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An estimated human population of 170 million inhabit at high-altitude (HA, above

2,500m). The potential pathological effects of HA hypobaric hypoxia during gestation

have been the focus of several researchers around the world. The studies based on the

Himalayan and Central/South American mountains are particularly interesting as these

areas account for nearly 70% of the HA world population. At present, studies in human

and animal models revealed important alterations in fetal development and growth at HA.

Moreover, vascular responses to chronic hypobaria in the pregnant mother and her fetus

may induce marked cardiovascular impairments during pregnancy or in the neonatal

period. In addition, recent studies have shown potential long-lasting postnatal effects

that may increase cardiovascular risk in individuals gestated under chronic hypobaria.

Hence, the maternal and fetal adaptive responses to hypoxia, influenced by HA ancestry,

are vital for a better developmental and cardiovascular outcome of the offspring. This

mini-review exposes and discusses the main determinants of vascular dysfunction due

to developmental hypoxia at HA, such as the Andean Mountains, at the maternal

and fetal/neonatal levels. Although significant advances have been made from Latin

American studies, this area still needs further investigations to reveal the mechanisms

involved in vascular dysfunction, to estimate complications of pregnancy and postnatal

life adequately, and most importantly, to determine potential treatments to prevent or

treat the pathological effects of being developed under chronic hypobaric hypoxia.

Keywords: gestation, chronic hypoxia, hypobaria, endothelial dysfunction, cardiovascular, placenta, fetal

programming

INTRODUCTION

An estimated human population of 170 million inhabit at high-altitude (HA, above 2,500m)
(Moore et al., 1998; Herrera et al., 2015). The pathological effects of HA hypobaric hypoxia during
gestation have been the focus of several researchers worldwide, specifically in the cardiovascular and
respiratory systems. The studies based on the Himalayan and Central/South American mountains
are of particular interest, as these areas account for nearly 70% of the HA world population.
Furthermore, cities with the higher population density at HA are located in the Andean Mountains
(Moore et al., 1998). At present, studies in human and experimental animal models revealed
significant impairments in fetal development and growth at HA. Moreover, vascular responses
to chronic hypobaria in the pregnant mother and her fetus may induce marked cardiovascular
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dysfunctions during pregnancy or in the neonatal period
(Herrera et al., 2015). In addition, recent studies have shown
potential long-lasting postnatal effects that may increase
cardiovascular risk in individuals gestated under chronic
hypobaria (Ducsay et al., 2018). Thematernal, placental, and fetal
adaptive responses to hypoxia are vital for a better developmental
and cardiovascular outcome at birth. Still, these responses are
generally accompanied by an increased risk of developing chronic
non-communicable diseases.

PREGNANCY AT HIGH-ALTITUDE
HYPOBARIA

Several environmental alterations occur at HA, such as increased
radiation, decreased environmental temperature and humidity,
and reduced barometric pressure. The latter is considered the
most important for pregnancy development as it impacts the
environmental oxygen pressure (PO2) and, therefore, the oxygen
(O2) availability for the mother and fetus (Julian, 2011; West,
2017). In fact, at altitudes higher than 2,500m above sea
level, most mammals (including humans) undergo decreased
O2 saturation and hypoxemia (Moore, 2001; Herrera et al.,
2015). This chronic hypoxemia during pregnancy drives several
maternal, placental, fetal, and postnatal consequences that affect
oncoming health (Yzydorczyk et al., 2017; Ducsay et al., 2018;
Moore, 2021).

