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Abstract

Background

Alzheimer’s disease (AD) is the most common form of dementia in older adults that dam-

ages the brain and results in impaired memory, thinking and behaviour. The identification of

differentially expressed genes and related pathways among affected brain regions can pro-

vide more information on the mechanisms of AD. In the past decade, several studies have

reported many genes that are associated with AD. This wealth of information has become

difficult to follow and interpret as most of the results are conflicting. In that case, it is worth

doing an integrated study of multiple datasets that helps to increase the total number of

samples and the statistical power in detecting biomarkers. In this study, we present an inte-

grated analysis of five different brain region datasets and introduce new genes that warrant

further investigation.

Methods

The aim of our study is to apply a novel combinatorial optimisation based meta-analysis

approach to identify differentially expressed genes that are associated to AD across brain

regions. In this study, microarray gene expression data from 161 samples (74 non-

demented controls, 87 AD) from the Entorhinal Cortex (EC), Hippocampus (HIP), Middle

temporal gyrus (MTG), Posterior cingulate cortex (PC), Superior frontal gyrus (SFG) and

visual cortex (VCX) brain regions were integrated and analysed using our method. The

results are then compared to two popular meta-analysis methods, RankProd and Gene-

Meta, and to what can be obtained by analysing the individual datasets.

Results

We find genes related with AD that are consistent with existing studies, and new candidate

genes not previously related with AD. Our study confirms the up-regualtion of INFAR2 and
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PTMA along with the down regulation ofGPHN, RAB2A, PSMD14 and FGF. Novel genes
PSMB2, WNK1, RPL15, SEMA4C, RWDD2A and LARGE are found to be differentially

expressed across all brain regions. Further investigation on these genes may provide new

insights into the development of AD. In addition, we identified the presence of 23 non-coding

features, including four miRNA precursors (miR-7, miR570, miR-1229 and miR-6821), dys-

regulated across the brain regions. Furthermore, we compared our results with two popular

meta-analysis methods RankProd and GeneMeta to validate our findings and performed a

sensitivity analysis by removing one dataset at a time to assess the robustness of our

results. These new findings may provide new insights into the disease mechanisms and

thus make a significant contribution in the near future towards understanding, prevention

and cure of AD.

Introduction
AD is a progressive and degenerative neurologic disorder characterised by the loss of mental
ability. AD is the most common cause of dementia in older adults with loss of cognitive func-
tions and memory. AD kills the nerve cells and makes changes in neurons and neurotransmit-
ters that affect the communication between neurons and leads to brain function loss. The most
common clinical features of AD are: the aggregation of β-amyloid into plaques, the presence of
hyperphosphorylated Tau protein in self-assembled tangles and filaments, and the loss of con-
nections between nerve cells in the brain that leads to brain atrophy [1]. Even though the pro-
cess and development of AD is still unknown, it is likely that deterioration of the brain starts
well before the problems become evident. The common symptoms of AD are difficulties in
remembering recent events, thinking and reasoning, speaking and writing, making judgement
and decisions, planning and performing familiar tasks and changes in personality and behav-
iour [2]. With the progression of AD, most parts of the brain get seriously damaged and
shrinks dramatically due to widespread cell death. In advanced stage of AD, individuals lose
their ability to communicate, to recognize family and loved ones and to care for themselves.

AD is not a part of normal aging, but increasing age is the strongest risk factor of AD. Three
in ten people over the age of 85 and one in every eight people over 65 are estimated to develop
AD. Family history and genetics, mild cognitive impairment (MCI), past head trauma, life style
and heart health, life long learning and social engagement are the other risk factors of AD. The
risk of developing AD is higher if a first degree relative (parent or siblings) has the disease. The
genetic mechanism of AD among families remains unexplained. People with mild cognitive
impairment have higher chance of developing AD, but is not a certainty and can be prevented
by developing a healthy life style. Some studies show that the risk factors of heart disease may
also increase the risk of developing AD [3, 4]. Studies also show the relationship between life-
long involvement in mentally and socially stimulating activities and reduced risk of AD [5, 6].

The diagnosis of AD is usually based on the patient’s medical history, mental status testing
and physical testing. Even though several histopathological markers such as extracellular β-
amyloid plaques and neurofibrillary tangles (NFTs) within neurons can determine AD pres-
ence [7], these can only be evaluated in the post-mortem brain or in rare surgical circum-
stances; physicians have then turned to other less invasive methods to diagnose AD, such as
neuroimaging. Positron emission tomography (PET), which identifies the pattern of reduced
glucose with the help of cerebral glucose metabolic rate [8], and magnetic resonance imaging
(MRI), that identifies brain atrophy [9, 10], are two available imaging techniques for AD
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diagnosis. These techniques helps to find the damage in the tissue or vessels in the brain rather
than predicting the risk of developing AD.

Most of the research studies of AD focus on the Hippocampus (HIP) brain region, as it is
the first region to be affected by AD [11]. However, there are other regions that are functionally
related with memory, attention, perceptual awareness, thought, language and consciousness—
functions that are affected in AD. For example, the entorhinal cortex region (EC) works as a
mediator for learning and memory. EC-HIP together play an important role in visual process-
ing hierarchy and thereby receive signals for object representations [12]. The Posterior Cingu-
late cortex (PC) helps with visual perception and memory recollection [13]. The Middle
Temporal Gyrus (MTG) is involved in some basic functions like recognition of faces, ascertain-
ing of distance, etc. [14]. The Superior Frontal Gyrus (SFG) is associated with self-awareness
and with the action of the sensory system [15]. The Visual Cortex (VCX) processes the visual
information by receiving the visual data from the lateral geniculate body of the thalamus [16].

Since the disease symptoms characterisation in 1906 by Dr. Alois Alzheimer, genesis of AD
has remained elusive. Only in 1993 the APOE gene was found to be associated to AD. Several
studies have since been performed to identify other differentially expressed genes in AD
affected brain regions [17]. However, ELISA measurement of β-amyloid, total Tau and Phos-
pho-Tau-181 in cerebrospinal fluid (CSF) are the most advanced and accepted method for AD
diagnosis. It is estimated that in 2050, approximately 80 million older people will suffer from
AD [18]. Thus, it is of great challenge to find reliable biomarkers to understand the mechanism
behind AD [19, 20].

An 18-protein signature in peripheral blood plasma was identified by Ray et al. [21] that
can be used to predict the clinical symptoms of AD early before the symptoms are evident.
They have used a single classifier approach to identify a panel of proteins that helps to decide
whether patients with MCI will develop AD in the next 2–6 years. Soon after, Gomez-Ravetti
et al. [22] used the same dataset and identified a five protein biomarker, subset of Ray’s 18-pro-
tein signature, that is sufficient to retrieve the same result with better accuracy to predict AD.
Using Ray’s dataset, Rocha de Paula et al. [23] identified a specific pattern of cell signalling
imbalance that can predict AD in patients with Mild Cognitive Impairment.

