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The diagnosis of cardiomyopathy states may benefit from machine-learning (ML)

based approaches, particularly to distinguish those states with similar phenotypic

characteristics. Three-dimensional myocardial deformation analysis (3D-MDA) has

been validated to provide standardized descriptors of myocardial architecture and

deformation, and may therefore offer appropriate features for the training of ML-based

diagnostic tools. We aimed to assess the feasibility of automated disease diagnosis using

a neural network trained using 3D-MDA to discriminate hypertrophic cardiomyopathy

(HCM) from its mimic states: cardiac amyloidosis (CA), Anderson–Fabry disease (AFD),

and hypertensive cardiomyopathy (HTNcm). 3D-MDA data from 163 patients (mean

age 53.1 ± 14.8 years; 68 females) with left ventricular hypertrophy (LVH) of known

etiology was provided. Source imaging data was from cardiac magnetic resonance

(CMR). Clinical diagnoses were as follows: 85 HCM, 30 HTNcm, 30 AFD, and 18 CA.

A fully-connected-layer feed-forward neural was trained to distinguish HCM vs. other

mimic states. Diagnostic performance was compared to threshold-based assessments

of volumetric and strain-based CMR markers, in addition to baseline clinical patient

characteristics. Threshold-based measures provided modest performance, the greatest

area under the curve (AUC) being 0.70. Global strain parameters exhibited reduced

performance, with AUC under 0.64. A neural network trained exclusively from 3D-MDA

data achieved an AUC of 0.94 (sensitivity 0.92, specificity 0.90) when performing the

same task. This study demonstrates that ML-based diagnosis of cardiomyopathy states

performed exclusively from 3D-MDA is feasible and can distinguish HCM from mimic

disease states. These findings suggest strong potential for computer-assisted diagnosis

in clinical practice.
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INTRODUCTION

The application of machine-learning (ML) techniques for
computer-assisted diagnosis is an anticipated milestone for
cardiac imaging. However, robust approaches to the classification
of cardiomyopathy states requires concurrent consideration of
architectural features as well as regional patterns of deformation.
This set of requirements poses challenges for the development of
ML-assisted diagnosis in cardiovascular diagnostics.

Three-dimensional myocardial deformation analysis
(3D-MDA) is a recently validated (1–9) image post-processing
technique for the transformation of dynamic imaging data into
a standardized, time-resolved 3D model of cardiac phenotype.
Using foundational techniques transferrable across cardiac
magnetic resonance (CMR) (1, 4, 6–8), computed tomography
(CT) (10) and 3D echocardiography (3), this offers a common
approach to convert source images into data required to describe
chamber phenotypes using spatially-resolved measures of wall
thickness and principal strain (PS), the latter an objective
measure of tissue deformation in the direction resulting from
locally-engaged myocardial fibers (1, 9). We hypothesized that
a ML-based model could use this standardized phenotypic data
to classify cardiomyopathy state. As a sentinel demonstration
of this novel paradigm, we chose to assess diagnostic accuracy
of a neural network trained exclusively from 3D-MDA data
(wall architecture and deformation) to distinguish hypertrophic
cardiomyopathy (HCM) from its commonly encountered mimic
states: cardiac amyloidosis (CA), Anderson–Fabry disease
(AFD), and hypertensive cardiomyopathy (HTNcm).

MATERIALS AND METHODS

Study Population
Patients were identified from the Cardiovascular Imaging
Registry of Canada (CIROC), a prospective initiative of the Libin
Cardiovascular Institute at the University of Calgary (Calgary,
Alberta) (NCT04367220). Data management is executed by
commercial software (cardioDITM, Cohesic Inc., Calgary). This
data repository was interrogated to identify patients with a
confirmed etiology of left ventricular hypertrophy (LVH), defined
as an indexed LV mass index ≥2 SD above age and sex-based
reference values (11) and a maximal LV wall thickness ≥13mm
by linear measurement on at least 1 short-axis (SAX) cine
view. Etiology of LVH was established by review of medical
records and all available diagnostic testing. HCM diagnosis
required either genotype confirmation of a pathologic sarcomere
protein mutation, a 1st degree relative with the same, or a
maximal wall thickness ≥15mm, plus typical mid-wall patchy
fibrosis by late gadolinium enhancement (LGE) imaging and
no other identifiable cause. CA diagnosis required a typical
diffuse pattern of LGE with confirmatory testing by either fat
pad biopsy (for light chain amyloidosis) or 99m-technetium-
pyrophosphate scintigraphy imaging (for transthyretin variant
amyloidosis). AFD diagnosis required positive genotype for a
pathologic mutation of the alpha galactosidase encoding gene.
Finally, HTNcm diagnosis required a history of hypertension for

≥10 years, no family history of HCM or AFD, and no LGE-based
features suggestive of an alternate myocardial disease state.