MATERNAL EFFECTS

Maternal cardiovascular responses to HA have been proposed
as main drivers of the pregnancy complications at HA,
such as systemic hypertension, bleeding, oligoamnios, placental
insufficiency, preterm labor, and IUGR (Keyes et al., 2003; Lorca
et al., 2019; Bailey et al., 2020; Figure 1). HA pregnancies have
a ∼30% increased frequency of hypertensive disorders when
comparing similar populations (Bailey et al., 2020; Grant et al.,
2021) and specifically duplicate gestational hypertension (Grant
et al., 2021). However, controversies have been reported in
preeclampsia (PE) prevalence in HA populations. While some
studies reveal an increased frequency of PE, up to 16% (Palmer
et al., 1999; Keyes et al., 2003; Bailey et al., 2020), others
have shown a decreased risk of developing PE at HA (Grant
et al., 2021). This discrepancy in PE prevalence may be due
to ethnic differences in the studied population. For example,
HA pregnancies in Andeans vs. Europeans have higher estrogen
levels, possibly a protective factor for PE (Charles et al., 2014). In
addition, Andean residents have increased antioxidant capacity
and diminished oxidative stress during pregnancy, compared to
European residents at HA (Julian et al., 2012). Also, Andeans, on
average, have an increased uterine blood flow and O2 delivery
during pregnancy (Julian et al., 2009). Conversely, an enhanced
systemic vascular response to chronic hypoxia in HA newcomers
may induce maternal hypertensive disorders and PE (Ahmed
et al., 2017; Tejera et al., 2021; Figure 1). Based on the little
evidence, it seems that hypertensive disorders during pregnancy
are more common at HA, but multigenerational residents appear

to be protected relative to newcomers. Still, more studies are
needed to clarify this protection and the involved mechanisms.

HA impairs maternal and fetal vasodilatory capacity by several
pathways. One of the most affected mechanisms is the nitric
oxide(NO)-dependent arterial vasodilation because chronic
hypoxia determines endothelial dysfunction and oxidative
stress, both enhanced at HA (Herrera et al., 2014, 2015).
However, this decreased NO function did not affect the total
vasodilation capacity of myometrial arteries and showed an
enhanced prostanoid vasodilator function in pregnant women
(Lorca et al., 2019). The enhancement of alternative vasodilator
pathways may be an important protective in maternal and
fetal cardiovascular response, such as prostacyclin, endothelium-
derived hyperpolarizing factor (EDHF), carbon monoxide (CO),
or hydrogen sulfide (H2S) (Yzydorczyk et al., 2017; Gao and
Galis, 2021). However, these vasodilator pathways have been
widely unexplored at HA.

MATERNAL ACCLIMATIZATION AND
ADAPTATION

Several studies have described short-term responses or
acclimatization (newcomers) and long-term responses or
adaptation (evolutionary) to HA in the Andean population
(Moore, 2017). Most of the cardiovascular and pulmonary
adaptive mechanisms in the Andean population account for an
improved O2 transport delivery and metabolism. Conversely,
adapted Andeans are characterized by having larger lung
volumes, diminished PAO2 to PaO2 gradients, less hypoxic
pulmonary vasoconstrictor response, enhanced uterine artery
blood flow during pregnancy, increased birth weight and cranial
circumference, and improved cardiac O2 utilization relative to
lowlanders (Bennett et al., 2008; Moore et al., 2011; Pizarro-Ortiz
et al., 2014; Julian and Moore, 2019), suggesting an overall
greater efficiency of O2 transfer and utilization.

Furthermore, Andean ancestry determines enhanced
adaptations to HA and therefore, better pregnancy outcomes.
For instance, Andeans have significantly higher live births to
miscarriages ratios than Mestizo or European women in La Paz,
Bolivia (Grant et al., 2020). Moreover, the impact of HA on
fetal growth and birth weight is independent of economic status
(Giussani et al., 2001). In addition, HA-maternal ancestry is a
strong determinant of pregnancy outcome, but not the paternal
ancestry (Soria et al., 2013; Grant et al., 2020).

Pregnant Andeans have an increased uterine artery diameter
and blood flow, with enhanced uteroplacental O2 delivery,
associated with an enhanced fetal growth compared to
European women exposed to HA hypoxia (Wilson et al.,
2007). Furthermore, babies with heavier birth weights and
greater ponderal indices were born to Andean women with
higher ventilation, respiratory frequency, and lower tidal volume
during pregnancy (Vargas et al., 2007).

