
Vol.:(0123456789)

 Discover Oncology          (2025) 16:915  | https://doi.org/10.1007/s12672-025-02604-1

Discover Oncology

Analysis

Identification of circulating tumor cells marker genes as prognostic 
signature in triple‑negative breast cancer

Jia Hu1 · Kai‑Ming Zhang1 · Xi Wang1

Received: 8 January 2025 / Accepted: 6 May 2025

© The Author(s) 2025  OPEN

Abstract
Background Breast cancer represents a significant contributor to cancer-related mortality among women worldwide, 
with triple-negative breast cancer (TNBC) often exhibiting more aggressive clinical features and a heightened lethality 
rate. The emergence of malignant progression, along with issues of drug resistance, poses substantial challenges in the 
clinical management of this disease.
Methods The analysis of gene expression profiles at the single-cell level was conducted on circulating tumor cells (CTCs) 
obtained from TNBC patients, with the objective of identifying specific marker genes associated with CTCs. The TCGA 
database served as the training cohort for the development of a prognostic CTCs signature model, while the METABRIC 
dataset was utilized as the validation cohort to assess the robustness of the CTCs signature model. Furthermore, we inves-
tigated the differences in prognosis, immune scores, tumor mutational burden, and responses to immunotherapy and 
chemotherapy across various risk groups established based on the CTCs signature model. Colony formation and transwell 
assays were conducted to assess the influence of CTCs signature genes on cellular proliferation and invasive capabilities.
Results Seven marker genes associated with CTCs (BLOC1S3, FOXD2, GZMB, KCNJ13, NTRK3, SOAT2, and ZNF589) were 
identified and incorporated into a CTCs signature model. The risk score derived from this model stratified TNBC patients 
into high-risk and low-risk groups. Notably, the overall survival (OS) rate for the low-risk group was significantly higher 
than that of the high-risk group. Furthermore, the low-risk cohort exhibited more favorable prognostic outcomes and 
demonstrated heightened sensitivity to both immunotherapy and chemotherapy. Finally, knockdown experiments 
conducted in TNBC cell lines demonstrated that CTCs signature genes play a crucial role in the regulation of cellular 
proliferation and invasion.
Conclusion The CTCs signature model offers novel insights into the prognostic significance of CTC marker genes in TNBC. 
This understanding may serve as a valuable reference for predicting responses to immunotherapy and chemotherapy, 
as well as for revealing the molecular mechanisms and therapeutic targets of TNBC.
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1 Introduction

Breast cancer is the most prevalent form of cancer among women, with the highest incidence rate among female tumors 
[1]. While a majority of breast cancers are hormone receptor-positive (HR-positive), encompassing estrogen receptor 
(ER), progesterone receptor (PR), and human epidermal growth factor 2 protein (HER2), approximately 10% globally are 
classified as triple-negative breast cancers (TNBC) [2]. TNBC is distinguished by its progression independent of ER, PR, 
and HER2, and a statistical analysis of 10-year mortality rates among various breast cancer subtypes revealed that TNBC 
exhibited the lowest 10-year recurrence-free survival rate and 10-year overall survival rate [3]. Consequently, TNBC is 
typically associated with a poor prognosis, characterized by frequent drug resistance, metastasis, and recurrence, which 
are often fatal outcomes [4].

Circulating tumor cells (CTCs) are cells originating from primary tumors that enter the bloodstream and are implicated 
in the metastasis and recurrence of various cancers, such as breast cancer [5, 6]. In general, a heterogeneous population 
of CTCs is present, with only a small subset exhibiting the ability to endure the immune and pharmacological challenges 
of the bloodstream and to establish metastases in distant organs, thereby playing a significant role in mortality [7]. Con-
sequently, gaining a deeper understanding of the heterogeneity and distinctive biological markers of CTCs is imperative 
for informing novel approaches to prognostic prediction and evaluating clinical interventions in TNBC [8].

In recent times, the introduction of single-cell RNA-seq technologies has facilitated a comprehensive exploration of 
cellular heterogeneity to an unparalleled extent [9]. Initial findings from single-cell profiling have revealed substantial 
heterogeneity within tumors and a wide array of tumor cell subpopulations [10–12]. This study focused on analyzing the 
single-cell transcriptome of TNBC CTCs to enhance understanding of CTCs heterogeneity and characteristics. Through 
clinical correlation analysis, specific marker genes were identified and evaluated to discern CTCs with distinct biological 
attributes. Furthermore, this research underscores the promise of leveraging CTCs characterization to forecast prognosis 
and assess therapeutic response for TNBC patients.