All CMR studies were de-identified and transferred to a study
server for blinded analysis. The study design was approved by
the Conjoint Health Research Ethics Board at the University
of Calgary and all subjects provided written informed consent.
All research activities were performed in accordance with the
Declaration of Helsinki.

MRI Image Acquisition
All CMR studies were performed using 3T scanners (Prisma
or Skyra, Siemens Healthineers, Erlangen, Germany). A
standardized imaging protocol was performed in all patients
inclusive of both cine and LGE imaging. Cine imaging was
performed in sequential SAX and standard long-axis (LAX)
imaging planes at end-expiration using a steady-state free
precession pulse sequence. Typical imaging parameters were:
repetition time 3.1ms, 6 lines per segment, echo time 1.3ms,
flip angle 45◦, field of view 276 × 360 mm2, matrix 156 × 192,
slice thickness 6mm, gap 2mm, parallel imaging factor of 2,
reconstructed to 30 cardiac phases. LGE imaging was performed
7-10min following intravenous administration of 0.1 mmol/kg
gadolinium chelate (Gadovist, Bayer Inc., Canada) in matched
slice orientations using a standard inversion-recovery gradient
pulse sequence with phase sensitive image reconstruction (12).

Conventional Volumetric Chamber Analysis
All analyses were performed by trained core laboratory personnel
blinded to clinical data. Each type of image analysis was
performed independently and in random order. LV volumes
and mass were calculated using commercially available software
(cvi42, Circle Cardiovascular Inc., Calgary, Canada) from
sequential SAX cine images using semi-automated tracing of the
endocardial and epicardial contours to derive LV end-diastolic
volume (LVEDV), LV end-systolic volume (LVESV), LV ejection
fraction (LVEF), and mass. Papillary muscles were considered
part of the LV mass. Chamber volumes and mass were indexed
to body surface area (BSA) according to the Mostellar formula.

3D Myocardial Deformation Analysis
3D-MDA of the LV was performed using validated in-house
software, leveraging previously established technologies for
image registration, temporal tracking, mesh generation, and
computation of deformation (1–4, 6, 13, 14). Briefly, a 4D
displacement field is generated using optical-flow-based feature
tracking (7, 8) of all pixels from co-registered multi-planar
2D cines (1, 4, 6, 7), automatically adjusting for breath-hold
motion (15). This field is used to deform an end-diastolic 3D
mesh model of the LV (1, 3, 4, 6), defined by ∼500 nodal
elements present on each of the endocardial and epicardial
layers. This results in a cross-subject (and cross-modality)
anatomically coherent model throughout 30 phases of the
cardiac cycle (Figure 1) (1, 4, 6). Using this standardized
dynamic mesh, peak-systolic strain amplitude, time to peak-
systolic strain, maximum systolic and diastolic strain rates,
and end-diastolic thickness are estimated from pre-defined
hexahedral structured mesh elements (16, 17). For this study,
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FIGURE 1 | Illustration of 3D-MDA workflow. Top left: Endocardial and epicardial contour tracing performed at end-diastole on long-axis cine images with automated

registration to short-axis images and 3D mesh generation. Bottom left: A 4D displacement field is generated (1, 4, 6–8, 15), and used to deform the end-diastolic

phase 3D LV mesh (1, 3, 4, 6) throughout the cardiac cycle (1, 4, 6). Right: From this dynamic mesh model strain, conventional and principal strain quantification is

performed (16, 17). In the example, principal strain amplitude and direction lines are shown for a patient with confirmed hypertrophic cardiomyopathy (HCM).

corresponding analyses were expressed as (i) global mean values
and (ii) segmental mean values according to the American Heart
Association (AHA) standard (18). All variables were calculated
for conventional (longitudinal, circumferential, and radial) and
principal directions (minimum and maximum) of deformation,
with regional wall thickness calculated in the radial direction
(1, 2, 9). Data were reported for subendocardial, subepicardial,
and transmural layers, as appropriate.

Figure 2 provides atlas-based representations of 3D-MDA
features that were used to predict disease etiology, simultaneously
presenting architectural and deformation-based features used
in the classifier. Atlases have been rendered at peak-systole
frame with color-coding of peak strain amplitude (minimum
principal strain) along directional lines of deformation. The
latter aims to provide a visual representation of the intrinsic
(local) direction of dominant tissue deformation as described
by minimum principal strain (1), this being a resulting effect
of myofibril engagement between the endocardial and epicardial
layers (9).

Regional-Pattern-Based Classifier
A feed-forward neural network model was used as classifier.
We aimed to capture composite features indicative of HCM
phenotype vs. any other disease phenocopy state (CA, AFD or

HTNcm) using 3D-MDA data. Our goal was a ML-based model
that could use 917 segmental architectural and deformation-
based features. These features were provided as AHA
segmental, layer-specific (i.e., subepicardial, subendocardial,
and transmural) systolic amplitude, time to systolic peak, peak-
systolic rate, peak-diastolic strain rate, and wall thickness. Each
AHA segmental feature was obtained by averaging values across
all nodes within the corresponding AHA segment. To develop
the ML-based model we used a neural network taking all 917
features as inputs. Two fully-connected hidden layers (30 and 5
neurons, respectively, each using a hyperbolic tangent sigmoid
transformation) were used. A final read-out single-perceptron
layer, followed by a log-sigmoid activation function, provided a
real-valued output between zero and one to predict the presence
of HCM (assigned to HCM when >0.5).