The HA exposure during many generations has induced a
positive natural selection in several genes. For instance, egl-9
homolog 1 (EGLN1), a gene that encodes for prolyl hydroxylase 2
enzyme (PHD2), key in the O2 sensing and the hypoxia-inducible
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FIGURE 1 | Schematic representation of the gestational responses under hypobaric hypoxia. The left panel represents the gestational and perinatal consequences of

a non-adapted (European ancestry) population to hypobaric hypoxia. The right panel depicts the Andean population adaptations to increase tissue oxygenation,

increase hemoglobin concentration, and differentially expression of vascular mediators. IUGR, intrauterine growth restriction; PAHN, pulmonary arterial hypertension of

the neonate; HIF-1α, hypoxia-inducible factor 1α; EPO, erythropoietin; RBC, red blood cells; NO, nitric oxide; ET-1, endothelin-1.

factor 1α (HIF-1α) degradation were found at higher frequency
in Quechua compared with lowland populations (Bigham et al.,
2010; Brutsaert et al., 2019). In addition, Andeans have low
endothelin-1 (ET-1) levels, a potent vasoconstrictor induced
by HIF-1, during low or high-altitude pregnancies. However,
European mothers markedly increased plasma ET-1 levels at HA
(Moore et al., 2004). Moreover, several key HIF-regulatory and
targeted genes are responsible for adaptation to HA in Andeans
(reviewed elsewhere by Bigham, 2016). Furthermore, single
nucleotide polymorphisms (SNPs) associations with birth weight
have been identified near coding regions for two genes, Protein
Kinase AMP-Activated Catalytic Subunit Alpha 1 (PRKAA1)
and Endothelin Receptor Type A (EDNRA), implicated in O2

sensing and vascular control (Bigham et al., 2014). In addition,
the authors found significant associations of these SNPs with
vascular protection and HA-associated fetal growth restrictions.
These adaptations have presumably been selected in the last
10,000–15,000 years of human populations living at the Andean
Altiplano (Aldenderfer, 2003).

Altogether, the maternal responses to achieve a successful
pregnancy at HA will, therefore, depend on the altitude-ancestry
characteristics and the individual adaptive capacity (Figure 1).

FETAL EFFECTS

Growth
The most frequent fetal finding at HA pregnancies is intrauterine
growth restriction, with marked decreases in fetal size and
weight relative to lowland gestations. Interestingly, HA ancestry
is closely related to birth weight when comparing different
ethnicities at similar altitudes (Moore, 2001). The decline in birth
weight is markedly less in Tibetans (∼88 g each 1,000m) or
Andeans (∼89 g each 1,000m) than in Europeans (∼119 g each

1,000m) and Han (∼153 g each 1,000m) (Moore et al., 2011).
In addition, several other studies show that Andean ancestry
raises birth weight (Giussani et al., 2001; Bennett et al., 2008;
Soria et al., 2013). Therefore, multigenerational Andean residents
are relatively protected from altitude-associated fetal growth
reductions (Julian et al., 2007, 2011; Pizarro-Ortiz et al., 2014;
Figure 1.

