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Background: Obstructive sleep apnea (OSA) and nocturnal hypoxia are associated

with disturbances in glucose regulation and diabetes. Temporal associations between

OSA, oxygenation profiles and glucose have not been well-described. We hypothesized

that oxyhemoglobin desaturation during apneic events and subsequent post-apnea

saturation overshoot predict nocturnal glucose.

Methods: In 30 OSA patients who underwent polysomnography while subjected to

CPAP withdrawal, we characterized SPO2 swings by frequency, desaturation depth, and

overshoot height relative to baseline. We examined the associations between frequently

sampled glucose and SPO2 swings during the preceding 10min. We developed

multi-variable mixed effects linear regression to examine the independent associations

between glucose and each level of these SPO2 swings, while controlling for OSA severity.

Results: Desaturation depth was not associated with glucose (p > 0.05). In contrast,

overshoot was associated with glucose in a dose-dependent manner. Each SPO2 peak

that did not rise to within 1% of baseline was associated with incremental glucose

elevations of 0.49 mg/dL (p = 0.01), whereas peaks that exceeded baseline by >1%

were associated with glucose reductions of 0.46 mg/dL. Overshoot remained an

independent predictor of glucose after adjustment for mean SPO2 and OSA severity

(p > 0.05).

Conclusions: Vigorous SPO2 improvements after apneic events may protect patients

against OSA-related glucose elevations.

Keywords: intermittent, hypoxia, metabolism, automated, phenotype

INTRODUCTION

Obstructive sleep apnea (OSA) is a highly prevalent disease (1–3), which is associated with
disturbances in glucose regulation including risks of type 2 diabetes (4–9). Intermittent closure
of the upper airway in OSA causes hypoxia, sleep fragmentation and large intrathoracic pressure
swings. Hypoxia may be an important stimulus for impaired glucose metabolism. In high
altitude residents who are chronically exposed to ambient hypoxia, oxyhemoglobin saturation
is associated with increased fasting glucose and glucose intolerance (10, 11). Investigators have
also demonstrated that OSA-induced hypoxia was associated with glucose intolerance (7, 12).
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Furthermore, exposure to sustained or intermittent hypoxemia
causes glucose intolerance and insulin resistance in human and
animal experiments (13–16). In a recent study, we sampled
blood at 20-min intervals during full polysomnography in
CPAP-adherent OSA patients after discontinuing CPAP for
3 nights. During acute exposure to OSA, we observed that
dynamic glucose elevations were closely preceded by periods
of hypoxia, as assessed by the frequency of desaturations or
median oxyhemoglobin saturation (SPO2) (17). These findings
suggest rapid effects of OSA-related hypoxia on plasma glucose
levels during sleep. Similarly, in a recent cross-sectional study
in high altitude residents who are chronically exposed to
hypoxia, we found that mean nocturnal SPO2 is associated
with elevated hemoglobin A1c, independent of sleep apnea
severity and daytime SPO2, indicating that nocturnal hypoxia
contributes significantly to worsening overall glucose control
(18). Nevertheless, the temporal associations between respiratory
disturbances, oxygenation swings, and acute alterations in plasma
glucose have not been well-described.

In OSA patients, the evolution of oxygenation over the
course of the night is highly variable. During sleep, upper
airway obstruction leads to falls in ventilation and subsequent
oxyhemoglobin desaturation. At the termination of apneic
events, arousals from sleep and improvements upper airway
patency can result in transient increases in ventilation and
oxygenation. The frequency and height of these SPO2 peaks
can be influenced by several factors including ventilatory
responses to gas exchange disturbances during apneic events
(19), arousability, sympathetic activation, and co-morbid
cardiopulmonary disease. These physiologic factors may not be
fully reflected by traditional measures of sleep apnea and hypoxia
severity including apnea hypopnea index (AHI) and time spent
with SPO2 < 90% (T90). Therefore, dynamic oxygenation
characteristics including frequency and depth of desaturation
and subsequent correction may provide additional provide
additional insight into metabolic risk in OSA patients.

We hypothesized that greater degrees of oxygen desaturation
are associated with higher glucose, while greater oxygenation
improvements after apneic events may protect against these
elevations. To examine this hypothesis, we developed an
automated approach to characterize oxygenation profiles in OSA
patients by quantifying the frequency and height of periodic SPO2

nadirs and peaks. We then examined the associations between
frequently sampled nocturnal plasma glucose levels and hypoxia,
OSA severity, and dynamic SPO2 swings.

