dependent on the ECM and molecular structure. 
It considers the target of the tumor cells, pointing to a 
therapeutic strategy not based on VASH1 and 2 molecular 
structures, but on their different expression sites. 
Although the evidence that human colon adenocarcinoma 
is angiogenesis-dependent, angiogenesis is not the only 
factor determining tumor growth, including genetic 
changes and biochemical pathways that play a crucial 
role. Tumor treatment with agents direct to only one 
target involved in tumor development and progression 
and spreading seems insufficient to induce complete 
tumor regression response and subsequent improvement 
of the disease-free and overall survival. Currently, distinct 
therapies should be maintained to interfere with different 
hallmarks of carcinogenesis, but the association with Q3G 
seems to be promising.

The distinct secondary pharmacology of the 
agents must be considered to understand Q3G activity. 
Angiogenic agents are segregated based on VDA or 
AIA effects and are organized based on their chemical 
structures. Many drugs, even those designed to act 
specifically on a target protein, bind unintended proteins 
and can exhibit off-target activity and thereby display dual 
mechanisms of action or pleiotropism. Most VDAs bind to 
tubulin or destabilize tubulin polymerization. Flavonoids 
such as FAA [33] and vadimezan [34] interfere with 
tubulin; thus, they are grouped as VDAs. We speculate 
that Q3G is a VDA mainly because of its interference 
with VASH expression, similar to kaempferol [36] which 
regulates VASH1 and Engeletin [54] that acts on VASH2.

VASH1 and 2 control tubulin detyrosination and 
thereby control the detyrosination status of polymerized 
microtubules. Tubulin detyrosination is implicated in many 
cell functions, such as cell division, and interferes with 
angiogenesis in vivo [65]. VASH1 increases tubulin levels, 
and VASH2 exerts its activity in microtubules. The tubulin 

carboxypeptidase activity of VASH1 inhibits angiogenesis 
by interfering with endocytosis and trafficking of receptors 
for pro-angiogenic factor. Recently, VASH1 was found 
to mediate tubulin detyrosination, a post-translational 
modification that allows the discrimination of mitotic 
errors that need to be corrected to prevent chromosomal 
instability, and is implicated in tumor evolution and 
metastasis [66, 67]. Additionally, VASH2 has microtubule 
functions and exhibits proangiogenic activity [67]. 
Considering the regulation of VASH1 and 2 and tubulin 
by Q3G, we suggest that Q3G has antiangiogenic activity 
in CC. Although the experimental design of this study 
proves that Q3G changes VASH1 and 2 expressions, and 
the number of vessels is correlated to VASHs expressions, 
the direct effect of VASHs expression under blood vessels 
deserves investigations after some VASH inhibition, like 
silencing or maybe using antibodies against VASHs.

Previous research has recognized the importance of 
the local tumor microenvironment in tumor progression 
and its role during carcinogenesis [14, 68]. VASH2 is 
expressed in CC cells and accelerates tumor angiogenesis 
and progression. Nevertheless, it is not expressed in most 
normal adult tissues [8], which suggests that it would offer 
more tumor-specific favorable outcomes for CC. VASH2 
inhibition may be a useful therapeutic strategy for CC. 
The greater specificity of VASH2 than 1 in tumor cells 
suggests that VASH2 is a suitable target for blocking 
angiogenesis in CC.

In summary, we determined the antitumor activity of 
Q3G in a xenogeneic CC mouse model. Unprecedentedly, 
Q3G interfered with the amount of BVs within tumors 
and regulated tissue VASH1 and 2 expression in CC. 
Although the experimental design of this study proves that 
Q3G changes VASH1 and 2 expressions, and the number 
of vessels is correlated to VASHs expressions, the direct 
effect of VASHs expression under blood vessels deserves 
investigations after some kind of VASH inhibition, like 
silencing or maybe using antibodies against VASHs.

MATERIALS AND METHODS

This study followed the principles outlined in the 
US Public Health Service Policy on Humane Care and Use 
of Laboratory Animals, and Guidelines for the Welfare of 
Animals in Experimental Neoplasia in strict accordance 
with the guidelines of the National Council of Animal 
Experimentation Control (CONCEA) and ARRIVE [69]. 
The Research Ethics Committee approved the protocol 
of Sao Francisco University (USF) under permit number 
001.05.12.

The study involved 15 male Balb-c nude mice (6–8 
weeks old, 20 g of weight) from Charles River Laboratory 
(Wilmington, DE, USA). The study was conducted 
at USF. Animals received water and standard chow ad 
libitum, except for 30 min before the Q3G treatment. The 
mice were maintained in a ventilated light-controlled 
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rack animal housing system with controlled humidity 
and temperature and were exposed to 12 h light-dark 
cycles. We used environmental enrichment techniques 
and animal welfare inspection guide [70] to minimize 
stress and suffering in animals. Clinical signs such as 
piloerection, eyes half shut, slightly decreased motor 
activity and body weight loss were used to monitoring 
the animal welfare.