In 2010, Gómez Ravetti et al. [24] showed a clear pattern of up and down regulated genes
related to the hippocampus region that reveals alterations in calcium, insulin, phosphatidyli-
nositol and Wnt-signalling. They also found that the gene probes that are strongly correlated
to AD severity are linked to synaptic function, neurofilament bundle assembly, and neuronal
plasticity and inflammation. They showed that the gene homologous of EGR1, zif268,
Egr-1 or ZENK, together with other members of the EGR family, play an important role in
short and long-term memory and neuronal plasticity in the brain. All these studies concen-
trated on a specific region data. A combined study of different brain regions may provide
more information with regard of gene dysregulation driving the development and AD
pathogenesis.

In 2008, Liang et al. [25] performed a combined study of postmortem gene expression data
of six different brain regions and identified differentially expressed genes: APOE, BACE1,
STUB1 (CHIP), FYN, GGA1 and SORL1, also pinpointing genes with significant expression
changes in AD across brain regions. [26] performed a four region study to gain knowledge
about different regions and built a co-expression gene network to characterise the similarity
and differences between the regions. They also found that the MTG region shows an early AD
pathology compared to other regions. A network-based systems biology approach was pro-
posed by Liu et al. [27] to study the AD related pathways and their dysfunctions among six
brain regions. They identified the most significant AD related pathways across six brain
regions.
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Further, Lambert et al. [28] conducted a large scale two stage meta-analysis of genome wide
association studies of 74,046 individuals. They identified 11 new susceptibility loci which are
significant in relation to AD. Bertram et al. [29] performed a meta-analysis of AD genetic asso-
ciation studies and identified 20 polymorphisms in 13 genes that are closely related to AD. A
Genome-Wide Association Meta-analysis of Neuropathologic Features of AD identified 9 new
loci, involving the genes ABCA7, BIN1, CASS4, CD33, MEF2C, MS4A6A, PICALM, SORL1 and
ZCWPW1, that are significant in regards to AD pathogenesis [30].

Since the sample size of individual gene expression microarray datasets are small, computa-
tional methods can be used to integrate these gene expression data from different microarray
studies. Greco et al. [31] proposed an integration method to combine microarray gene expres-
sion data from Affymetrix GeneChip experiments to investigate tissue selective expression pat-
terns. A computational approach has been developed by Wang et al. [32] for genome-wide
analysis of human tissue-selective gene expression data from heterogeneous sources.

In short, combined study of similarities and differences among different AD-affected brain
region datasets can provide an better understanding of AD pathogenesis. Most of the studies
report a large number of genes, and yet most of the results are conflicting [33]. Because of the
exceedingly large number of AD related genes of different brain regions, it has become virtually
impossible to systematically follow, evaluate, interpret or compare these findings.

A robust characterisation of the transcriptomic risk factors related to AD requires an inte-
grated study. We performed a combined analysis using gene expression data from six different
AD affected brain regions from the well-known Liang gene expression dataset [34]. The dataset
contains data for the EC, HIP, MTG, PC, SFG and VCX regions and is re-analysed in this
study to identify common genes that play an important role among six AD-affected brain
regions. The regions considered in this study are briefly explained below.

Entorhinal Cortex(EC):
EC is the main channel between HIP and the neocortex and is involved in the long-term
cognitive memory formation [35]. In particular, EC supplies information to HIP from mul-
tiple senses and translates information to neocortex with the help of a neurotransmitter
called glutamate. Studies have already been shown that EC is one of the region affected by
AD in the early stage itself [36].

Hippocampus (HIP):
HIP is a part of the temporal lobe that is absolutely necessary for forming new memories. It
is common that AD affects the HIP early and severely before affecting any other part of the
cortex [11], which shows memory is the first thing that starts to get falter in AD. Several
studies shows that APOE plays a prominent role in HIP damage through impaired blood
flow and the consequent lack of oxygen [37, 38].

The Middle Temporal Gyrus (MTG):
MTG is a gyrus on the temporal lobe of the brain which is involved in a number of cognitive
processes such as semantic memory, language processing and integration of information
from different senses [14]. Many studies have shown the active neuronal loss for AD in the
MTG region of the brain [39, 40].

The Posterior Cingulate Cortex (PC):
PC is a part of the cingulate cortex which is highly connected and metabolically active brain
region and functionally involved in learning and spatial memory. Studies have identified the
amyloid deposition and reduced metabolism in PC in the progress of AD, also this region is
significantly smaller in size in AD patients than controls [13, 41].
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The Superior Frontal Gyrus (SFG):
SFG is located at the superior part of the prefrontal cortex and it makes up about one third
of the frontal lobe. Stimulation and activation of SFG is involved in self awareness and plays
a role in working memory as well as manipulation of this memories to accomplish cognitive
tasks like planning for the future, judgement, decision-making skills, attention span, and
inhibition. Damage in SFG can cause in problems performing these functions [15, 42]. Sev-
eral studies have been identified the presence of frontal hypo metabolism in relation with
AD [43, 44].

The visual cortex (VCX):
VCX is a part of cerebral cortex that occupies the entire surface of occipital lobe and func-
tions as a visual data receiver. Damage of VCX can make the patient effectively blind even if
their eyes are sending information from the visual field to VCX [45, 46]. Even though some
studies shows changes in VCX related with normal aging, there is almost no information
about changes in VCX in relation with AD [47].

We used the Coloured (α,β)-k Feature Set and Generalised (α,β)-k Feature Set approach
[48] to conduct the combined study. As a robust feature selection method, the Coloured (α,β)-
k Feature Set approach can handle the integrated dataset to find the minimum common set of
genes that are significant to explain AD across regions. Also, we perform individual region
analysis to identify the region specific genes and compare with the common genes. The func-
tional and pathway analysis for the identified genes that are closely related with AD develop-
ment is also performed.

The structure of the article is as follows; section Materials and Methods explains the datasets
and present details of the methods employed in this study; the different signatures and data
processing decisions are presented in Results. In Discussion, we analyse the most significant
results.

Materials and Methods

Dataset and Pre-Processing
In this study we have used a publicly available Affymetrix microarray gene expression dataset
for Alzheimer’s disease contributed by Liang et al.[34]. The dataset is deposited in Gene
Expression Omnibus (GEO)[49] under the series number GSE5281. It contains 161 samples,
74 of which are non-demented controls and 87 affected with Alzheimer’s disease, with a mean
age of 79.8 ± 9.1 years. The samples were collected (with a mean post-mortem interval of 2.5
hours) from three different AD centres from clinically and neuropathologically classified AD
affected individuals. The samples were extracted from six different brain regions: EC, HIP,
MTG, PC, SFG, VCX. The detail of samples in each region is given in Table 1.

In this dataset, some samples in different regions correspond to the same individual; how-
ever this information is not available in the original study. One of the goals is to verify the
robustness of the obtained signature accounting for inter-individual variability. We have used
the accompanying clinical information to identify the samples across regions. As per the clini-
cal data, there are overlapping and repeating samples in between regions. The details of the
samples are given in S1 Table.