METHODS

The present study is a post-hoc analysis of a recent
interventional trial of CPAP withdrawal. The recruitment,
sleep study recording and blood sampling methods have
been previously described (17). Briefly, CPAP-adherent
patients with moderate-to-severe sleep apnea (AHI ≥ 20)
underwent in-laboratory attended polysonography, with and
without CPAP. During these studies, we measured glucose
by sampling venous blood every 20min. Because nocturnal

glucose levels varied greatly and were distributed in a bimodal
pattern between patients with and without diabetes, we
limited our current analysis to non-diabetic patients. This
study was approved by the Johns Hopkins Institutional
Review Board, and all subjects provided informed written
consent.

Data Analysis
Definitions

Oxyhemogloblin saturation (SPO2) is dynamic and can
vary about a baseline. Thus, we characterized oxygenation
profiles by the frequency and amplitude of oxygen oscillations
relative to baseline. Because the presence of sleep disordered
breathing affects oxyhemoglobin saturation, we defined the
baseline saturation as the mean SPO2 during treatment with
CPAP, which resulted in stable respiratory patterns and
oxygenation. This method also accounts for differences in lung
function or co-morbidities that may also affect SPO2. Figure 1
illustrates the relationship between oxygenation in an OSA
patient with repetitive apneic episodes, and the CPAP-treated
baseline SPO2, which approximates oxygenation during stable
breathing.

To detect acute changes in oxygenation, we applied an
automated peak detection algorithm (Matlab, Natick, MA) to
identify local SPO2 minima and maxima during the 10-min
windows preceding blood draws (Figures 1B,C). Apneic events
lead to falls in oxygenation and local oxygenation minima
(▽). At the termination of apneas and hypopneas, increases
in ventilation cause sharp rises in oxygen, resulting in local
SPO2 maxima (1), that occasionally exceeded, or overshot, the
baseline. Desaturation depths and overshoot heights of these
minima and maxima, respectively, were calculated relative to
the CPAP baseline. In Figure 1B, SPO2 fell from a baseline
SPO2 of 95% to nadirs of between 89 and 91%, representing
desaturation depths of 4–6%. Each of these desaturations was
followed by incomplete correction of oxyhemoglobin saturation,
to SPO2 levels of 1–2% below baseline (negative overshoot). In
contrast, the frequent desaturations in Figure 1C were followed
by over-correction of oxygen, exceeding the baseline by 1–3%.
We analyzed our data in 10-min windows because sensitivity
analyses demonstrated that model performance progressively
decayed with increasing windows of 15 and 20min. Additional
sensitivity analyses were performed with progressively increasing
lag times between SPO2 parameters and glucose.

Analytic Methods

Our primary outcome was nocturnal glucose levels. Our repeated
measures design allowed us to examine within- and between-
subject changes in glucose, in association with variations in
oxygenation and OSA severity. To minimize confounding from
periods of wakefulness, we censored glucose measurements that
were preceded by >30 s (5%) of wakefulness within 10min
of blood sampling. The 30-s threshold was chosen because
blood sampling may occur in the middle of a 30-s scoring
epoch, which would reduce the number epochs from 20 to
19. We compared glucose levels during periods with high and
low overshoot heights and desaturation depths, using median

Frontiers in Endocrinology | www.frontiersin.org 2 August 2018 | Volume 9 | Article 477

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Pham et al. Obstructive Sleep Apnea-Related Resaturation

FIGURE 1 | Data analysis. In (A), a representative 160-min SPO2 is presented. The baseline SPO2 calculated from the mean SPO2 while treated with CPAP is

represented by the dashed horizontal line. During sleep studies, glucose was measured every 20min (H). To examine SPO2 predictors of glucose, we analyzed

oximetry during the 10min preceding each glucose measurement, as illustrated by boxes in (A) and shown in greater details in (B,C). SPO2 nadirs (▽) and peaks (1)

were identified by automated peak detection. The desaturation depth and subsequent overshoot were calculated relative to the baseline. Panel (B) illustrates a period

of frequent desaturations, which were followed by only partial restoration of oxygenation, resulting in negative overshoot. In contrast, Panel (C) illustrates repetitive

desaturations were followed peaks that exceeded the baseline, resulting in positive SPO2 overshoots, despite desaturations were of similar depths.

overshoot (0.3%) and desaturation depth (5%) as the cutoffs.
We stratified these analyses by periods with greater or less
than the median number of apneic episodes in 10min (7,
which corresponds to an AHI of 42 episodes/h). In these
analyses, we modeled glucose as a function of the density of
apneic episodes (<7 vs. ≥7), high vs. low mean overshoot
or desaturation depth, and their interaction with mixed-effects
linear regression models. To further examine the association
between nocturnal glucose levels and the frequency and degree
of overshoot and desaturation, we developed univariable mixed-
effects linear regression models of glucose at each point as
functions of the number of overshoots of <–1, ≥–1 and <0, ≥0
and <1, and ≥1% during the preceding 10min. Similar analyses
were performed with desaturations at cutoffs of ≥4 and <5, ≥5
and <6, ≥6 and <7, and ≥7% cutoffs. To account for the effects
of hypoxia on nocturnal plasma glucose, we developed multi-
variable regressionmodels to adjust for mean SPO2 preceding the
glucose measurements. We then performed sensitivity analyses
to examine the effect of including glucose measurements in the
results. Data analyses were performed in R (www.r-project.org)
with the “Linear Mixed-Effects Models using ‘Eigen’ and S4”
package.