The choice of architecture (i.e., number of neurons in each
layer, and number of hidden layers) was based on using, for
each layer, the square root of the number of features from the
previous layer, in order to establish a proof of concept model.
Following this criterion to increasingly reduce the number of
features throughout the network, only two hidden layers were
deemed necessary. Our learner used a cross-entropy loss function
as a reference point for the backward pass, and trained for
100 epochs.
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FIGURE 2 | Average minimum principal strain and direction average atlases for patients with hypertrophic cardiomyopathy (HCM: N = 85), cardiac amyloidosis

(CA: N = 18), Anderson–Fabry Disease (AFD: N = 30), and Hypertensive cardiomyopathy (HTNcm: N = 30) (9).

The full pipeline from contouring to meshing, tracking,
strain analysis, and neural network building can be replicated
following the previously described 3D-MDA methodology (1),
and building a fully-connected network according to the above
specified hyperparameters for size of the layers, network depth,
and used activation functions. Image acquisition parameters are
provided within the “MRI Image acquisition” section.

While preferable to use one set of instances for training
and a holdout subset to estimate the accuracy of the learned
model, given our small sample size, we estimated diagnostic
performance using a 5-fold cross-validation procedure (19).
This involved using 4/5-ths of the patients to develop a
model whose performance was evaluated on the remaining
1/5-th of patients, which were not previously seen by the
training process. This procedure was repeated five times,
rotating the 4/5-th training portion and 1/5-th testing portion.
It is worth noting that, on each fold, feature selection and
parameter estimation (training) were performed from scratch
on the first 4/5-ths, thus relegating the last 1/5-th to an
external holdout at each iteration, and reducing the chance
of overfitting.

Performance was evaluated as area under the curve (AUC)
of the receiver operating characteristic (ROC) curve as well
as respective measures of sensitivity, specificity, positive and
negative predictive values, and accuracy. These values were
reported as mean with standard deviation range derived from the
5-fold cross-validation procedure (19). Training and validation
procedures were implemented viaMatlab Statistics and Machine
Learning Toolbox (R2019b, The Mathworks, Inc., Natick,
MA, USA).

Statistical Analysis
Categorical variables were presented as counts with percentages,
while continuous variables were expressed as mean with standard
deviation. Categorical variables were compared using the Fisher’s
exact test, and comparisons for continuous data were performed
with the 2-sample t-test or Mann-Whitney U test, where
appropriate. A two-sided p-value of <0.05 was considered
statistically significant. Multiple comparisons between patients
stratified by phenocopy disease state were performed by ANOVA.
All statistical analysis was performed using the Matlab Statistics
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TABLE 1 | Clinical characteristics of all patients with left ventricular hypertrophy (LVH), patients with LVH and confirmed etiology of hypertrophic cardiomyopathy

(LVH+ HCM+) and patients with LVH and a mimicking cardiomyopathy state (LVH+ HCM–).

LVH+HCM+ LVH+HCM–

All patients HCM All LVH+HCM– CA AFD HTNcm

Parameter (N = 163) (N = 85) (N = 78) (N = 18) (N = 30) (N = 30) p-Value AUC (95% CI)

Clinical characteristics

Age, years 52.7 ± 14.7 50.0 ± 11.3 55.7 ± 17.4** 66.8 ± 16.4**** 45.1 ± 16.2 59.6 ± 13.1*** <0.0001 0.63 (0.59 –0.67)

Female, n (%) 67 (41) 37 (47) 30 (35) 4 (22) 19 (63)** 14 (47) – –

BSA (m2) 2.0 ± 0.3 2.1 ± 0.3 2.0 ± 0.3** 2.0 ± 0.3 1.9 ± 0.2*** 2.0 ± 0.3 <0.005 0.63 (0.53–0.74)

Hypertension, n (%) 67 (41) 36 (46) 31 (36) 5 (29) 3 (12)* 28 (93) – –

Hyperlipidemia, n (%) 25 (15) 14 (18) 11 (13) 2 (12) 2 (8) 10 (33) – –

Diabetes, n (%) 19 (12) 9 (12) 10 (12) 1 (6) 2 (7) 6 (20) – –

Smoking, n (%) 62 (38) 27 (35) 35 (41) 6 (33) 16 (53) 5 (17)* – –

ECG parameters

LBBB, n (%) 11 (7) 4 (5) 7 (8) 2 (11) 0 (0) 2 (7) – –

QRS duration (ms) 99.3 ± 17.4 98.3 ± 16.6 100.9 ± 18.7 102.4 ± 24.3 105.1 ± 15.1 96.2 ± 14.2 – –