As a pre-processing step we applied Fayyad and Irani’s entropy-based heuristic on each
region data to remove uninformative features. This is a univariate selection filter based on the
Minimum Description Length Principle (MDL) [50]. The filter looks for (possibly a set of) dis-
cretisation threshold(s) maximising the class entropy gain. As different tissues have different
gene expression profiles, the filter is applied to each region by separate. This method helps to
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remove the features that are not significantly different in control and AD samples and to
reduce the dimensionality of the problem. It also facilitates the combinatorial approach by dis-
cretising the values of features.

Individual Region Analysis
On each region we applied (α,β)-k Feature Set approach to obtain a region-specific signature.
This approach provides a significant set of genes that collectively maximise the inter-class dis-
crimination and the intra-class coherency [51, 52]. The method helps to select a minimum set
of features that collectively provide a maximum amount of evidence to differentiate the control
and AD samples in each brain region. The resulting probes are annotated using BioMart [53].

Combined Analysis
For the integrated analysis of the selected datasets we have used Coloured (α,β)-k Feature Set
approach and compared our results with two other popular meta-analysis methods: RankProd
[54] and GeneMeta [55]. RankProd is a non-parametric meta-analysis tool that use Fold
Change (FC) of each gene to rank and compare genes within each region. GeneMeta is an R
package based on the meta-analysis method proposed by Choi et al. [56] in which an overall
ranked gene list is produced based on the False Discovery Rate (FDR) of each gene.

Coloured (αβ)-k Feature Set Approach. We have recently proposed a combinatorial opti-
misation based method called Coloured (α,β)-k Feature Set approach [48] that can handle the
integration of datasets in a consistent manner and selects the minimum set of significant fea-
tures that can differentiate sample pairs across multiple datasets.

The decision versions of the Coloured and Generalised (α,β)-k Feature Set problems are
given in [48] and reproduced below for convenience. Let B represent a set of binary values, i.e.
B ¼ f0; 1g; let n be the number of features andm the number of samples, p be the number of
sample groups (i.e. different platforms/cohorts/datasets) and the tuple y be the class labels of
the samples.

COLOURED (A,B)-k FEATURE SET:

Instance: A set X ¼ fxi j xi 2 B
n ^ 1 � i � mg, a colouring function

c: {1, . . ., m}!{1, . . ., p}, a tuple y 2 B
m, integers α > 0, β � 0, k > 0.

Parameter: α, β and k.

Table 1. Sample details that belongs to different regions.

Region Control Affected Total

EC 13 10 23

HIP 13 10 23

MTG 12 16 28

PC 13 9 22

SFG 11 23 34

VCX 12 19 31

Region is the name of different regions in the data: EC—Entorhinal Cortex, HIP—Hippocampus, MTG—

Middle temporal gyrus, PC—Posterior cingulate cortex, SFG—Superior frontal gyrus, VCX—visual cortex.

Control is the number of controls in each region. Affected is the number of diseased samples in the data.

Total is the total number of samples in each region.

doi:10.1371/journal.pone.0152342.t001
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Question: Is there a set I� {1, . . ., n} with |I|�k such that for all i, j 2 {1, . . .,m}
where c(i) = c(j)

• if yi 6¼ yj there exists Iai;j � I with jIai;jj � a such that xi, s 6¼ xj, s for all s 2 Iai;j,

• if yi = yj there exists I
b
i;j � I with jIbi;jj � b such that xi, s = xj, s for all s 2 Ibi;j?

In words, the Coloured (α,β)-k Feature Set problem instance is constructed from a collec-
tion of individual (α,β)-k Feature Set instances with common features, where the comparison
of feature values is limited to sample pairs formed from each individual instance. The “col-
oured” name stems from assuming samples in each individual instance are coloured with the
same unique colour, then only same coloured samples can be combined in pairs.

GENERALISED (A,B)-k FEATURE SET:

Instance: A set X ¼ fxi j xi 2 B
n ^ 1 � i � mg, a function

g : f1; . . . ;mg � f1; . . . ;mg ! B, a tuple y 2 B
m, integers α> 0, β� 0, k> 0.

Parameter: α, β and k.

Question: Is there a set I� {1, . . ., n} with |I|�k such that for all i, j 2 {1, . . .,m}
where g(i, j) = 1

• if yi 6¼ yj there exists Iai;j � I with jIai;jj � a such that xi, s 6¼ xj, s for all s 2 Iai;j,

• if yi = yj there exists I
b
i;j � I with jIbi;jj � b such that xi, s = xj, s for all s 2 Ibi;j?

The Generalised (α,β)-k Feature Set problem has been devised to deal with the more general
situation in which some samples in one sample group may be compared to samples in another
sample group, for example. The binary function g indicates when feature values for a given
arbitrary sample pair can be compared.

Even though the samples have been presented as an array of binary values, it is not strictly
necessary. The class label can be a categorical variable taking values over a (typically small) set
of categories or classes. The features can have values of any kind, as long as there exists a mean-
ingful comparison able to decide if any two values are considered as significantly different or
not. The entropy filtering and discretisation helps the comparison by providing an information
theory-based objective criterion of what the discretisation thresholds are, while being able to
support multi-modal value distributions.

In our case, the different datasets are each brain region data. For this, we selected the probes
from all the six regions data that pass the Fayyad and Irani’s entropy-based heuristic test. The
combined region data is prepared according to the selected probes by combining the specific dis-
crete values of those probes from each region. The Coloured (α,β)-k Feature Set approach has
been applied on the combined region data. The approach provided us with a set of probes that are
differentially expressed in all the regions. The resulting probes are annotated using BioMart [53].

Functional and Pathway Analysis
The pathway analysis has been performed using the Expression Analysis Systematic Explorer
(EASE) [57] to obtain the EASE score, which is a modified version of Fisher Exact p-value used
for gene-enrichment analysis, to identify the dysregulated pathways. EASE score< 0.06 repre-
sents that the gene is specifically related with the pathway in the context of the provided list.

To simplify the functional and pathway analysis, we applied Bonferroni correction, which is
a conservative adjustment to the EASE score in order to control the multiple comparison effect,
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on the resulting list of probes from individual and combined analysis and selected the probes
that have a Bonferroni corrected p-value (BF-value)< 0.0001. Also, we have selected the top
15 probes according to the BF-value to discuss further in relation with AD.

The resulted list of genes have been compared with the list of genes expressed in the normal
brain collected from The Human Protein Atlas [58] and explained in the Discussion.

Other Meta-Analysis Methods. As comparison benchmark we have used two other
widely popular meta-analysis methods. RankProd is a non-parametric meta-analysis tool
introduced by Hong et al. [54] to identify differentially expressed genes from the integrated
dataset. Fold Change (FC) of each gene is used to rank and compare genes within each region.
An overall ranked gene list is produced by aggregating the individual ranks across regions as,

RPg ¼ ð
YK

i

rgiÞ1=K

where RPg is the overall rank product of gene g, which is the product of rank ratio rgi of each
comparison with a total of K comparisons.