2  Materials and methods

2.1  Data acquisition

Single-cell RNA sequencing data of TNBC CTCs was obtained from the Gene Expression Omnibus database (GEO; acces-
sion: GSE144495). This data was utilized to identify CTCs marker genes. The Cancer Genome Atlas (TCGA) dataset was 
acquired from the UCSC Xena platform (https:// xenab rowser. net/ datap ages/) and the Cancer Genome Atlas (TCGA) 
database (https:// portal. gdc. cancer. gov), while the Molecular Taxonomy of Breast Cancer International Consortium 
(METABRIC) dataset was retrieved from the cBioPortal (http:// www. cbiop ortal. org/). The bulk RNA sequencing data of 
TNBC was employed for further screening of prognosis-related CTCs marker genes, as well as for the construction and 
analysis of a prognostic CTCs signature.

2.2  Identification of CTCs marker genes

Single-cell RNA sequencing analysis was conducted utilizing the R package "monocle3" [13]. Non-linear dimensional 
reduction was carried out using the uniform manifold approximation and projection (UMAP) method. Identification of 
cell clusters and marker genes for each cluster was performed. Genes meeting the criteria of |log2(fold change)|≥ 1 and 
p ≤ 0.05 were identified as marker genes for CTCs. Gene ontology (GO) and Kyoko Encyclopaedia of Genes and Genomes 
(KEGG) pathway enrichments analysis were performed using the R package "ClusterProfiler" [14].

2.3  Construction and prognostic analysis of CTCs signature

The gene expression data of CTCs was integrated with information on overall survival (OS) time and status for each 
individual. With the aid of R packages "survival" [15], univariate Cox regression analysis was employed to pinpoint genes 
associated with prognosis. Genes exhibiting a p < 0.05 in the Cox regression analysis were deemed as prognosis-related 
CTCs marker genes. Then, the prognosis-related CTCs marker genes were analyzed using a multivariate Cox stepwise 

https://xenabrowser.net/datapages/
https://portal.gdc.cancer.gov
http://www.cbioportal.org/
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regression model, employing a bidirectional approach, in order to develop a CTC signature. The assumptions for the 
proportional hazards modeling were evaluated using the R package "survival" [15]. Subsequently, a CTCs signature model 
was developed with regression coefficients based on the expression of CTCs marker genes related to prognosis and 
patient survival data. The risk scores for each patient were calculated using the formula: risk score = Σni = 1(coefi*Expres
sioni), where "coef" represents the regression coefficient of the gene from the multivariate Cox regression, and "Expres-
sion" denotes the gene expression level. Patients were then categorized into high-risk and low-risk groups based on the 
median cut-off value. The prognostic value of the risk score was assessed through Kaplan–Meier analysis. Furthermore, 
the prognostic capacity of the risk score was evaluated using receiver operating characteristic (ROC) curve analysis and 
the area under the curve (AUC) through the R package "survivalROC" [16].

2.4  Tumor clinical pathological characteristics analysis

The study evaluated the predictive utility of the risk score in conjunction with clinicopathological variables. The Wilcoxon 
test was employed to examine the association between the risk score and clinical characteristics.

2.5  Tumor immune microenvironment analysis

The immunoscore was calculated using the ESTIMATE algorithm within the R package "estimate" [17]. The R package 
"cibersort" was employed to determine the proportion of 22 types of immune cells and analyze the extent of immune 
cell infiltration in the immune microenvironment [18].

2.6  Tumor mutational burden (TMB) analysis

The mutation data was extracted from TCGA and subsequently analyzed utilizing the R package "maftools" [19]. The 
TMB score was assessed using the following formula: TMB (mut/mb) = total number of mutations/size of target region 
coding area.

2.7  Immunotherapy response prediction

The Immunophenoscore (IPS), which can be derived using a machine learning approach based on two gene categories 
(PD-1 and CTLA4) that are intricately linked to immune cell function, was utilized to examine the response to immu-
notherapy in patients with varying risk scores. IPS was assessed by z-scores of genes related to immunity which was 
extracted from the Cancer Immunome Atlas (TCIA, https:// tcia. at/ home). Furthermore, we assessed the expression levels 
of immune checkpoint-associated genes in order to determine the sensitivity to immunotherapy across two distinct 
risk groups.