NYHA functional class

Class I, n (%) 47 (29) 25 (32) 22 (26) 8 (44) 7 (23) 10 (33) – –

Class II, n (%) 26 (16) 13 (17) 13 (15) 4 (22) 5 (17) 4 (13) – –

Class III, n (%) 18 (11) 8 (10) 10 (12) 3 (17) 0 (0) 5 (17) – –

Class IV, n (%) 3 (2) 2 (3) 1 (1) 0 (0) 1 (3) 1 (3) – –

Medications

ACE inhibitors or ARB, n

(%)

52 (32) 31 (40) 21 (25)* 7 (39) 7 (23) 17 (57)** – 0.56 (0.45–0.67)

Amiodarone, n (%) 4 (2) 2 (3) 2 (2) 1 (6) 1 (3) 0 (0) – –

Beta-blocker, n (%) 71 (44) 26 (33) 45 (53)* 3 (17)** 6 (20)** 17 (57) – 0.60 (0.53–0.67)

Digoxin, n (%) 1 (1) 1 (1) 0 (0) 0 (0) 0 (0) 1 (3) –

Diuretic, n (%) 39 (24) 25 (32) 14 (16)* 11 (61)*** 4 (13) 10 (33) – 0.58 (0.55–0.61)

Statin, n (%) 51 (31) 23 (29) 28 (33) 5 (28) 4 (13) 14 (47) – –

AFD, Anderson–Fabry disease; BSA, body surface area; ECG, electrocardiogram; CA, cardiac amyloidosis; HCM, hypertrophic cardiomyopathy; HTNcm, hypertensive hypertrophy;

LVH, left-ventricular hypertrophy; LBBB, left bundle branch block; NYHA, New York Heart Association.

Vs. HCM:

* <0.05.

** <0.01.

*** <0.001.

**** <0.0001.

Bold values are used for specific headers or p-Values lower than 0.05 (i.e. statistical significance).

and Machine Learning Toolbox (R2019b, The Mathworks, Inc.,
Natick, MA, USA).

RESULTS

Study Population
A total of 163 patients with LVH of known etiology were studied
(85 HCM, 30 AFD, 30 HTNcm, 18 CA). Patient characteristics
are provided in Table 1. The mean age was 52.7 ± 14.7 years,
with 67 females (41%). No significant differences in baseline
clinical characteristics were observed between HCM and non-
HCM patients, with the exception of age and BSA. However,
neither of these two variables provided significant predictive
value for the classification of HCM (AUC = 0.63 for each).
The following count was found for the HCM sub-phenotypes:
(i) isolated basal-septal: 57 (67%), (ii) reverse septal curvature:
12 (14%), (iii) apical: 11 (13%), and (iv) other sub-phenotypes:
5 (6%).

Disease Classification Using Conventional
Volumetric Cine Imaging Markers
Of all conventionally reported CMR characteristics (Table 2),
significant differences between HCM and non-HCM etiology
were identified for LVEDVI (81.0 ± 15.1 mL/m2 vs. 75.5 ± 20.4
mL/m2, respectively— p < 0.01), LVEF (70.0 ± 7.5% vs. 65.4
± 10.7%, respectively— p < 0.05), LVMI (84.2 ± 26.3 g/m2

vs. 75.9 ± 21.8 g/m2, respectively— p < 0.05), RVESVI (28.1
± 8.8 mL/m2 vs. 35.6 ± 17.4 mL/m2, respectively— p < 0.01),
RVEF (62.8± 7.5± vs. 57.7%± 9.7%, respectively— p < 0.001),
and LAEDVI (103.7 ± 38.5 mL/m2 vs. 78.0 ± 26.3 mL/m2,
respectively —p < 0.0001). The highest AUC achieved of all such
variables was for LAEDVI, reaching 0.70 (0.54— 0.90).

Disease Classification Using Global Strain
Amplitude and Time to Peak Systolic Strain
To establish a baseline, we studied the capacity of conventional
strain-based measures to classify disease. Global peak-systolic
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TABLE 2 | CMR-based volumetric measurements of all patients with left ventricular hypertrophy (LVH), patients with LVH and confirmed etiology of hypertrophic

cardiomyopathy (LVH+ HCM+) and patients with LVH and a mimicking cardiomyopathy state (LVH+ HCM–).