Xenogeneic CC animal model

Human CC/HT-29 cells (BCRJ code: 0111) were 
characterized by their DNA Profile (Amelogenin: X; 
CSF1PO: 11,12; D13S317: 11,12; D16S539: 11,12; 
D5S818: 11,12; D7S820: 10; THO1: 6,9; TPOX: 8,9; 
vWA: 17,19). These cells express urokinase receptors 
but do not have detectable plasminogen activator 
activity. HT-29 cells were negative for CD4, but there 
was cell-surface expression of galactose ceramide. These 
cells were obtained directly from Banco de Células 
do Rio de Janeiro (BCRJ, Brazil). Cells were thawed 
and propagated in culture following the International 
Guidelines on Good Cell Culture Practice [71]. Briefly, 
the cells were cultured at 37°C in a humidified chamber 
with 5% CO2 using Dulbecco’s modified Eagle medium 
(Sigma Aldrich, Brazil) supplemented with 100 mM 
sodium pyruvate (Gibco), 10% fetal bovine serum 
(Gibco, Thermo Fisher Scientific, Brazil), and 1% 
antibiotic (penicillin and streptomycin, Gibco, Thermo 
Fisher Scientific, Brazil). HT-29 cells were detached 
from the culture plate following incubation with 3 mL 
Trypsin-EDTA 0.25% (Gibco, Thermo Fisher Scientific, 
Brazil) for 3 min for transfer or harvest. The culture 
medium was changed every 24 h. Cell viability was 
evaluated using trypan blue staining. HT-29 cells (4 
× 106) were suspended in 40 μL of normal saline and 
directly seeded into the subcutaneous tissue of the 
back left flank of athymic mice through a percutaneous 
puncture (27-gauge hypodermic needle) using a 1 mL 
syringe [68, 72, 73].

After xeno-transplantation, tumor growth was 
checked daily using metal calipers. The formula “Volume 
= L × S × S/2”, where “S” is the minor diameter measured 
and “L” is the largest diameter measured, was used to 
determine the CC volume [68, 72, 74].

Groups

The animals were randomly by lottery and 
distributed into three groups: untreated (negative control, 
n = 4), Q3G-treated (test, n = 6), or beva-treated (positive 
control, n = 5).

Treatment was initiated when tumor volumes 
reached 100 mm3. Untreated animals received 0,5 
ml of vehicle (saline, 0.9% sodium chloride solution) 
treatment; Q3G-treated animals received 0,5 ml of 

Q3G (Quercetin-3-Beta-D-Glucoside, #17777793; 
Sigma Aldrich Brasil®) by gavage at the maximum 
non-lethal dose (0.017 mg/g body weight) over a week. 
The lethal dose of Q3G was determined as previously 
described by Chinedu et al., 2013 [75]. Beva-treated 
animals received beva (Roche, Brazil®) (25 mg/mL) by 
intraperitoneal injection (0,5 mL) at a single dose of 5 
mg/kg body weight, based on currently recommended 
dosage for initial therapy in metastatic colorectal cancer 
[76]. Seven days after the treatment (Q3G or beva), all 
animals were euthanized by administration of parenteral 
anesthetic drugs.

Histological analyses

The excised CC tissue was fixed in 10% 
formaldehyde solution, embedded in a paraffin block, 
and longitudinally sectioned. The slides of all tumors 
were named without group identification. Every slide was 
analyzed in three fields by three researchers. The data 
assumed the average among them. The slides (4 µm) were 
stained with hematoxylin and eosin (HE). The presence 
of CC, degree of differentiation, and microvascular 
quantification were determined. All identified vascular 
structures throughout the tumor surface were counted 
according to the International Consensus of Evaluation 
of Angiogenesis Quantification in Solid Human Tumors 
[77, 78]. Microvascular quantification was performed 
using computerized image processing software (NIS for 
Windows) [79, 80].

Immunohistochemical analysis

Immunohistochemistry was performed using 
the avidin-biotin-peroxidase technique with an anti-
VASH1 antibody (HPA000653-100UL, Lot A06367; 
Sigma-Aldrich Corporation®, Saint Louis, MO, USA) 
or anti-VASH2 antibody (ab224723, Lot GR3199655-
29) diluted at a 1:100 ratio in phosphate-buffered 
saline with 1% bovine serum albumin (Sigma-Aldrich). 
Positive and negative immunohistochemistry controls 
were used to ensure the quality of the measurements. 
Immunoexpression microphotography and HE merged 
images were prepared to verify VASH1 and 2 tissue sites. 
A specific image analysis program (NIS for Windows) 
that combines the numerical values of the points in the 
color histogram that made up the image allows the user 
to determine the immunostaining by a numerical value in 
each field analyzed. To quantify VASH1 and 2 proteins a 
camera attached to the optical microscope captured the 
selected images in each slide. After capture, the images 
were evaluated by NIS Program. The measurement 
was made in a three field representative of the sample 
[79, 80]. The average obtained after reading separate 
fields on the same slide was considered as the VASHs 
expressions (%).
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Statistical analysis

We performed a pilot study using nine animals (three 
for each group) to establish power and used a significance 
level of 0.90 that determined a minimum sample size of 
12 animals (at least four for each group). The Statistical 
Package for the Social Sciences (SPSS) version 21.0 for 
Windows (IBM Corp., Armonk, NY, USA) was used for 
data analysis following descriptive statistics; measures of 
central tendency; normality test; non-parametric ANOVA 
(Kruskal Wallis) to compare size, BV content, VASH1 and 
2 tissue expression; and Spearman correlation associated 
with the tumor size and BV content. Data were expressed 
as average and standard deviation, and a p less than 5% 
(p < .05) was used to reject the null hypothesis.

Data availability

Materials, data, and protocols should be made 
available upon request and within a reasonable amount 
of time from the corresponding author (depriolli@gmail.
com) upon request.
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