Cardiovascular Effects
Development under chronic hypoxia induces marked
cardiovascular effects, particularly in the placental, umbilical
and pulmonary circulation, causing vascular hypertension,
oxidative stress and remodeling (van Patot et al., 2012; Herrera
et al., 2014). As placental and pulmonary vascular beds are
susceptible to O2 drop, HA hypoxia induces permanent effects
during pregnancy and after birth. Being born in a low-oxygen
environment delays an adequate perinatal pulmonary transition,
resulting in impaired respiratory reflexes and enhanced
pulmonary vasoreactivity (Keyes et al., 2003; Niermeyer, 2003).
Furthermore, a systemic review showed a delayed postnatal
remodeling of the pulmonary artery, positively correlating the
altitude to the magnitude of the pulmonary arterial pressure
(Peñaloza and Arias-Stella, 2007). In addition, the same study
revealed an increased thickness of the right ventricle in the
neonatal and infant periods of children born and raised at HA.
In contrast, a cross-sectional study performed at 4,000m with
echocardiography indicate that <1% of the cardiac problems are
attributable to HA (Huicho et al., 2005; Huicho and Niermeyer,
2006). However, most children of the studied population had at
least a certain degree of high-altitude genetic ancestry. Authors
conclude that the very low cardiopulmonary alterations found
are due to the protective effect of several factors, including
ancestry, good health and nutritional status, and low indoor
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pollution, among others (Huicho et al., 2005; Huicho and
Niermeyer, 2006). Moreover, the cerebral circulation is also
affected by a marked decrease in O2 saturation compensated
with a higher vessel density (Gassmann et al., 2016). Still,
further studies are needed to assess the real influence of
chronic hypobaric hypoxia on the early postnatal cardiovascular
development at high altitudes.

In summary, babies and children born and raised at HA are at
particular risk for hypoxemia, pulmonary arterial hypertension,
persistence of fetal vascular connections, and cardiovascular
remodeling. However, more studies are needed to develop
reliable diagnostic and predictive health outcomes.

LONG-LASTING CARDIOVASCULAR
EFFECTS (PROGRAMMING)

The heart and pulmonary circulation of individuals gestated,
born and living at HA exhibit important physiologic and
anatomic characteristics to maintain O2 homeostasis, such as
alveolar hypoxia, hypoxemia, polycythemia, increased vascular
density, andmetabolic reprogramming (Prabhakar and Semenza,
2012). However, when these physiological adaptations are
permanent at HA, neonates and children can generate pulmonary
hypertension and right ventricular hypertrophy as compensatory
mechanisms to environmental hypoxia (Peñaloza and Arias-
Stella, 2007). Many of the physiological responses to chronic
hypoxia are mediated at the transcriptional level by the
binding of HIF-1 to the hypoxia-response element (HRE)
located in the target gene (Wenger et al., 2005). EPO,
which encodes erythropoietin, is one of the best characterized
hypoxia-induced genes. Erythropoietin expression induces red
blood cell proliferation by inhibiting apoptosis in erythroid
progenitors, increasing blood O2-carrying capacity (Jelkmann,
2004). However, among ethnic groups living at HA, only Andeans
have increased hemoglobin (Hb) concentrations (Nanduri et al.,
2017). These phenotypic differences have been elucidated
through epigenetic mechanisms, which are changes in gene
promoter and chromatin that regulate gene transcription by
altering the accessibility of the DNA for transcription factors
without changes in the coding sequence of DNA (Feinberg,
2007). Particularly, the EPO gene promoter methylation of the
CpG island is increased and negatively correlated with gene
expression in Tibetans and Ethiopians (Yin and Blanchard, 2000).
The higher perinatal Hb concentration in Andeans is associated
with an increased pulmonary vascular dysfunction and a greater
incidence of chronic mountain sickness (CMS) during adulthood
(Julian et al., 2015).

On the other hand, EGLN1 encodes for the PHD2 enzyme,
which negatively regulates the stability of HIF-1α in an oxidative
stress and O2-dependent manner. In addition, endothelial PAS
domain protein 1 (EPAS1), which encodes HIF-2α, has been
implicated in human evolutionary adaptation to HA (Simonson
et al., 2010). Mutations or dysregulation of these genes or their
products has been associated with anemia and polycythemia
(Lorenzo et al., 2014). In addition, variation at the EGLN1
locus is associated with protection against polycythemia and low