LVH+ HCM+ LVH+HCM–

All patients HCM All LVH+HCM– CA AFD HTNcm

Parameter (N = 163) (N = 85) (N = 78) (N = 18) (N = 30) (N = 30) p-Value AUC (95% CI)

LVEDVI (mL/m2 ) 78.4 ± 18.0 81.0 ± 15.1 75.5 ± 20.4** 80.8 ± 29.6 75.0 ± 15.3 72.9 ± 18.3* 0.1 0.65 (0.51–0.80)

LVESVI (mL/m2 ) 25.7 ± 12.2 24.6 ± 8.4 27.0 ± 15.3 37.0 ± 25.3* 25.1 ± 8.4 22.9 ± 9.5 0.1 –

LVEF (%) 67.8 ± 9.4 70.0 ± 7.5 65.4 ± 10.7* 56.4 ± 15.6*** 66.8 ± 6.5 69.3 ± 7.4 0.001 0.60 (0.50–0.70)

LVMI (g/m2) 80.2 ± 24.6 84.2 ± 26.3 75.9 ± 21.8* 84.2 ± 28.3 65.4 ± 17.3*** 81.5 ± 17.6 <0.005 0.60 (0.49–0.70)

RVEDVI (mL/m2) 78.5 ± 20.7 75.1 ± 15.7 82.2 ± 24.6 91.4 ± 32.5** 79.8 ± 19.8 78.9 ± 22.9 0.3 –

RVESVI (mL/m2 ) 31.7 ± 14.1 28.1 ± 8.8 35.6 ± 17.4** 46.4 ± 25.7*** 31.9 ± 12.1 32.9 ± 13.1 0.005 0.62 (0.49–0.70)

RVEF (%) 60.4 ± 9.0 62.8 ± 7.5 57.7 ± 9.7*** 51.1 ± 11.5**** 60.8 ± 8.0 58.7 ± 8.3* <0.0001 0.68 (0.54–0.80)

LAEDVI (mL/m2 ) 91.5 ± 35.6 103.7 ± 38.5 78.0 ± 26.3**** 89.4 ± 27.6 66.5 ± 20.4**** 83.0 ± 27.2** <0.0001 0.70 (0.54–0.90)

AFD, Anderson-Fabry Disease; CA, cardiac amyloidosis; HCM, hypertrophic cardiomyopathy; HTNcm, hypertensive hypertrophy; LAEDVI, left-atrial end-diastolic volume; LVEDVI,

left-ventricular end-diastolic volume index; LVEF, left-ventricular ejection fraction; LVH, left-ventricular hypertrophy; LVMI, left-ventricular mass index; LVESVI; left-ventricular end-systolic

volume index; RVEDVI, right-ventricular end-diastolic volume index; RVEF, right-ventricular ejection fraction; RVESVI, right-ventricular end-systolic volume index.

Vs. HCM:

* <0.05.

** <0.01.

*** <0.001.

**** <0.0001.

Bold values are used for specific headers or p-Values lower than 0.05 (i.e. statistical significance).

TABLE 3 | Global peak systolic strain amplitude and end-diastolic wall thickness of all patients with left ventricular hypertrophy (LVH), patients with LVH and confirmed

etiology of hypertrophic cardiomyopathy (LVH+HCM+) and patients with LVH and a mimicking cardiomyopathy state (LVH+ HCM–).

LVH+HCM+ LVH+HCM–

All patients HCM All LVH+HCM– CA AFD HTNcm

Global parameter (N = 163) (N = 85) (N = 78) (N = 18) (N = 30) (N = 30) p-Value AUC (95% CI)

Circumferential

Subendocardium (%) −17.1 ± 3.9 −17.8 ± 3.7 −16.3 ± 4.0* −14.2 ± 5.9*** −16.5 ± 2.6 −17.2 ± 3.5 <0.001 0.62 (0.54–0.71)

Subepicardium (%) −6.8 ± 1.9 −6.9 ± 1.9 −6.8 ± 2.0 −6.0 ± 2.2 −7.1 ± 1.9 −6.9 ± 1.9 0.29 –

Transmural (%) −11.2 ± 2.7 11.5 ± 2.6 −11.0 ± 2.7 −9.5 ± 3.7** −11.4 ± 2.0 −11.5 ± 2.5 <0.05 –

Longitudinal

Subendocardium (%) −15.0 ± 3.8 −15.2 ± 3.9 −14.7 ± 3.7 −12.6 ± 5.1* −15.3 ± 2.0 −15.3 ± 3.8 0.06 –

Subepicardium (%) −6.6 ± 2.4 −6.5 ± 2.3 −6.7 ± 2.4 −5.7 ± 2.3 −7.3 ± 2.6 −6.6 ± 2.1 0.1 –

Transmural (%) −10.3 ± 2.7 −10.4 ± 2.8 −10.2 ± 2.7 −8.6 ± 3.3* −11.0 ± 1.7 −10.4 ± 2.7 <0.05 –

Global longitudinal

shortening (%)

−13.0 ± 4.2 −12.7 ± 4.2 −13.4 ± 4.2 −10.5 ± 5.0* −14.9 ± 2.8* −13.6 ± 4.0 <0.005 –