In this study, we combined all the six region data without any pre-processing as the data
belongs to the same platform. We have then applied RankProd on the combined region data to
select genes that can discriminate the control and AD samples.

A meta-analysis method designed for same platform situations is GeneMeta. It was intro-
duced by Lusa et al. [55] as an R package based on the meta-analysis method proposed by Choi
et al. [56]. An overall ranked gene list is produced based on the False Discovery Rate (FDR) of
each gene. FDR is calculated as,

FDR ¼
1

B

X
b

X
j
Ið Z�b

j

���
��� � zthÞ

P
jIð zj
���
��� � zthÞ

where B is the number of column wise permutations performed in each dataset, each of them is
represented as b = 1, 2, . . ., B. Zj is the average effect size for gene j. The total number of data-
sets are denoted as I, where I(�) is the indicator function (equals to 1 if the condition in paren-
thesis is true and 0 otherwise). The denominator represents the number of genes that are
significant in the data, and the numerator is the expected number of falsely significant genes.
In this study, we combined all regions data without any pre-processing and applied GeneMeta
to get the genes that are differentially expressed in the combined region data.

Sensitivity Analysis. We have analysed the robustness of the final integration results with
respect to varying compositions of the individual region data. We have repeated the above
mentioned steps with different combination of region data prepared by removing single or
multiple regions from the combined data. This step helps to identify the most significant genes
which are not dependent on a single region, as well as each region’s contribution to the final
results. Specifically, we performed the following steps: a) removal of the region EC from the
combined dataset b) removal of the region HIP from the combined datasets, and (c) removal of
the regions MTG and PC from the combined dataset. Then obtained the list of probes that can
distinguish the classes by applying the Coloured (α,β)-k Feature Set approach in each case
obtained and compared with our original result.

Results
To address region-specific vulnerability with AD pathology and complexity, we performed a
comparative study of six different regions (EC, HIP, MTG, PC, SFG, VCX) of brain of individuals
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with AD and non demented controls using Affymetrix Human Genome U133 Plus microarrays.
The purpose of our study is to identify significant genes in each region associated with the pres-
ence of AD, to identify common genes among all the regions, and to bring together all these
results with previous studies to sketch a region specificity in relation to AD.

Individual Analysis Results
We identified the probes that are differentially expressed by applying (α,β)-k Feature Set approach
[51, 52] on each region separately. Differentially expressed genes and specific dysregulated path-
ways together provide new insights to the pathogenesis of AD. The differentially expressed genes
and related pathways for each region are analysed and explained in the following sections.

The analysis of each region results in a long list of genes that are significantly related with
AD. The list of genes related with each region is given in S2 Table. For functional and pathway
analysis, we have selected the genes that have Bonferroni-corrected p-value (BF-value)< 0.0001.
The number of resulting genes before and after applying Bonferroni correction for each region is
given in Table 2. The list of pathways and the related details for each region is given in S3 Table.
A gene ordering algorithm introduced by Moscato et al. [59] has been applied on the resultant
set of genes for each region to generate a heatmap that brings out the correlation between the
genes. The heatmaps for all the regions with differentially expressed genes are given in S5 Table.
We also find some probes corresponding to microRNA precursors in each region and are given
in S6 Table. We must notice that the gene expression microarray platform used in this study,
Affymetrix HGU133 plus v2.0, is only capable of detecting microRNA precursors and not
mature microRNA sequences. The mention of these precursors is however relevant, as they are a
necessary for the synthesis of functional mature sequences.

Common Probes in Individual Region Signatures. Studies reported that VCX is a less
metabolically affected region and shows the least amount of AD related genes and changes [60,
61, 62]. As per our individual region analysis result, VCX shows less number of common genes
with other regions. In spite of the large size of individual region signatures, there are only 67
common genes among the individual signatures. The VCX region does not show a large over-
lap with other regions; removal of the region signture increase the number of common genes
to 288 among the five other region signatures. Based on this, we have excluded the region VCX
from our combined analysis.

Combined Analysis Results
Coloured (α,β)-k Feature Set Approach Results. To perform the combined analysis, we

prepared a combined dataset by integrating all the five regions (EC, HIP, MTG, PC and SFG),

Table 2. Summary of Significant genes in different brain regions.

Region Probes Result Genes BFsignif Pathways microRNAs

EC 11504 4558 3762 108 24 10

HIP 11501 7779 5594 475 55 12

MTG 12607 6398 4941 1138 81 13

PC 15907 12690 7402 206 21 22

SFG 8785 5473 4344 47 23 13

VCX 5332 2185 1900 11 2 3

Region is the acronym of the different brain regions in the data. Probes is the number of probes before applying (α,β)-k Feature Set approach. Result is

the number of probes resulted from the (α,β)-k Feature Set approach for each region. Genes is the number of genes obtained by annotating the resultant

signature. BFsignif is the number of genes that are used for further analysis with a Bonferroni corrected p-value < 0.0001. Pathways is the number of

related pathways by annotating the genes with the BFsignif genes. microRNAs is the number of resulted microRNA precursors for each region.

doi:10.1371/journal.pone.0152342.t002
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selecting the probes that pass Fayyad and Irani’s entropy-based heuristic test (as explained in
Coloured (αβ)-k Feature Set Approach). The combined dataset contains 3120 features and 126
samples. We have performed the combined analysis in two ways as different region data shares
same samples. First, we applied Coloured (α,β)-k Feature Set approach (refer to Coloured
(αβ)-k Feature Set Approach) on the combined dataset and obtained a list of 825 differentially
expressed probes with maximum α and β value of 396 and 300 respectively, which is annotated
to 728 genes. In this list, 479 have a BF-value< 0.0001, mapping to 67 significant pathways
with EASE score< 0.06. The list of resulted probes with related details and pathways are given
in S7 Table. The heatmap for 479 probes are given in Fig 1.

In the next step, we applied the Generalised (α,β)-k Feature Set approach on the combined
dataset to test whether correlation between samples in different regions might provide a more
robust disease signature (refer to Coloured (α,β)-k Feature Set Approach for more details); we
obtained a list of 871 differentially expressed probes with maximum α and β values of 396 and
311 respectively, which is annotated to 747 genes. In this list, 540 have a BF-value< 0.0001,
mapping to 70 significant pathways that have EASE score< 0.06. The list of probes with
related details and pathways are given in S7 Table. The heatmap for 540 probes are given in Fig
2. The Coloured (α,β)-k Feature Set and Generalised (α,β)-k Feature Set have 473 genes that
are common between them, that shows a high level of agreement between the results. From the
increased β value we deduce that the association of samples across different regions provided
us a slight increase in the intra-class coherency of the description.