2.8  Chemotherapy response prediction

The therapeutic efficacy of chemotherapy was evaluated through the Genomics of Drug Sensitivity in Cancer (GDSC, 
https:// www. cance rrxge ne. org). The half maximal inhibitory concentration (IC50) of chemotherapeutic agents in indi-
viduals belonging to various risk groups was determined utilizing a predictive algorithm implemented via the R package 
"oncoPredict" [20]. A total of 198 GDSC drugs were selected for the analysis of IC50 values across high-risk and low-risk 
groups. It is important to note that lower IC50 values indicate a greater sensitivity to specific chemotherapeutic agents, 
while higher values suggest reduced sensitivity.

2.9  Cell culture and transfection

The normal breast cell line MCF-10A, along with the triple-negative breast cancer cell lines MDA-MB-231 and MDA-
MB-468, were maintained in RPMI (Roswell Park Memorial Institute) 1640 medium (Gibco, USA) enriched with 10% fetal 
bovine serum at 37 °C. Small interfering RNAs (siRNAs) were introduced into the cells via transfection using Lipofectamine 
3000 (Invitrogen, USA).

https://tcia.at/home
https://www.cancerrxgene.org
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2.10  Quantitative real‑time polymerase chain reaction (qRT‑PCR)

Total RNA was extracted from cells utilizing Trizol (Invitrogen, USA). The qRT-PCR assay was conducted using the 
ABI ViiATM7Dx Real-Time PCR System (Life Technologies, USA). For the detection of mRNA, 1 µg of total RNA was 
utilized for complementary DNA (cDNA) synthesis via a Reverse Transcription Kit (Takara, Japan). Subsequently, the 
synthesized cDNA was subjected to qRT-PCR with specific primers and the SYBR Green Real-time PCR Master Mix 
Kit (Toyobo, Japan). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) served as an internal reference, and the 
expression levels of the target genes were quantified using the  2−ΔΔCt method.

The RT-PCR primers were designed as the following:
BLOC1S3: Forward 5′-TTC CAG AAC TGC CTT CAC CC-3′; Reverse 5′-TAG AAC CAG CAC ACG GAA CC-3′.
FOXD2: Forward 5′-CCA AAG CCT TCT ACG CGG C-3′; Reverse 5′-CTG AGG AGT GCG GAC CTA AC-3′.
GZMB: Forward 5′-GAT CAT CGG GGG ACA TGA GG-3′; Reverse 5′-GGA GGC ATG CCA TTG TTT CG-3′.
KCNJ13: Forward 5′-GCA AAA GAA CTG AGA AAT ACA GCC T-3′; Reverse 5′-TGC AGC TGT GAA ACT GGT GA-3′.
NTRK3: Forward 5′-TTC TCT TCC TTT CCT CGG GC-3′; Reverse 5′-TCG CTG CTT CTT TGA AAC GC-3′.
SOAT2: Forward 5′-TGG AAA CAC TGA GAC GCA CA-3′; Reverse 5′-TCA TCA AGC AGG GAC TTG CG-3′.
ZNF589: Forward 5′-CAG AAG GCA GTC ACA GCA GA-3′; Reverse 5′-GTT GCG GAG GAC TGA CTC AA-3′.
GAPDH: Forward 5′-GAA AGC CTG CCG GTG ACT AA-3′; Reverse 5′-TTC CCG TTC TCA GCC TTG AC-3’.

2.11  Colony formation assay

Cells were subjected to trypsinization and subsequently plated to evaluate clonogenic survival. Over a period of 
seven days, the cells were permitted to form colonies in a medium maintained at 37 °C. The colonies were then fixed 
using 4% formaldehyde for a duration of 15 min, followed by staining with crystal violet (Beyotime) for 20 min. After 
washing and capturing photographic documentation, the visible colonies were quantified utilizing ImageJ software.

2.12  Transwell assay

Cell invasion was assessed utilizing transwell-chamber culture systems (Becton Dickinson). Cells were introduced 
into the upper chamber of the transwell, which was coated with matrigel, using serum-free RPMI-1640 medium. Con-
currently, RPMI-1640 medium supplemented with 10% fetal bovine serum was placed in the lower chamber. After a 
24-h incubation period, non-invading cells adhering to the upper surface of the upper chamber were removed with 
cotton swabs. Subsequently, the cells that had migrated to the lower surface of the filters were fixed and stained with 
crystal violet (Beyotime). The number of invaded cells was quantified using a light microscope (Leica).