Radial

Transmural (%) 40.6 ± 19.6 37.4 ± 18.0 44.0 ± 20.9* 29.5 ± 19.1 49.8 ± 17.1** 46.8 ± 21.8* <0.0005 0.60 (0.49–0.71)

Minimum principal

Subendocardium (%) −26.8 ± 4.7 −27.8 ± 4.2 −25.7 ± 5.1** −22.2 ± 7.2**** −27.0 ± 3.0 −26.4 ± 4.3 0.0001 0.64 (0.52–0.76)

Subepicardium (%) −18.5 ± 3.5 −18.6 ± 3.1 −18.3 ± 3.9 −14.7 ± 4.6**** −20.3 ± 2.6** −18.5 ± 3.0 0.0001 –

Transmural (%) −22.8 ± 4.1 −23.4 ± 3.6 −22.2 ± 4.6 −18.5 ± 6.2**** −24.0 ± 2.7 −22.6 ± 3.8 <0.0001 –

Maximum transmural

Transmural (%) 64.7 ± 24.5 63.2 ± 21.5 66.3 ± 27.6 46.1 ± 26.2** 77.0 ± 21.6** 67.8 ± 27.8 <0.0005 –

Thickness (mm) 10.3 ± 2.5 11.3 ± 2.3 9.1 ± 2.1**** 10.7 ± 2.7 8.1 ± 1.9**** 9.3 ± 1.2**** <0.0001 0.75 (0.71–0.80)

AFD, Anderson-Fabry Disease; CA, cardiac amyloidosis; CI, confidence interval; HCM, hypertrophic cardiomyopathy; HTNcm, hypertensive hypertrophy; LVH, left-

ventricular hypertrophy.

Vs. HCM:

* <0.05.

** <0.01.

*** <0.001.

**** <0.0001.

Bold values are used for specific headers or p-Values lower than 0.05 (i.e. statistical significance).
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TABLE 4 | Global time to peak systolic strain (% of the cardiac cycle length) of all patients with left ventricular hypertrophy (LVH), patients with LVH and confirmed etiology

of hypertrophic cardiomyopathy (LVH+HCM+) and patients with LVH and a mimicking cardiomyopathy state (LVH+HCM–).

LVH+HCM+ LVH+HCM–

All patients HCM All LVH+HCM– CA AFD HTNcm

Global parameter (N = 163) (N = 85) (N = 78) (N = 18) (N = 30) (N = 30) p-Value AUC (95% CI)

Circumferential

Subendocardium (%) 42.3 ± 5.6 41.4 ± 5.1 43.2 ± 5.9* 41.4 ± 6.5 42.4 ± 4.8 45.2 ± 6.1** <0.05 0.59 (0.50–0.68)

Subepicardium (%) 40.2 ± 5.6 39.5 ± 5.2 40.9 ± 5.9 39.4 ± 6.1 40.1 ± 5.1 42.6 ± 6.4** 0.1 –

Transmural (%) 41.6 ± 5.4 40.6 ± 5.0 42.7 ± 5.6** 41.2 ± 5.8 41.6 ± 4.6 44.7 ± 6.1*** <0.01 0.62 (0.53–0.72)

Longitudinal

Subendocardium (%) 42.6 ± 5.1 42.5 ± 5.2 42.8 ± 5.1 42.4 ± 7.2 42.0 ± 4.5 43.8 ± 4.2 0.5 –

Subepicardium (%) 41.4 ± 5.4 41.3 ± 5.6 41.6 ± 5.2 40.3 ± 6.6 41.4 ± 4.6 42.7 ± 4.9 0.5 –

Transmural (%) 42.2 ± 5.1 42.0 ± 5.3 42.5 ± 5.0 42.0 ± 6.0 41.8 ± 4.4 43.5 ± 4.8 0.6 –

Radial

Transmural (%) 43.6 ± 5.6 43.5 ± 5.3 43.7 ± 6.0 43.0 ± 8.1 42.1 ± 4.6 45.7 ± 5.5 0.1 –

Minimum principal

Subendocardium (%) 41.4 ± 4.8 41.7 ± 4.6 41.1 ± 4.9 39.9 ± 5.7 40.7 ± 4.2 42.3 ± 5.1 0.3 –

Subepicardium (%) 41.0 ± 4.8 41.4 ± 5.0 40.6 ± 4.5 39.4 ± 6.8 40.6 ± 3.7 41.4 ± 3.5 0.4 –

Transmural (%) 41.1 ± 4.7 41.5 ± 4.7 40.6 ± 4.6 39.4 ± 6.1 40.5 ± 4.0 41.3 ± 4.2 0.4 –

Maximum transmural

Transmural (%) 43.3 ± 5.0 43.1 ± 4.9 43.6 ± 5.2 43.2 ± 6.8 42.4 ± 4.3 45.0 ± 4.8* 0.1 –

AFD, Anderson–Fabry disease; CA, cardiac amyloidosis; CI, confidence Interval; HCM, hypertrophic cardiomyopathy; HTNcm, hypertensive hypertrophy; LVH, left-

ventricular hypertrophy.

