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Letter to the Editor
Rapid SARS-CoV-2 inactivation by
commonly available chemicals on
inanimate surfaces
Sir,

The emergence of severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) has become a global health con-
cern with over 7.5 million confirmed cases (as of June 2020 [1]).
Due to a lack of specific therapies, preventing the spread of
SARS-CoV-2 via droplets, contaminated hands or surfaces is the
primary intervention. Stability of the virus on surfaces for days
demands rigorous hygiene measures [2,3]. The ingredients of
commercially available hand disinfectants revealed virucidal
activity against SARS-CoV-2 in suspension tests [4]. However,
less is known about surface disinfection for SARS-CoV-2 under
realistic surface contamination [5].

To address this gap, we evaluated single components of
disinfectants and household cleaning agents against SARS-CoV-
2 on various surfaces. Seventy percent ethanol (EtOH) and 70%
isopropanol (IPA) are based on World Health Organization for-
mulations I and II for disinfectants (although lower concen-
trations were chosen [1]), 0.1% hydrogen peroxide (H2O2) is
also based on WHO formulations I and II for disinfectants [1]
and is present in more aggressive household cleaning agents,
and 0.1% sodium laureth sulphate (SLS) is a surfactant present
in almost all household cleaning/hygiene agents (e.g. dish-
washing liquid, hand soap and shampoo).

The tested surfaces e stainless steel, plastic [e.g. poly-
ethylene terephthalate (PET)], glass, polyvinyl chloride
(PVC), cardboard and cotton fabric e represent materials
with increased exposure during daily life and especially
during the SARS-CoV-2 pandemic. Plastic (e.g. PET) repre-
sents the worst case for SARS-CoV-2 persistence [3] and, like
glass and PVC, is used for protective (face) shields. During
lockdown, increased use of delivery services was observed.
Thus, exposure to cardboard was increased. Interestingly,
SARS-CoV-2 persistence for up to 24 h was documented for
cardboard [3]. Furthermore, due to the current recom-
mendation/liability to wear mouth/nose masks, many people
have started to use self-made mouth/nose masks made of
cotton fabric.

In this study, surfaces were challenged with SARS-CoV-2,
allowed to dry for 1 h and subsequently treated with 70%
EtOH, 70% IPA, 0.1% H2O2 or 0.1% SLS for 30 s and 60 s. The
treatment was neutralized with cell culture media at a dilution
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showing neither toxicity nor significant interference. For each
sample, the 50% tissue-culture infectious dose per mL (TCID50/
mL) was determined on Vero clone PH-2 with 16 technical
replicates. Additionally, expanded volume testing was per-
formed for final virus inactivation samples (60 s time point) to
estimate titres for samples with low viral loads more accurately
(for details, refer to online supplementary material). The
reduction in viral infectivity for each treatment condition was
calculated as the difference between the titre of the sample
without treatment (0 s treatment) and with 30 s or 60 s treat-
ment. Combinations of surfaces and chemical agent treat-
ments were based on surface compatibility and realistic
estimates of expected cleaning habits. Replicates were derived
from three individual experiments.

SARS-CoV-2 remained viable on all surfaces throughout the
1h dehydration period with �0.5 log10 TCID50/mL titre reduc-
tion (Table A.1, see online supplementary material). The sur-
face stability of SARS-CoV-2 is in alignment with previous
studies [3]. Interestingly, there was no significant loss of
infectivity on cotton fabric, indicating SARS-CoV-2 persistence.

SARS-CoV-2 was highly susceptible to 70% EtOH, 70% IPA,
0.1% H2O2 and 0.1% SLS treatment (Table I). For EtOH and IPA,
complete viral inactivation to the limit of detection was
observed within 30 s of treatment. Although the titre was
greatly reduced, viable SARS-CoV-2 could be detected after
30 s of treatment with H2O2 and SLS. After 60 s, effective SARS-
CoV-2 inactivation with logarithmic reduction of viral infec-
tivity by more than 4.0 log10 was documented for all tested
chemicals. No differences in SARS-CoV-2 inactivation were
found between the different surfaces. Although SARS-CoV-2 is
more stable on stainless steel and plastic [4], it can be inacti-
vated rapidly by all tested chemicals, independent of the
contaminated surface.

This study found that SARS-CoV-2 can be inactivated
effectively by 70% EtOH, 70% IPA, 0.1% H2O2 and 0.1% SLS within
60 s of exposure on various surfaces. Alcohols as well as H2O2

are used for disinfection, including in healthcare settings. This
study showed that detergents present in commonly available
household cleaning agents are also able to inactivate SARS-
CoV-2 rapidly. These data, covering various surface materials
including cotton fabric, may be considered relevant for set-
tings beyond health care to limit the spread of SARS-CoV-2 by
contaminated surfaces. Furthermore, we would like to high-
light that SLS, present in many household cleaning agents and
in commonly available hand soap, is also able to inactivate
SARS-CoV-2 effectively. Thus, hand hygiene using soapmay also
act as a contributing factor to limit the spread of SARS-CoV-2,
potentially reducing the need for the use of disinfectants in
settings with limited availability.
Ltd. All rights reserved.
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Table I

Inactivation of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) by 70% ethanol (EtOH), 70% isopropanol (IPA), 0.1% hydrogen
peroxide (H2O2) and 0.1% sodium lauryl sulphate (SLS) on various surfaces

Reduction of viral infectivity (log10) Time (s) Stainless steel Plastic

(PET)

Glass PVC Cardboard Cotton fabric

70% EtOH 30 �4.1 �4.1 �3.8 �4.0 �3.8 -
60 �5.0 �5.0 �4.7 �4.9 �4.7 -

70% IPA 30 �4.1 �4.1 �3.8 �4.0 �3.8 -
60 �5.0 �5.0 �4.7 �4.9 �4.7 -

0.1% H2O2 30 2.4�0.3 - 2.3�0.4 2.4�0.5 - -
60 �4.8 - �4.5 �4.7 - -

0.1% SLS 30 3.1�0.4 �3.6 �3.3 �3.5 - �3.1
60 �4.9 �4.9 �4.6 �4.8 - �4.4

PET, polyethylene terephthalate; PVC, polyvinyl chloride; -, not measured.
Surfaces were challenged with SARS-CoV-2 and subjected to treatment with various chemical agents for 30 s and 60 s. The experimental approach
was identical for all tested disinfectants, except for neutralization due to varying toxicity and interference of the chemical agents with the cell
culture test system. As a control, surfaces were left untreated (0 s treatment). The table summarizes the results of three independent replicates.
The logarithmic reduction of viral infectivity for each treatment condition was determined by comparing the total SARS-CoV-2 load in the input (0 s
treatment) with that in the final output sample (60 s treatment). If complete virus inactivation was observed, the titre equals the limit of detection,
and the logarithmic reduction of viral infectivity factor is reported as ‘�’. In this case, the largest logarithmic reduction of viral infectivity factor of
all replicates is reported with no standard deviation of the mean. In the case that one or more of the replicates did not show complete virus
inactivation, the mean logarithmic reduction of viral infectivity factor and the standard deviation of the mean is reported. The limit of detection is
determined by the tested sample volume. In the case of 60 s treatment, expanded volume testing was performed to achieve a lower limit of
detection. For details, see the methods section in the online supplementary material.
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