2.13  Statistical analysis

Statistical analyses were conducted utilizing R version 4.3.0. The Wilcox test was employed to ascertain statistical 
variances in categorical variables. Survival curves were generated using the Kaplan–Meier method, and the signifi-
cance of differences was evaluated through the log-rank test. Statistical significance was established at a significance 
level of p < 0.05.

3  Results

3.1  Cell heterogeneity in CTCs of TNBC

Initially, the GSE144495 dataset was utilized to generate a single-cell RNA-seq dataset comprising 39 CTCs obtained from 
13 patients with TNBC. Through the application of UMAP for dimension reduction, two distinct cell clusters were identi-
fied, indicating that these clusters can represent the similarities and variances among CTCs at the individual cell level 
(Fig. 1A). Furthermore, the presence of CTCs from the same TNBC patient within both identified cell clusters suggests a 
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Fig. 1  Identification CTCs marker genes by single-cell RNA sequencing analysis. A UMAP plot colored by various cell clusters. B UMAP plot colored by 
various patients. C GO functional enrichment analysis of CTCs marker genes. D KEGG functional enrichment analysis of CTCs marker genes
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notable transcriptional heterogeneity among CTCs from the same patient (Fig. 1B). Consequently, the heterogeneity of 
CTCs was delineated through the analysis of single-cell RNA-seq data.

In order to examine the differential expression of genes across cell clusters, a set of 366 marker genes that exhibit 
variation between two CTCs clusters in UMAP was subjected to screening based on specific criteria. Subsequently, GO 
and KEGG functional enrichment analyses were conducted on the 366 marker genes to investigate the heterogeneity 
of cell functions within CTCs. The results of the GO functional enrichment analysis indicated significant enrichment of 
these genes in biological processes such as immune system response, stem cell functions, cell adhesion, and molecular 
functions related to the extracellular matrix structure (Fig. 1C). Notably, these genes were predominantly enriched in 
cellular components such as the basement membrane, extracellular matrix, and major histocompatibility complex (MHC) 
protein complex (Fig. 1C). Additionally, the KEGG enrichment analysis revealed a significant association of these genes 
with extracellular matrix interactions and T cell immune responses (Fig. 1D).

3.2  Construction of prognostic CTCs signature

In order to investigate the prognostic significance of CTCs marker genes in TNBC, we conducted univariate Cox regres-
sion analysis and Kaplan–Meier survival analysis for each CTCs marker gene with respect to OS. By applying screening 
criteria based on ER, HER2, and PR status, we identified 132 TNBC samples from TCGA dataset. In the TCGA dataset, the 
univariate Cox regression analysis identified 14 CTCs marker genes significantly associated with OS (p < 0.05) (Fig. 2A). 
Subsequently, These 14 CTCs marker genes were integrated into a multivariate Cox proportional hazards regression 
model to identify the relevant genes and their associated coefficients. Ultimately, 7 significant genes (BLOC1S3, FOXD2, 
GZMB, KCNJ13, NTRK3, SOAT2 and ZNF589) were incorporated into the CTCs signature, and the risk score for each patient 
in the TCGA dataset was then computed using this CTCs signature model (Fig. 2B).

In the TCGA dataset, TNBC patients were stratified into high-risk and low-risk groups based on a median cut-off risk 
score, and the relationship between risk score, survival outcomes, and CTCs signature expression levels was visually repre-
sented (Fig. 2C). Analysis indicated that patients with higher risk scores were associated with increased mortality events. 
Kaplan–Meier survival analysis demonstrated that high-risk patients had significantly shorter OS compared to low-risk 
patients (p < 0.0001) (Fig. 2D). Time-dependent ROC analysis was conducted to evaluate the predictive performance of 
the CTCs signature, yielding AUC values of 0.869 and 0.771 at 3 and 5 years separately (Fig. 2E).

The CTCs signature was validated in the METABRIC dataset, comprising 308 TNBC patients, by employing screening 
criteria based on ER, HER2, and PR status. CTCs signature risk score was computed for each patient, leading to their clas-
sification into high-risk and low-risk groups. As demonstrated by Kaplan–Meier analysis, high-risk patients exhibited 
significantly worse prognoses compared to low-risk individuals using the median-based cut-off (p = 0.026) or the quartile-
based cut-offs (p = 0.00027) (Fig. 2F). A time-dependent ROC curve analysis was performed, resulting in AUC values of 
0.622 at 3 years and 0.644 at 5 years when employing a median-based cut-off, and the analysis yielded AUC values of 
0.677 at 3 years and 0.685 at 5 years when utilizing quartile-based cut-offs (Fig. 2G). These results suggest an association 
between the CTCs signature (comprising BLOC1S3, FOXD2, GZMB, KCNJ13, NTRK3, SOAT2 and ZNF589 genes) and the 
survival prognosis of TNBC patients.