Vs. HCM:

* <0.05.

** <0.01.

*** <0.001.

**** <0.0001.

Bold values are used for specific headers or p-Values lower than 0.05 (i.e. statistical significance).

strain amplitude values of the study population are presented
in Table 3. Of conventional, axis-dependent measures of
strain, global circumferential strain amplitude measured at
the subendocardial layer provided the highest AUC for the
classification of HCM vs. non-HCM etiology with an AUC of
0.62 (0.54—0.71). Global minimum principal strain measured at
the subendocardial layer showed similar performance with an
AUC of 0.64 (0.52—0.76), whereas transmurally the AUC was
documented at 0.60 (0.49—0.71) in the radial direction.

Time to peak-systolic strain amplitude data (indexed by
duration of the cardiac cycle) is reported in Table 4. In the
circumferential direction, HCM and non-HCM etiology were
significantly different in strain timing, both when measured
subendocardially (41.4 ± 5.1% vs. 43.2 ± 5.9%, respectively—
p < 0.05) and transmurally (40.6 ± 5.0 ± 42.7 ± 5.6,
respectively— p < 0.01). The latter achieved the highest timing-
related AUC of 0.62 (0.53—0.72).

Disease Classification Using Regional Wall
Thickness
The sole use of architectural features to classify disease was
explored, this considering segmental end-diastolic mean wall
thickness derived from each 3D-MDA mesh-based model. This
led to an AUC of 0.75 (0.71–0.80) for the discrimination of HCM
vs. non-HCM etiology (Table 3).

Neural-Net-Based Disease Classification
Using 3D-MDA-Derived Data
Finally, neural network-based classification performance of
3D-MDA data was assessed using all available architectural
and deformation features, inclusive of regional measures of
wall thickness, strain amplitude and time to peak-systolic
strain. A neural network-based model, developed from all
AHA segmental architectural and deformation-based features,
demonstrated diagnostic performance with a mean AUC (ROC)
of 0.94 (0.89–0.99) for the classification of HCM etiology, as
shown in Figure 3. Mean sensitivity and specificity for HCM
etiology was 0.92 (0.85–0.98) and 0.90 (0.83–0.97), respectively,
with the mean accuracy being 0.91 (0.87–0.95). Mean positive
and negative predictive values were 0.91 (0.85–0.97) and 0.91
(0.85−0.98), respectively.

DISCUSSION

This study demonstrates capacity for ML-based methodologies
to execute disease classification tasks, when provided a highly
standardized set of myocardial architectural and deformation
features, in this case through 3D-MDA of routine non-contrast
cine CMR.

To our knowledge, this is the first study in the literature
demonstrating feasibility of neural networks to classify the
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FIGURE 3 | Receiver operating characteristic (ROC) curves for the classification of patients with left ventricular hypertrophy (LVH) due to hypertrophic cardiomyopathy

(LVH+HCM+) obtained during the 5-fold cross validation. The heavy black line indicates the median ROC curve.

diagnosis of a hypertrophic cardiomyopathy state using 3D
measures of myocardial architecture and deformation. Our
neural network was trained using over 900 phenotypic features
that were generated by 3D-MDA, this providing intrinsic
temporo-spatial data registration across individual subjects.
Using this structured data, we were able to deliver good
performance using a two-layer neural network, achieving high
discriminatory performance (AUC 0.94) for classifying HCM
from its mimic cardiomyopathy states.

A single prior study has evaluated ML-based classification
of HCM using 2D-based measures of deformation, these
derived from speckle-tracking echocardiography (5). In
this study, reported by Narula et al. (5), a classifier was
trained to differentiate HCM from the presumptive diagnosis
of athletic heart, achieving an AUC of 0.795. In contrast
to this study, ours examined 3D features of architecture
and deformation among clinically confirmed pathologic
causes of hypertrophy. Furthermore, we compared model
performance to the performance based on other clinically
available markers, inclusive of clinical referral data, non-
strain based volumetric CMR data, global strain-based
markers, and 3D-MDA based measures modeled without

ML techniques. We observed modest performance for
conventional global strain-based measures to differentiate
HCM from common phenocopy states. This finding is similar
to a prior report by Neisius et al. (20), who attempted to
distinguish HCM from HTNcm subjects and identified similar
performance. By contrast, we demonstrated substantial gains
in diagnostic accuracy for ML-based algorithms trained
from 3D-MDA.

Dawes et al. (21) has previously described disease classification
from 3D modeled descriptors of deformation for the right
ventricle (RV). In this study, they elegantly demonstrated an
atlas-based approach to perform RV segmentation from SAX
cine images followed by modeling of chamber deformation (21).
This allowed for construction of a dynamic 3D mesh model to
derive RV deformation features in conventional axis-dependent
directions of deformation. Following principal component
analysis for feature reduction, this framing a regression-based
approach, they trained models to identify patients at elevated
risk of clinical outcomes, demonstrating superior performance
to conventional CMR-based markers. This study highlighted
a potential role for 3D myocardial deformation analyses to
provide relevant information for ML-based tool development.
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The same research group reinforced this concept in predicting
survival among a cohort of 302 patients with pulmonary
hypertension (22).