From the resulting list of probes from Coloured (α,β)-k Feature Set approach, we find 23
non coding features differentially expressed across EC, HIP, MTG, PC and SFG regions. The
pathway analysis of these non coding features resulted with 13 pathways given in Table 3.
These include four microRNAs: hsa-mir-7-1, hsa-mir-570, hsa-mir-1229 and hsa-mir-6821.
The details of microRNAs are later discussed in Discussion. A heatmap for the 23 features is
given in Fig 3.

The comparison between Coloured (α,β)-k Feature Set approach result with the list of brain
related genes from Human Protein Atlas shows 328 genes from our result that are normally
expressed in human brain are dysregulated in AD. Also we identified an additional 17 genes
which are not expressed in normal human brain but appear over expressed in AD. The average
log2 of fold change for the over and under expressed genes in AD are 5 and 4.5 respectively
with respect to the control samples mean value, across all regions.

RankProd Results. We have used the well known meta-analysis RankProd method to
have a comparison of our resulting list of genes. The application of RankProd on the combined
dataset has ordered the list of genes by increasing percentage of false positive likelihood value
and selected the top up and down regulated genes with 0.05 cut-off. This resulted in a list of
6908 up regulated genes and 5853 down regulated genes. The comparison of (α,β)-k Feature
Set approach result with RankProd result shows that 760 out of our 825 probes are present in
the top list of RankProd. Also the comparison of Generalised Coloured (α,β)-k Feature Set
approach result with RankProd result shows 802 out of 871 probes are present in the result of
RankProd. That shows a high level of agreement between the results. The resulting probes
from RankProd and the comparison with our result is given in S8 Table.

GeneMeta Results. We also compared our result with another well known meta-analysis
method GeneMeta, in which the probes are ordered based on the FDR. Application of this
method on the combined dataset resulting with 17964 probes with a FDR cut-off of 0.05, that
is recommended in the method. The comparison of Coloured (α,β)-k Feature Set approach
result with GeneMeta result shows that 684 out of 825 probes are present in the top list of Gen-
eMeta. Also the comparison of Generalised (α,β)-k Feature Set approach result with GeneMeta
result shows 742 out of 871 probes are present in the result of GeneMeta. That shows a high
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Fig 1. Heatmap for the 479 probes with BF-value < 0.0001 of combined analysis. There are 479 up and
down regulated probes which are differentially expressed between control and AD. The first colour bar at the
bottom indicates AD (blue) and control (red) samples. The second colour bar represents each sample group
in different colour. EC (blue), HIP (red), MTG (orange), PC (grey) and SFG (cyan). The colour bar at the side
of the heatmap represents the range of fold-changes with respect to the control samples mean value by
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level of agreement between the results. The GeneMeta resulting probes and the comparison
with our result is given in S8 Table.

Sensitivity Analysis Results. We performed a sensitivity analysis by removing one or
more datasets at a time and compared the result with the original Coloured (α,β)-k Feature Set
approach result. The results of all three cases shows between 33% to nearly 50% agreement
with the original result, and more importantly, more than 90% of probes with BF-value< 10-5.
This shows the robustness of the combined analysis results in the presence of large variations,
such as the removal of on or more datasets. The list of genes resulting when removing different
regions are given in S9 Table.

Discussion
As AD progresses, Tau pathology starts spreading from one brain region to another, first in
EC, next in HIP, and then cerebral cortex, in a consistent pattern. These brain regions are inter-
connected through synapses that create communication networks [63]. Studies have demon-
strated that AD is closely related with the alterations in the connectivity between different
brain regions [64]. Although studies of gene expression changes in different brain regions in
relation with AD has been performed separately, a combined study to understand the overlap
and difference between different brain regions has been lacking. Here we analysed the differen-
tial expression of genes through a combined study of five different brain regions.

Our study help us identify the set of genes and related pathways that may play important
role in the development of AD. The individual analysis of each region, EC, HIP, MTG, PC,
SFG and VCX, provided a set of genes and pathways that are highly significant with that region
alone. The set of genes highly associated with all the regions is identified by the combined anal-
ysis of EC, HIP, MTG, PC and SFG. As mentioned before the region VCX has been eliminated
from the combined study since individual results have little in common with the other regions
and its inclusion restricts the amount of common evidence that can be obtained from the inte-
grated analysis. Only two pathways and 67 genes appear as significant when common genes of
region-specific analysis results of EC, HIP, MTG, PC and SFG are annotated. The common
pathways are: Metabolism of cofactors and vitamins and sorting and degradation. However,
the combined analysis using Coloured (α,β)-k Feature Set approach produces 62 dysregulated
pathways across the five different regions. Our common signature is of considerable reduced
size as compared to rank- and statistically-based meta analysis methods. At the same time, the
comparison shows our results in high level of agreement with other methods, while the sensi-
tivity analysis provides evidence of the robustness and ability of the method to capture a large
number of the most significant results, even with a relatively low number of samples. This gives
us confidence to proceed to the analysis of the top 10 altered pathways and genes, listed in
Table 4.

The pathways are mainly related to the classes of Carbohydrate metabolism, Amino acid
metabolism, Signal transduction and lipid metabolism. Carbohydrates are the important
source of energy that maintain the life of living cells. The carbohydrate metabolic pathways
have been previously implicated in relation with AD progression. Henderson [65] shows that
consumption of high carbohydrate diet may be a cause of the primary event that leads to the
development of AD [65]. A series of studies suggest that relatively simple preventative mea-
sures like lower consumption of starchy carbohydrates and high essential fatty acids in the diet
may effectively prevent AD [65–69]. Moreover, studies shows that carbohydrate diets can lead

means of a colour gradient ranging from green (log2(FC) = −5, down regulation) to red (log2(FC) = 6, up-
regulation). See S1 Fig for a full size version of this figure.

doi:10.1371/journal.pone.0152342.g001
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Fig 2. Heatmap for the 540 probes with BF-value < 0.0001 of combined analysis. There are 540 up and
down regulated probes which are differentially expressed between control and AD. The first colour bar at the
bottom indicates AD (blue) and control (red) samples. The second colour bar represents each sample group
in different colour. EC (blue), HIP (red), MTG (orange), PC (grey) and SFG (cyan). The colour bar at the side
of the heatmap represents the range of fold-changes with respect to the control samples mean value by
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to dysreguration of LPL (Lipoprotein Lipases) activity and increase insulin sensitivity [65]. Our
study also shows the under expression of the LPL gene that participate in the AD pathway.
The increased activity of Glycolysis, galactose metabolism [70, 71] and pentose phosphate
pathway [72, 73] has already been associated with increased AD risk. All these studies indicate
that the risk for Alzheimer’s disease can be reduced with a balanced diet of protein, carbohy-
drate and fat.

Amino acids are the building blocks of proteins and the dysregulation of amino acid pro-
cessing can result from defects either in the breakdown of amino acids or in the transport
of amino acids into cells. The over representation of amino acid metabolism has also been
reported to be associated with AD [74, 75].