3.3  Clinical features and mutation patterns of different risk groups of CTCs signature

In conjunction with clinicopathological characteristics associated with prognosis, an examination was conducted to 
assess the relationship between CTCs signature and clinicopathological variables such as TNM stage, recurrence, tumor 
size, and lymph node status. The distribution of CTCs signature risk scores in TNBC patients from the TCGA dataset was 
calculated and stratified based on each clinical factor. The findings indicated higher risk scores in the stage III/stage 
IV, T3/T4, N2/N3, and recurred groups (p < 0.05) (Fig. 3A). Additionally, we conducted a comparable analysis utilizing 
the METABRIC dataset, and it was also showed that TNBC patients exhibiting elevated risk scores were associated with 
advanced TNM staging, increased recurrence rates, and larger tumor dimensions (p < 0.05) (Fig. 3B). These results indi-
cated a potential association between the CTCs signature and tumor progression.

We also illustrated the mutational landscape, utilizing waterfall plots to present mutation data for genes across the 
various risk groups (Fig. 3C). Notably, TP53 and TTN emerged as the two most frequently mutated genes in both risk 
groups. Additionally, USH2A and ZFHX4 were identified as unique high-frequency mutated genes in high-risk patients, 
ranking fifth and ninth, respectively. Conversely, low-risk patients exhibited a higher mutation frequency of CREBBP 
(sixth) and FCGBP (eighth).



Vol.:(0123456789)

Discover Oncology          (2025) 16:915  | https://doi.org/10.1007/s12672-025-02604-1 
 Analysis

3.4  Immune features and therapy response of different risk groups of CTCs signature

In order to elucidate the impact of CTCs signature on the immune microenvironment of patients with TNBC, an assess-
ment was conducted on the immunoscore and levels of immune infiltration. In the TCGA dataset, high-risk patients 
exhibited a decrease in immune, stromal, and estimate scores, while tumor purity was elevated in this group (Fig. 4A). 
Subsequent analysis compared the proportions of 22 immune cell types between high-risk and low-risk groups. In the 
TCGA dataset, high-risk patients demonstrated heightened levels of infiltration by CD4 memory resting T cells and M0 
macrophages, alongside reduced levels of CD8 T cells and CD4 memory activated T cells (Fig. 4B). In a comparable manner, 

Fig. 2  Screen and construction of the prognostic CTCs signature model. A Univariate Cox analysis of CTCs marker genes that were associ-
ated with overall survival of TNBC in the TCGA dataset. B CTCs marker genes related risk score model was developed by multivariate Cox 
stepwise analysis. C Distribution of risk scores, the survival of patients and the heatmap of expression of CTCs signature genes in the TCGA 
dataset. D Kaplan–Meier curves of risk scores for the overall survival of TNBC patients in the TCGA dataset. E ROC curves of risk scores to pre-
dict the 3 years and 5 years overall survival in the TCGA dataset. F Kaplan–Meier curves of risk scores for the overall survival of TNBC patients 
in the METABRIC dataset. G ROC curves of risk scores to predict the 3 years and 5 years overall survival in the METABRIC dataset
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the METABRIC dataset also revealed that immune, stromal, and estimate scores were significantly reduced in high-risk 
patients (Fig. 4C). These high-risk patients also demonstrated heightened infiltration of CD4 memory resting T cells, M0/
M2 macrophages, and activated mast cells, while concurrently exhibiting diminished infiltration of memory B cells, CD8 

Fig. 3  Correlation between risk scores and clinical features in TNBC patients. A The relation between risk score and TNM stages, recurrence 
status, tumor size status, and lymph node status of TNBC patients in the TCGA dataset. B The relation between risk score and TNM stages, 
recurrence status, tumor size status, and lymph node status of TNBC patients in the METABRIC dataset. C Waterfall plot shows the most fre-
quently mutated genes of TNBC patients in low-risk and high-risk groups
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T cells, CD4 memory activated T cells, M1 macrophages, and resting mast cells (Fig. 4D). These findings underscore the 
association between distinct immune cell infiltration patterns and the CTCs signature.