pulmonary vasoconstriction response in highlanders (Peng et al.,
2017). One of the proposed mechanisms is the downregulation
of the angiotensin-converting enzyme (ACE) and vascular
endothelial growth factor C (VEGFC) in the heart and the
lungs (Peng et al., 2017). ACE generates the vasoconstricting
peptide angiotensin II in the lung and vascular endothelium
and inactivates the vasodilating peptide bradykinin, among
other mechanisms (Chappell, 2016). Therefore, by inhibiting the
bioavailability of angiotensin II in the vascular endothelium,
the vasoactive balance shift toward vasodilation, decreasing
pulmonary arterial pressure as observed in Tibetans. However,
this adaptation is not found in Andeans (Azad et al., 2017).
VEGF is a target gene of EPAS1 and plays an essential role in
angiogenesis; the upregulation of VEGF is involved in vascular
remodeling associated with the development of pulmonary
hypertension induced by chronic hypoxia (Liu et al., 2018).
Again, Tibetan is the only population known to negatively
regulate theVEGF gene compared to the Andeans and Ethiopians
(Peng et al., 2017). Effectively, Tibetans have occupied the HA
plateau for at least 20,000 years, having the most prolonged
exposure to HA and, therefore, a stronger evolutionary adaptive
capacity (Aldenderfer, 2003).

The vascular tone is regulated by a balance between the effects
of vasodilators/antiproliferative and vasoconstrictors/mitogenic
agents (Said, 2006). However, the hypobaric hypoxia increased
vascular tone as a result of decreased levels of second messengers
such as cyclic guanine monophosphate (cGMP) and cyclic
adenine monophosphate (cAMP), inactivation of K+ channels,
and increased levels of endogenous vasoconstrictors (e.g., ET-1)
and reactive oxygen species (ROS) (Moudgil et al., 2005). The
major inducer of cGMP-mediated vasodilation is nitric oxide
(NO) at the vascular level; however, only the Tibetan population
has an increase in the concentration of NO with >10-fold-higher
circulating concentrations of bioactive NO products (Erzurum
et al., 2007). One possible hypothesis is that native American
people possess polymorphisms for the NOS3 gene that codes
for eNOS. The 894T variant encodes for aspartic acid instead of
glutamic acid, which renders the enzyme inactive, depleting NO
levels (Mishra et al., 2015). Likewise, the 4a variant, also termed
short intronic repeats RNA, seems responsible for decreasing
NOS3 expression through miRNA-mediated inhibition (Zhang
et al., 2008). On the other hand, Tibetan and Andean populations
have lower ET-1 levels than lowland populations due to the
prevalence of ET-1 longer repeats of (CT)n-(CA)n in the 5=-
untranslated region (UTR)microsatellite and G allele of 2288G/T
(rs2070699) intronic polymorphism (Mishra et al., 2015).

In addition to the covalent modifications of the chromatin or
the promoter regions of a gene, the regulation of gene expression
through miRNA is less studied in the highlander population.
miRNAs such as miR-210,−26, and−181 regulate HIF to
modify endothelial cell response to hypoxia, contributing to
cell proliferation, angiogenesis, vasoactive response, metabolism
programming, and cellular survivor (Suarez et al., 2007; Crosby
et al., 2009; Bertero et al., 2017). On the other hand, miR-21
have been implicated as regulators in the etiology of pulmonary
hypertension, downregulating BMP receptor type 2 signaling
(Parikh et al., 2012) or downregulating the expression of eNOS,
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decreasing the bioavailability of NO (Peñaloza et al., 2020).
Although it was initially thought that epigenetics modifications
were irreversible, now we know that several of the involved
mechanisms may be modified by environmental conditions, such
as cellular metabolism, oxygen availability, and redox status
during lifespan (Lamadema et al., 2019). Unfortunately, we
cannot predict if the physiological adaptations and functional
CV effects are permanent or they can be reverted. However,
chronic cardiovascular alterations such as cardiopulmonary
remodeling associated with vascular SMC hypertrophy and wall
fibrosis are, until now, irreversible and progressive under chronic
hypoxia (Herrera et al., 2015; Sydykov et al., 2021). Investigating
the epigenetic mechanisms and their functional effects in HA
populations will help explain their roles in the adaptive strategies
these populations possess to cope with hypobaric hypoxia
(Figure 1).