Lipids plays a major role in the cell signalling especially in brain and are the major energy
reserve in the brain cells and tissues. Studies shows that the abnormal lipid metabolism
contributes to the pathogenesis of AD and other neurodegenerative disorders [76, 77].
According to the literature search, all the resulting pathways are closely related with the
development of AD.

Next, we discuss about the top 15 differentially expressed genes across all the five regions
from the result of Coloured (α,β)-k Feature Set approach, given in Table 5.

means of a colour gradient ranging from green (log2(FC) = −5, down regulation) to red (log2(FC) = 5, up-
regulation). See S2 Fig for a full size version of this figure.

doi:10.1371/journal.pone.0152342.g002

Table 3. Dysregulated pathway related to non coding features.

Probe ID Gene Symbol Gene Name Pathway

239629_at RNU7-45P RNA, U7 small nuclear 45 pseudogene Apoptosis, FAS signalling pathway

208687_x_at,
224187_x_at

SNORD14E;
MALAT1

small nucleolar RNA, C/D box 14E; metastasis
associated lung adenocarcinoma transcript 1

Spliceosome, MAPK signaling pathway, Endocytosis, Antigen
processing and presentation, parkinson disease, Membrane
Trafficking

200775_s_at MIR7-1 microRNA 7-1 Spliceosome, Processing of Capped Intron-Containing Pre-
mRNA, Influenza Infection, Gene Expression,

224598_at MIR1229 microRNA 1229 N-Glycan biosynthesis,

1560982_at CNKSR3 CNKSR Family Member 3 Tight junction, Signalling by GPCR

Probe ID is the probe id related to the respective non coding features.Gene Symbol and Name is the associated gene in relation to the non coding

feature that is involved in the pathway.Pathway is the name of the pathway.

doi:10.1371/journal.pone.0152342.t003

Fig 3. Heatmap for the 23 probes from the combined analysis result that annotate to the non coding features. There are 23 up and down regulated
probes which are differentially expressed between control and AD. The first colour bar at the bottom indicates AD (blue) and control (red) samples. The
second colour bar represents each sample group in different colour. EC (blue), HIP (red), MTG (orange), PC (grey) and SFG (cyan). The colour bar at the
side of the heatmap represents the range of fold-changes with respect to the control samples mean value by means of a colour gradient ranging from green
(log2(FC) = −6, down regulation) to red (log2(FC) = 6, up-regulation).

doi:10.1371/journal.pone.0152342.g003
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Phosphofructokinase, muscle (PFKM) encodes for the enzyme called phosphofructokinase
and catalyses the phosphorylation of fructose-6-phosphate to fructose-1,6-bisphosphate (F-
1,6BP). F-1,6-BP is broken down into glyceraldehyde 3-phosphate and dihydroxyacetone
phosphate under the catalysis of ALDOA or ALDOC enzymes. In this study PFKM is down reg-
ulated across all the regions. Several studies have pinpointed the relation between the increased
activity of glycolysis and AD [78, 79]. We find PFKM under expressed across all the regions.
Other researchers have also reported that PFKMmay be related with the progress of AD in EC

Table 4. Top dysregulated pathways.

Pathway Gene
Count

Gene Symbol

Carbohydrate
Metabolism

12 ACACB; ALDOA; GRHPR; IDH3A; IDH3B; IDH3G; ME3; PDHA1;
PFKFB3; PFKM; PRPS1; TPI1;ABAT; AKR1B1

Lipid Metabolism 4 ACAA1; ACACB; HSD17B7; NQO2

Alzheimer’s Disease 3 LPL; SNCA; GNG3

Citrate Cycle (TCA
Cycle)

3 IDH3A; IDH3B; IDH3G

ATP Synthesis 6 ATP5B; ATP5G1; ATP5J2; ATP6V0B; ATP6V1E1; ATP6V1F

Cell Communication 4 CAPNS1; SORBS1; TLN2; CAV2

Pentose Phosphate
Pathway

3 ALDOA; PFKM; PRPS1

Amino Acid Metabolism 8 ABAT; ACAA1; ADSL; EPRS; GFPT1; GOT2; GSS; PDHA1

Signal Transduction 11 DGKG; EGFR; INPP4A; ITPR2; PRKCA; PRKCE; PRKCZ; PTPN2;
PTPN3; PTPRD; PTPRM

Purine metabolism 8 ADCY1; ADSL; AK3; ENTPD6; GUCY1A3; IMPDH2; NME7; PRPS1

Pathway is the pathway name.Gene Count is the number of genes from our result that is involved in the

pathway.Gene Symbol are the gene symbols.

doi:10.1371/journal.pone.0152342.t004

Table 5. The topmost differentially expressed genes across EC, HIP, MTG, PC and SFG.

Probe ID Gene
Symbol

Gene Name Location

210976_s_at PFKM Phosphofructokinase, muscle 12q13.11

200039_s_at PSMB2 Proteasome (prosome, macropain) subunit, beta type, 2 1p34.2

211993_at WNK1 WNK lysine deficient protein kinase 1 12p13.3

221476_s_at RPL15 Ribosomal protein L15 3p24.1

211921_x_at PTMA Prothymosin, alpha 2q37.1

46665_at SEMA4C Sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short cytoplasmic domain,
(semaphorin) 4C

2q11.2

223319_at GPHN Gephyrin 14q23.3

208732_at RAB2A RAB2A, member RAS oncogene family 8q12.1

213555_at RWDD2A RWD domain containing 2A 6q15

203146_s_at GABBR1 Gamma-aminobutyric acid (GABA) B receptor, 1 6p21.3

224567_x_at MALAT1 Metastasis associated lung adenocarcinoma transcript 1 (non-protein coding) 11q13.1

212296_at PSMD14 Proteasome (prosome, macropain) 26S subunit, non-ATPase, 14 2q14.3

200708_at GOT2 glutamic-oxaloacetic transaminase 2, mitochondrial 16q21

204786_s_at IFNAR2 Interferon (alpha, beta and omega) receptor 2 21q22.1

215543_s_at LARGE Like-glycosyltransferase 22q12.3

doi:10.1371/journal.pone.0152342.t005
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region [80], and differential expression of PFKM has been studied on different rat brain regions
in relation to AD [81]. Brooks et al. [82] reported the down regulation of ALDOA, ALDOC and
PFKM in AD.

Proteasome (Prosome, Macropain) Subunit, Beta Type, 2 (PSMB2) encodes for the protein
proteasome subunit beta type-2 which is responsible for the degradation cytosolic and nuclear
proteins in the cell. Proteasomes are a major part of eukaryotic cells and cleave peptides in an
ATP/ubiquitin-dependent process in a non-lysosomal pathway. Hence proteasome plays an
inportant role in the ubiquitin-proteasome system, which is an important mechanism in the
regulation of cell cycle, differentiation, transcription, signalling, cell growth and death [83].
Several studies have indicated that aberrations and deregulations of ubiquitin proteasome sys-
tem contribute to the development of neurodegenerative diseases such as AD [84–86]. These
studies present indirect evidence for the role of PSMB2 in the pathology of AD. Moreover, the
differential expression and co-regulation of PSMB2 with RPL30 in HIP region of mouse brain
has been reported in relation to AD [87, 88]. To the best of our knowledge there is no study
available to indicate the role of PSMB2 in relation with AD in humans. Our study shows the
down regulation of PSMB2 across all the regions in relation with AD. These results taken
together point to further studies on PSMB2may lead to new insights about AD development.