Then, we conducted an investigation to determine whether there are differences in the potential for immunotherapy 
response among various risk groups. Initially, we calculated the TMB within the TCGA cohort to assess the likelihood of 
immunotherapy response across different risk groups, as genomic alterations may significantly influence tumor immunity. 
As results, low-risk patients exhibited a higher TMB compared to high-risk patients, indicating that low-risk individuals 
may have a more favorable response to immunotherapy (Fig. 5A). Subsequently, the IPS analysis demonstrated that 
low-risk patients had an increased likelihood of responding to anti-PD-1 and anti-CTLA4 treatments, further suggest-
ing that low-risk group may respond more effectively to immune checkpoint inhibitors (ICIs) (Fig. 5B). Additionally, we 
evaluated the expression levels of immune checkpoint-associated genes within the two risk groups, revealing that genes 
such as CTLA4 and PDCD1 were expressed at significantly higher levels in the high-risk group compared to the low-risk 
group (Fig. 5C). Furthermore, findings from the METABRIC cohort corroborated that the expression levels of immune 
checkpoint-associated genes were linked to a risk signature based on CTCs marker genes, reinforcing the notion that 
low-risk patients are likely to exhibit a better response to ICIs (Fig. 5D).

Finally, the chemotherapy drug sensitivity of each patient with TNBC was evaluated using the GDSC database, reveal-
ing variations in IC50 values between two distinct risk groups. In the TCGA dataset, 24 drugs from the GDSC exhibited a 
negative correlation between risk scores and IC50 values, and notable examples of these drugs include Olaparib, Ruxoli-
tinib, Niraparib, and Axitinib (Fig. 6A). Therefore, it was observed that TNBC patients classified as low-risk demonstrated 
enhanced responsiveness to chemotherapy. Similarly, individuals classified in the low-risk group exhibited heightened 
sensitivity to a range of drugs across the METABRIC datasets (Fig. 6B). In summary, the CTCs signature demonstrates 
predictive capabilities for determining the efficacy of immunotherapy and chemotherapy treatments in TNBC patients.

3.5  Validation of CTCs signature genes

To assess the expression levels of CTCs signature genes, we employed qRT-PCR to evaluate the relative differential expres-
sion of BLOC1S3, FOXD2, GZMB, KCNJ13, NTRK3, SOAT2, and ZNF589 in TNBC cell lines (MDA-MB-231 and MDA-MB-468 
cells) compared to normal breast epithelial cells (MCF-10A cells). Among the seven CTC signature genes analyzed, FOXD2 
and KCNJ13 exhibited elevated expression levels in MDA-MB-231 cells relative to MCF-10A cells, while GZMB and NTRK3 
demonstrated reduced expression in MDA-MB-231 cells compared to MCF-10A cells (Fig. 7A). Furthermore, BLOC1S3, 
FOXD2, and SOAT2 were expressed at higher levels in MDA-MB-468 cells than in MCF-10A cells, whereas NTRK3 and 
ZNF589 showed lower expression levels in MDA-MB-468 cells compared to MCF-10A cells (Fig. 7B). These findings indi-
cate that CTC signature genes exhibit differential expression in TNBC cells, although the specific differentially expressed 
genes vary across different TNBC cell lines.

To assess the functional roles of CTCs signature genes, siRNAs targeting BLOC1S3, FOXD2, GZMB, KCNJ13, NTRK3, 
SOAT2, and ZNF589 were transfected into MDA-MB-231 cells to create knockdown cell lines (Fig. 8A). The results from 
the colony formation assay indicated that the knockdown of GZMB, NTRK3, and ZNF589 enhanced the capacity for 
colony formation, whereas the knockdown of BLOC1S3, FOXD2, KCNJ13, and SOAT2 diminished this capacity (Fig. 8B). 
Furthermore, findings from the transwell assay demonstrated that the knockdown of GZMB, NTRK3, and ZNF589 facili-
tated increased cell invasion, while the knockdown of BLOC1S3, FOXD2, KCNJ13, and SOAT2 resulted in a reduction of 
cell invasion (Fig. 8C). Collectively, these results suggest that CTCs signature genes are instrumental in the processes of 
proliferation and invasion in TNBC cells.

4  Discussion

Notwithstanding advancements in early detection and therapeutic interventions, breast cancer continues to be 
deemed incurable once metastasis and recurrence occur [21, 22]. TNBC, which accounts for approximately 20% 
of all breast cancer cases, is distinguished by its more aggressive clinical characteristics relative to other breast 
cancer subtypes [23]. TNBC cases exhibit certain common traits, including a basal-like phenotype, histological 
features indicative of a pushing border of invasion and a central necrotic area, as well as a propensity for high rates 
of metastasis [24]. Furthermore, TNBC is marked by a rapidly increasing recurrence rate within the initial two years 
post-diagnosis, peaking at 2 to 3 years [25]. In comparison to patients with non-TNBC, those diagnosed with TNBC 
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experience significantly shorter relapse-free survival (RFS), characterized by a reduced interval from diagnosis to 
relapse and from relapse to mortality [26]. Consequently, metastasis and recurrence continue to be the predominant 
causes of mortality among patients with TNBC.