While deformation is considered central to the diagnosis
of cardiomyopathies, Swift et al. (23) explored an alternative
approach to perform feature extraction directly from static
(single phase) 2D cine CMR images. In this work a tensor-based
machine-learned model was developed to evaluate pixel-based
features from SAX and 4-chamber images, demonstrating the
ability to classify presence vs. absence of pulmonary hypertension
with good accuracy. However, this model did not perform
significantly better than conventional CMR-based markers. How
such methods will facilitate the differentiation of similar diseases
remains uncertain at this time.

Our observation that regional deformation features provide
incremental value to global architectural and global functional
features in classifying disease etiology is consistent with emerging
evidence that suchmeasures are intimately coupled to underlying
tissue characteristics (24). Strain-based markers have shown
strong regional correlation with underlying markers of fibrosis
(i.e., interstitial expansion) among patients with HCM (2, 25–28)
and CA (13, 29), as well as in non-hypertrophic states such as
ischemic (30–32) and dilated cardiomyopathy (33). Accordingly,
capacity exists for regionally encoded markers of deformation to
provide unique insights into underlying myocardial tissue health,
and in-turn provide relevant information for the classification of
disease etiology.

The use of routine strain-based markers to assist in the
discrimination of hypertrophic disease states has been explored
using both echocardiography (34–36), and CMR-based (37)
techniques. Williams et al. demonstrated that 2D strain analysis
of cine CMR data shows greater relative preservation of apical
global longitudinal strain in CA vs. HCM and AFD (37), and
this pattern of apical sparing has similarly been described across
echocardiography-based studies (38–40). Reduction in global
longitudinal strain have also been shown in biopsy proven
HCM relative to hypertensive hypertrophy (36). While these
studies have aimed to deliver simple and practical “rules of
thumb” for identifying patients at greater likelihood of a specific
disease, incremental value is inherently provided through ML-
based modeling of raw deformation data, allowing for non-linear
relationships to be identified across a larger number of features.

Study Limitations
Our study has several limitations. Our training cohort was
modest in size and based on single-center data. As a consequence,
we decided to contain model complexity by constructing it with
only fully-connected hidden layers. Accordingly, our model may
benefit from training dataset expansion and requires external
validation in a multi-center clinical setting. Our evaluation
was based on 5-fold cross-validation, as a separate hold-out
validation cohort was not available. To address this, for each
of the 5 cross-validations, training was restricted to the first
4/5-ths of the population followed by external validation on
a 1/5-th hold-out population, this being an effective strategy
to reduce the chance of overfitting. However, generalizability
of our model to other patient populations (i.e., from other

centers) has not been assessed. We chose to describe each
patient using only segmentally-coded data from 3D-MDA in
our neural network, despite having access to features derived
for each hexahedral element of the mesh model. This decision
was based on the size of our available population and practical
application of the AHA segmental model as a feature reduction
strategy. Consistent with clinical practice, we did not mandate
genotype positivity for establishing a clinical diagnosis of HCM,
rather also accepted phenotype positive patients if they had
a first-degree family member with positive genotype or had
a typical LGE-based pattern of fibrosis with no alternative
explanatory disease. While potentially excluding mild HCM
phenotypes without genotypic or LGE criteria, we aimed to
maximize robustness of diagnostic classification for all LVH
etiologies. The size of our neural-network was small and we
used a simple fully-connected architecture to drastically reduce
the number of features from each layer to the next one.
This approach was taken to address the modest size of the
available population and limit the number of parameters to be
trained within the network. With exposure to larger populations,
deeper networks with less aggressive feature reduction between
layers are possibly applicable, and this is a priority for future
studies. However, despite such limitations, strong discriminatory
performance was achieved to distinguish HCM from non-
HCM disease states in this study. We acknowledge that a
significant difference in age and sex was observed between the
respective disease cohorts, and that the influence of this on
biomechanical disease profiles remains unknown. How training
cohort demographics influence generalizability of ML-based
diagnostic tools is critically important to be address in future
studies. Finally, in anticipation of reductions in image quality, we
a-priori excluded patients in atrial fibrillation. Accordingly, we
cannot confirm performance of the described ML-based model
for patients not in sinus rhythm.

Conclusions
We have demonstrated feasibility and acceptable performance
of a neural network-based approach for the automated
discrimination of HCM vs. its known phenocopy states. This
unique approach, leveraging standardized phenotypic data from
3D-MDA, offers expanded potential for ML-assisted diagnostics
and justifies broader investigation for other disease phenotypes.
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