WNK Lysine Deficient Protein Kinase 1 (WNK1) encodes for cytoplasmic serine-threonine
kinase which plays a key role in the regulation of blood pressure by controlling the transport of
sodium and chloride ions. There is no evidence available for the relation ofWNK1 and AD
progression. However, there is evidence of MAPK/ERK signalling pathway activation by
WNK1 via the stimulation of the epidermal growth factor (EGF) [89–91]. As mentioned before,
MAPK/ERK signalling is highly associated with the pathogenesis of AD [92, 93]. In 2008, She-
karabi et al. [94] reported that mutations in the nervous system resulting from the over expres-
sion ofWNK1 cause neurodegerative disorder called hereditary sensory neuropathy type II.
More recently, the over expression ofWNK1 was reported to be associated with schizophrenia,
a neurodevelopmental disorder [95]. In our study,WNK1 is over expressed across all the
regions and it is worth noticing thatMAPK signalling is one of the pathway which is dysregu-
lated in all the five regions in our study.

Ribosomal Protein L15 (RPL15) encodes for the protein 60S ribosomal L15 which plays a
key role in RNA binding. Up-regulation of RPL15 is reported in relation with AD in the HIP
region of brain [96]. Our study also reports the up-regulation of RPL15 in the pathogenesis of
AD, not only related with the HIP region, but also in EC, MTG, PC and SFG. It has also been
reported that RPL15 is closely related with parkinson’s disease [97] and other brain disorders
[98, 99]. Our result along with these studies shows that RPL15may be a good reference gene
for AD pathogenesis across different brain regions.

Prothymosin, Alpha (PTMA) works as a mediator for immune function by conferring resis-
tance to certain opportunistic infections like Candidiasis and Kaposi’s Sarcoma. Recent studies
have reported the over expression of PTMA in AD [100, 101] and the role in TGF α induced
apoptosis and estrogen receptor α induced proliferation [102]. Our study also reports the up
regulation of PTMA associated with AD in EC, HIP, MTG, PC and SFG.

Sema Domain, Immunoglobulin Domain (Ig), Transmembrane Domain (TM) And Short
Cytoplasmic Domain, (Semaphorin) 4C (SEMA4C) encodes for the protein Semaphorin-4C
which is essential for the activation of p38 MAPK. The importance of SEMA4C in the nervous
system is well defined as it plays an important role in the development and plasticity of central
nervous system [103–105]. Our study shows the over expression of SEMA4C across all the
regions. The expression of SEMA4C was originally identified in the nervous system and widely
expressed in the brain of embryonic and neonatal mouse [106]. p38 MAPK is emerging as a
new AD treatment strategy, and the dysregulation of p38 MAPK in AD is well defined and
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studied [92, 93, 107]. There is no single study that shows the relation of SEMA4C associated
with AD.

Gephyrin (GPHN) encodes for a neuronal assembly protein that activates the inhibitory
neurotransmitter receptors. The reduced expression of GPHN and synaptic dysfunction has
been reported in relation to Alzheimer’s disease [108], and plaque-like accumulations of
gephyrin in AD was identified by Hales et al. [109]. We also confirm the down regulation of
GPHN across all the brain region studied here.

Member of the RAS Oncogene Family (RAB2A) encodes for the Rab family protein which is
involved in GTP binding, hydrolysis and participates in cell cycle. Only a handful of studies
have been performed for RAB2A related with neurodegenerative disorders. In 2014, the dysre-
gulation of RAB2A in HIP region was reported by Parra-Damas et al. [110]. We also confirm
the down regulation of RAB2A in AD samples across EC, HIP, MTG, PC and SFG.

RWD Domain Containing 2A (RWDD2A) is a conserved region of about 110 amino acid
residues. It can be found in many ring finger proteins, dead like helicases and WD repeat con-
taining proteins and is mainly involved in protein interaction. A recent age-related study using
a mouse model of AD has reported over expression of RWDD2A in both HIP and Cortex
regions [111]. To the best of our knowledge this is the first study that reports the over expres-
sion of RWDD2A in five different human brain regions.

Gamma-Aminobutyric Acid (GABA) B Receptor, 1 (GABBR1) is the main inhibitory neuro-
transmitter in the human central nervous system. GABBR1 uses the ionotropic receptors to
produce fast synaptic inhibition and metabotropic receptors to produce slow and prolonged
inhibitory signals. This gene also plays a key role in hippocampal long-term potentiation, slow
wave sleep, muscle relaxation and antinociception.GABBR1 is encoded for the Major Histo-
compatibility Complex (MHC) [112] and the association between MHC and AD has been
reported in the literature [113]. The expression of GABBR1 is widely studied in relation with
brain disorders [114–116]. In 2005, Iwakiri et al. [117] reported that this gene could contribute
to the AD pathology in the HIP region through the alternations in the balance between the
neurotransmitter systems. We report the under expression of GABBR1 in AD across five differ-
ent brain regions. Detailed study of this gene can contribute new insights to the disease pro-
gression as this gene is one of the main transmitters in the nervous system.

Proteasome (Prosome, Macropain) 26S Subunit, Non-ATPase, 14 (PSMD14/RPN11) is a
multi protein complex that plays an important role in the degradation of ubiquitinated intra-
cellular proteins. In our study, PSMD14 is under expressed across all the brain regions.
Recently, the down regulation of PSMD14 has been reported in relation with AD [118] and
other brain disorders [119, 120].

Glutamic-Oxaloacetic Transaminase 2, Mitochondrial (GOT2) is a pyridoxal phosphate-
dependent gene that plays an important role in amino acid metabolism. Several studies have
reported the down regulation of GOT2 in AD [121, 122], which is consistent to our results in
all five regions. A recent study of RNA transcripts performed by our group also reported that
GOT2may play a key role in AD pathology [123].

Interferon (Alpha, Beta And Omega) Receptor 2 (IFNAR2) encodes for the type I mem-
brane protein which is involved in the binding and activation of the receptor that stimulates
Janus protein kinases like STAT1 and STAT2. Our study indicates the over expression of
IFNAR2 acroos five different brain regions. Several other studies have also reported the up reg-
ulation of INFAR2 in AD pathology [124–126].

Like-Glycosyltransferase (LARGE), one of the largest genes in the human genome, encodes
for the protein glycosyltransferase, which participates in glycosylation of alpha-dystroglycan
and the synthesis of glycoproteins. Glycosylation is closely associated with AD and other
neurodegenerative disorders [127–129]. In this study, LARGE is under expressed in different
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brain regions. Studies shows that LARGE plays key role in the glycosylation [130]. Studies also
shows that LARGE is closely associated with other brain disorders like Neuronal Migration
Disorder, dystroglycanopathies and Muscle–eye–brain disease [131, 132].