In order to clarify the essential genes associated with TNBC, we conducted a single-cell gene expression profile analysis 
on CTCs obtained from TNBC patients. This analysis facilitated the identification of CTCs marker genes, which were subse-
quently examined for their prognostic relevance. Following rigorous screening, we identified seven CTCs marker genes 
(BLOC1S3, FOXD2, GZMB, KCNJ13, NTRK3, SOAT2, and ZNF589) that were utilized to develop a prognostic CTCs signature 
model, which demonstrated a correlation with survival, progression and therapy (immune and drug) response in TNBC 
patients. Research has demonstrated that a subset of CTCs can detach from primary tumors and enter the bloodstream, 
where they endure various physical, oxidative, pharmacological, and environmental stresses prior to disseminating to 
distant organs [27, 28]. CTCs have the capacity to initiate metastasis and contribute to disease recurrence, and the biologi-
cal characteristics of these CTCs are closely associated with the metastatic and recurrent behavior of cancers, including 
TNBC [29]. Consequently, in contrast to the tissue signature models for TNBC, the CTCs signature model is applicable for 
liquid biopsy, facilitating the monitoring of metastasis and recurrence in TNBC cases [30].

Given that the CTCs signature model is correlated with poor survival probability and malignant progression in patients 
with TNBC, we hypothesized that the seven genes (BLOC1S3, FOXD2, GZMB, KCNJ13, NTRK3, SOAT2, and ZNF589) play 
critical roles in the biological characteristics and behaviors of CTCs. Our investigation demonstrated that GZMB, NTRK3, 
and ZNF589 serve as protective risk factors influencing the prognosis of TNBC patients. Furthermore, the expression 
levels of GZMB, NTRK3, and ZNF589 were found to be reduced in TNBC cell lines, where they exhibited inhibitory effects 
on cell proliferation and invasion. GZMB (granzyme B) encodes a protein that is part of the granzyme subfamily, with 
the preproprotein being secreted by natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). This protein undergoes 
proteolytic processing to yield the active protease, which induces apoptosis in target cells [31]. GZMB is implicated in 
chronic inflammation and the tumor immune microenvironment, and its low expression may correlate with poor prog-
nostic outcomes in various cancers [32, 33]. NTRK3 (neurotrophic receptor tyrosine kinase 3) encodes a member of the 
neurotrophic tyrosine receptor kinase family, functioning as a membrane-bound receptor that, upon binding with neu-
rotrophins, undergoes autophosphorylation and activates members of the MAPK pathway [34]. Signaling through NTRK3 
is associated with cellular differentiation and may contribute to the development of proprioceptive neurons responsible 
for sensing body position; furthermore, mutations in NTRK3 have been linked to medulloblastomas, breast carcinomas, 
and other malignancies [35, 36]. ZNF589 (zinc finger protein 589) is part of the extensive family of Krüppel-associated 
box domain-zinc finger transcription factors and plays a significant role in the differentiation of hematopoietic stem 
cells [37]. Research has indicated that ZNF589 may serve as a potential prognostic biomarker and a tumor suppressor 
in breast cancer [38].

Conversely, the genes BLOC1S3, FOXD2, KCNJ13, and SOAT2 have been linked to negative clinical outcomes. Further-
more, these genes exhibited elevated expression levels in TNBC cell lines, where they facilitated cellular proliferation 
and invasion. BLOC1S3 (biogenesis of lysosomal organelles complex 1 subunit 3) encodes a protein that is a constituent 
of the BLOC1 multi-subunit protein complex, which is essential for the biogenesis of specialized organelles within the 
endosomal-lysosomal system, including platelet dense granules and melanosomes [39]. Mutations in BLOC1S3 are impli-
cated in Hermansky-Pudlak syndrome, a condition characterized by lysosomal storage defects, and the expression levels 
of BLOC1S3 have been shown to predict outcomes in cancer patients [40–42]. FOXD2 (forkhead box D2) is a member of 
the forkhead family of transcription factors, which play a critical role in lymphocyte development and immunoregula-
tion; it has also been suggested that FOXD2 is involved in T cell activation [43, 44]. Numerous studies have reported 
elevated expression of FOXD2 in various cancers, underscoring its significant role in cancer progression [45, 46]. KCNJ13 
(potassium inwardly rectifying channel subfamily J member 13) encodes a protein that is part of the inwardly rectifying 
potassium channel family, which forms ion channel pores facilitating the influx of potassium ions into cells; mutations in 
this gene are associated with snowflake vitreoretinal degeneration [47, 48]. SOAT2 (sterol O-acyltransferase 2) encodes 
a membrane-bound enzyme located in the endoplasmic reticulum that synthesizes intracellular cholesterol esters from 
long-chain fatty acyl-CoA and cholesterol, with these esters subsequently stored as cytoplasmic lipid droplets [49]. SOAT2 