TREATMENTS AND FUTURE
PERSPECTIVES

Descend to lower altitudes is the most effective and only
treatment for HA disorders in pregnant women. However,
several therapies are available for adults (men and non-pregnant
women), with acetazolamide and dexamethasone (Dex) being the
two best-tested drugs used as preventive medication during HA
exposure (Joyce et al., 2018; Sydykov et al., 2021). Acetazolamide,
a potent carbonic anhydrase inhibitor, induces metabolic acidosis
leading to the activation of peripheral chemoreceptors and
increased ventilatory drive during exposure to low oxygen
pressure (Toussaint et al., 2021). On the other hand, Dex
blocks the arachidonic acid pathway, decreasing inflammatory
mediators like systemic prostaglandins (O’Hara et al., 2014).
Furthermore, Dex reduces lung vascular permeability and
transmural microvascular pressure by increasing surfactant into
the alveolar tissue. All these effects result in decreases in
pulmonary arterial pressure (Bliss et al., 2019). However, the
administration of acetazolamide and Dex during pregnancy
is contraindicated, and FDA only recommended its use
if the potential maternal benefit outweighs the potential
fetal risk.

Conversely, if complications occur during the perinatal
period, therapy is based on O2 treatment and inhaled NO.
The vasodilatory function of NO is mediated by cGMP
(Li et al., 2018), but NO may fail due to increased enzyme
phosphodiesterase type 5 (PDE5) that hydrolyzes cGMP.
Sildenafil and Tadalafil, both PDE5 inhibitors, provide an acute
pulmonary vasodilatory effect and improve gas exchange, which
might prevent hypoxic pulmonary vasoconstriction (Xia et al.,
2014; Sydykov et al., 2021). Other novel therapies have been
proposed to be tested in HA pulmonary hypertension, such
as Fasudil, a rho kinase inhibitor. Rho-kinase is an enzyme
that plays an important role in mediating vasoconstriction
and vascular remodeling in the pulmonary bed stimulated by

hypobaric hypoxia (Kojonazarov et al., 2012). In addition,
Riociguat, an sGC stimulator, may also be useful for
pulmonary arterial hypertension at HA (Beghetti et al.,
2019). As with other approved therapies for pulmonary arterial
hypertension, Riociguat has antifibrotic, antiproliferative,
and anti-inflammatory effects, in addition to the vasodilatory
properties (Beghetti et al., 2019; Klinger et al., 2020). Still, as
there are no adequate and well-controlled studies to prove their
effectiveness and safety in women, these drugs are currently
contraindicated during pregnancy.

As chronic hypoxia induces oxidative stress, antioxidants such
as vitamins C and E, coenzyme Q10 and melatonin, have been
proposed for adults, pregnant women, and neonates to improve
CV function at HA (Herrera et al., 2015; Biuomy et al., 2020;
Giussani, 2021), These novel therapeutic strategies have shown
effectiveness in animal models, but there is still a lack of clinical
studies in humans.

Still, further experiments are needed to test the relevance of
these treatments at HA, particularly during pregnancy.

In summary, studies at HA have enlightened our
understanding of the mechanisms involved in human adaptation
to chronic hypoxia. Recognizing the importance of early-life
events for lifelong health promises to improve our understanding
of health determinants later in life when living at HA.

CONCLUSION

Studies in Andean populations have revealed several detrimental
consequences of living at HA. In addition, these populations
have been able to develop strategies to adapt to the HA thin
air. However, the physiological processes that contribute to fetal
growth restriction and further health or disease programming at
altitude are still poorly understood, and thus our intervention
capacity remains limited. The complete comprehension of
human adaptation to HA during pregnancy includes maternal,
placental, fetal determinants and their interactions. In addition,
understanding HA responses may be extrapolated to sea-level
pathologies affected by hypoxia such as placental insufficiency,
PE, and persistent pulmonary hypertension of the neonate.
Moreover, future studies aiming to understand and integrate
these responses will allow us to develop public policies
and clinical strategies aiding for a healthy and long-lasting
life at high-altitude.
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