Fibroblast Growth Factor (Acidic) Intracellular Binding Protein (FIBP/FGF) encodes for an
intracellular protein that binds selectively to acidic fibroblast growth factor (aFGF). In our
study FIBP/FGF is up-regulated across all the regions. Many other studies also reported the
dysregulation of FIBP/FGF in relation with AD [133–135].

Gamma-Aminobutyric Acid (GABA) A Receptor, Gamma 2 (GABRG2) is the major inhibi-
tory neurotransmitter in the mammalian brain, where it acts as ligand-gated chloride channels.
Several studies have shown the down regulation of GABRG2 in HIP region of the brain in rela-
tion with AD and other neurodegenarative disorders [136–138]. Our study also indicate the
down regulation of GABRG2, not only in HIP region but also in EC, MTG, PC and SFG.

We also find 23 non coding features that are differentially expressed across all the brain
regions. Although non coding RNAs are the least understood, we cannot disregard their poten-
tial for functionality. So it is worth noting the importance of non coding features in AD as it
may act as strong future candidates for diagnostic and therapeutic tools in the clinical treat-
ment of AD. The pathway analysis of these non coding features resulted with 13 pathways,
given in Table 3.

The expression of non-coding features has already been linked to several human diseases
such as cancer and neurological disorder. Recently, studies of neural differentiation have
reported that the non-coding features act as additional players in the development of neurolog-
ical disorders [139–141]. In the list of 23 non-coding features,MALAT1, SNORD14E and
NEAT1 are already studied and reported to be related with neurodegenerative disorders. Our
study shows the under expression ofMALAT1, SNORD14E and the over expression of NEAT1
across five different brain regions. Very recently, studies reported that heat-stress–related
genes like SNORD14E is associated with the neurodegenerative disorders such as AD, Parkin-
son’s disease and Huntington disease [142, 143]. The key role of NEAT1 has been reported in
relation to neuronal activity, growth and branching [141, 144]. Also the up-regulation of
NEAT1 is reported in Huntington’s disease [145–147]. To the best of our knowledge, this is
the first study that report the over expression of the NEAT1 in relation with AD. Other non-
coding feature that we find overexpressed, RP11-488L18.10, has been reported as differentially
expressed in AD samples astrocyte cells [17].

Among these non coding features, four are microRNA precursors over expressed across five
brain regions. MicroRNAs play a key role in the development and function of nervous system,
as 70% of known microRNA precursors are expressed in the brain [148, 149]. These microRNA
precursors are dynamically regulated during brain development and target different genes and
perform different functions in the brain. A study by Sempere et al. [150] reported a group of 17
microRNAs, including hsa-mir-7-1 (miR-7), playing a key role in neuronal differentiation,
maturation, and/or survival in human. miR-7 controls the epidermal growth factor receptor
(EGFR) related signalling and promotes cell differentiation [151, 152]. The role of miR-7 in
modulating α-synuclein levels in the nervous system has also been reported in relation to AD
[153] and parkinson’s disease [154]. Several studies have shown the involvement of miR-7 with
brain development and diseases [154, 155]. Moreover, EGFR and the related MAPK signalling
pathway is in the top list of our pathway analysis result. That shows that miR-7 may have an
important role in the development of AD, even though further studies are needed to character-
ise its role. hsa-mir-570 (miR-570) has already been reported in relation with brain aging and
neurodegeneration [156].

hsa-mir-1229 (miR-1229) has been detected as a suitable biomarker for colon cancers [157].
To the best of our knowledge the role of miR-1229 has not been studied in relation with AD
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before. Differential expression of miR-1229 across five different brain regions is a novel result
from this study, as is the differential expression of the relatively unknown microRNA hsa-mir-
6821. Even though the mechanism behind the role of miRNAs in disease development remains
controversial, our findings suggest a possible suppression of various cellular functions through
the differential expression of this group of miRNAs. Among them, miR-7 and miR-570 have
been the subject of intense study in relation to AD. From the miRDB-reported gene targets
[158] of miR-7, 23 genes are in our Coloured (α,β)-k Feature Set result, while the targets of
miR-570 in our result list are 88. Among the top 15 genes given in Table 5, RPL15 is targeted
by miR-7 andWNK1 is targeted by miR-570. Although the understanding of the function and
role of non-coding features in different diseases lags far behind that of their related protein
partners, these features will have particular significance in the future as the role of non-coding
features in relation with neurodegenerative disorders becomes increasingly recognised.

The comparison with the list of genes collected from The Human Protein Atlas shows that
328 genes that are normally expressed in human brain appear either up or down regulated in
AD with respect to normal brain tissue in our results. An additional 17 genes which are not
expressed in normal human brain appear over expressed in AD. The top 3 genes with good
BF-Value are explained here.

BEN Domain Containing 5 (BEND5) plays an important role in the preservation of the ner-
vous system integrity by controlling the passage of harmful substances and inflammatory
cells into the brain. Our study shows the up-regulation of BEND5 in AD. Other studies also
reported the up-regulation of BEND5 in relation with AD [159, 160].

Zinc Finger Protein 415 (ZNF415) plays an important role in the gene expression pathway.
Our study shows the over expression of this gene across five different brain regions. Other
studies also shows the differential expression of ZNF415 related to AD [161].

TSPY-Like 5 (TSPYL5) plays an important role in cell growth and cellular response to
gamma radiation via regulation of the Akt signaling pathway. Our study shows the up-regula-
tion of this gene across different brain regions. The up-regulation of TSPYL5 has been reported
to be associated with AD [162].

Finally, this combined study of AD datasets provided us with new candidate genes that are
consistently differentially expressed across five different brain regions. Further investigation on
PSMB2, WNK1, RPL15, SEMA4C, RWDD2A and LARGEmay provide us new insights to the
development of AD. Hopefully, more research on miR-7 and miR570 may contribute more to
the Ad pathology. We also showed that there are significant differences in the gene expression
levels in different brain regions, suggesting there are unique regional activity patterns of AD
affected brain regions and significant differences in the neurodegenerative mechanisms within
each region.

Collectively these results illuminate the potential of these genes to provide insights into AD
pathogenesis and initial hope that microRNA precursors may serve as useful biomarkers for
AD severity even if further study needed. It is clear that researchers can benefit from these
highly AD correlated genes that may serves as markers for AD.

Conclusion
Ameta-analysis methodology with a clear mathematical interpretation and guarantees leads to
a largely improved set of markers of AD. We uncover a set of six genes and two miRNAs that
warrant further investigation for their high significance in AD-related processes. While devel-
opment of drugs directed to treatment of AD still lags behind, these new findings may provide
new insights into the disease mechanisms and thus make a significant contribution in the near
future towards understanding, prevention and cure.
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