Fig. 4  Correlation between risk scores and the level of immune infiltration. A The relation between risk score and immune score, stromal 
score, estimate score, and tumor purity of TNBC patients in the TCGA dataset. B Box plot and heatmap of the number of immune cells in 
the TCGA dataset by CIBERSORT. C The relation between risk score and immune score, stromal score, estimate score, and tumor purity of 
TNBC patients in the METABRIC dataset. D Box plot and heatmap of the number of immune cells in the METABRIC dataset by CIBERSORT. (* 
p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001)
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Fig. 5  Correlation between risk scores and the sensitivity to immunotherapy. A The relation between risk score and TMB levels of TNBC 
patients in the TCGA dataset. B The relation between risk score and IPS of TNBC patients in the TCGA dataset. C The relation between risk 
score and immune checkpoint-associated genes of TNBC patients in the TCGA dataset. D The relation between risk score and immune 
checkpoint-associated genes of TNBC patients in the METABRIC dataset. (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001)



Vol.:(0123456789)

Discover Oncology          (2025) 16:915  | https://doi.org/10.1007/s12672-025-02604-1 
 Analysis

has demonstrated independent prognostic value regarding survival outcomes and may serve as a predictive biomarker 
in breast and lung cancers [50, 51]. Thus, the CTCs signature genes are closely related to various aggressive cancer traits, 
including immune evasion, chemotherapy resistance, and metastatic behavior.

Fig. 6  Correlation between 
risk scores and the sensitiv-
ity to chemotherapy. A The 
relation between risk score 
and the estimated IC50 of 
chemotherapy drugs in the 
TCGA dataset. B The relation 
between risk score and the 
estimated IC50 of chemother-
apy drugs in the METABRIC 
dataset. (* p < 0.05, ** p < 0.01, 
*** p < 0.001, **** p < 0.0001)

Fig. 7  Verification of CTCs 
signature genes expression. A 
Expression of CTCs signature 
genes in normal breast cell 
line MCF-10A and TNBC cell 
line MDA-MB-231. B Expres-
sion of CTCs signature genes 
in normal breast cell line 
MCF-10A and TNBC cell line 
MDA-MB-468. (* p < 0.05)
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5  Limitations

However, there are several limitations of this study. Firstly, the predictive efficacy of the CTCs signature model may be 
influenced by the characteristics of the dataset utilized, indicating a necessity for further optimization to enhance its 
generalizability and clinical relevance. Secondly, this investigation is deficient in validation of CTCs signature genes 
at protein levels within tissue samples derived from TNBC patients, encompassing primary tumors, metastatic sites, 
and circulating tumor cells. Furthermore, in vivo functional studies are essential to clarify the mechanistic roles of 
these genes in the progression of TNBC. Prospective validation through clinical trials is also required to bolster the 
transparency and future direction of this study.

6  Conclusion

In conclusion, this study presents a transcriptional analysis of CTCs in TNBC, which has led to the identification of 
specific CTCs marker genes and the establishment of a prognostic CTCs signature associated with TNBC survival and 
progression. Moreover, the genes comprising this CTCs signature play a role in the modulation of cellular proliferation 
and invasion in TNBC cells. Consequently, the findings of this research may offer potential gene targets for prognostic 
assessment, thereby contributing to the enhancement of clinical outcomes and informing novel therapy strategies 
in patients with TNBC.

Fig. 8  Verification of CTCs signature genes function. A The efficiency of siRNA targeting CTCs signature genes. B Colony formation assay on 
TNBC cells following the knockdown of CTCs signature genes. C Transwell assay on TNBC cells following the knockdown of CTCs signature 
genes. (* p < 0.05)
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