RESULTS

Subject Baseline Characteristics
Baseline subject characteristics are presented in Table 1. Thirty
subjects met criteria for inclusion. The majority of subjects were

TABLE 1 | Demographic and polysomnographic characteristics.

Characteristic Mean (SD)

N 30

Male sex [n (%)] 21 (70.0)

Observations per subject 10.77 (4.34)

Age (years) 48.83 (10.43)

BMI (kg/m2) 37.03 (7.88)

Sleep apnea severity (AHI) (events/h) 46.57 (29.18)

Time with SPO2 < 90 (minutes) 17.09 (19.13)

Mean SPO2 (%) 93.18 (2.01)

male. On average, our subjects were middle aged and obese. OSA
was present to a severe degree, with time with SPO2 < 90% for
almost 20min, on average.

Associations Between Desaturation Depth
and Overshoot and Plasma Glucose During
Periods of High and Low Apnea Density
Figure 2A illustrates glucose after periods of low and high
densities of apneic events (greater than or less than 7 events
per 10min, respectively), with low and high mean desaturations.
Glucose was higher after periods with greater falls in saturation
regardless of event frequency (> 7 vs. <7 apneas or hypopneas
per period), although this difference did not exceed the threshold
for statistical significance (p = 0.09). Neither independent
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FIGURE 2 | Nocturnal glucose vs. desaturation depth (A) and SPO2 overshoot (B), during periods of low and high sleep apnea density. Error bars represent standard

errors. *p < 0.10 and **p < 0.05, respectively, for independent association between mean desaturation depth and SPO2 and nocturnal glucose. Statistical analysis

did not demonstrate an independent or interactive association between sleep apnea density and glucose during sleep.

association between sleep apnea density and glucose nor an
interaction between desaturation and sleep apnea density was
detected (p = 0.48 and 0.52, respectively). On the other hand,
greater compared to less overshoot was independently associated
with a 4.9 mg/dL reduction in glucose (p = 0.01, Figure 2B).
In these analyses, an independent association between sleep
apnea density and glucose was not observed, nor was there an
interaction between sleep apnea density and SPO2 overshoot
(p = 0.88 and 0.34, respectively). Sensitivity analysis with
inclusion of periods of decreased sleep efficiency did not
significantly alter these results.

Independent Associations Between
Nocturnal Glucose and Desaturation and
Oxygenation Overshoot Frequency at
Varying Levels of Intensity
The association between desaturation frequency at varying
levels and nocturnal glucose is illustrated in Figure 3A. We
did not observe a significant association between the depth of
desaturation and glucose. Nevertheless, all beta coefficients were
similar and approached the threshold for significance (p = 0.07)
when all desaturation levels were pooled prior to analysis (see
$supplement). In contrast, overshoot height predicted glucose
in a dose-dependent manner (Figure 3B). At negative levels of
SPO2 overshoot (i.e., when SPO2 did not return to within 1% of
the baseline after an apneic episode), each SPO2 peak during the
preceding 10min was associated with an incremental increase
in glucose of 0.49 mg/dL. With greater degrees of overshoot,
the incremental change in glucose associated with each apneic
event progressively fell. In fact, vigorous overshoots that exceeded
baseline saturation by ≥1% were associated with reductions in

glucose of 0.46 mg/dL (p = 0.03). In multi-variable models that
incorporated all levels of SPO2 overshoot, very low levels of
overshoot (<–1%) were independently associated with increases
in glucose (Table 2). In these models, we observed a trend
between ≥1% overshoot above the baseline and reductions in
glucose (p = 0.07). The associations between ≥1% overshoot
and lower glucose was significant after adjustment for traditional
metrics of sleep-disordered breathing, including sleep disordered
breathing frequency and mean SPO2. The associations between
partial oxygenation correction (<–1% overshoot) with increased
glucose was not significant with these adjustments because
of collinearity with mean SPO2. These findings suggest that
the degree of oxygenation overshoot, but not desaturation
depth, after apneic events is a robust predictor of nocturnal
glucose.

DISCUSSION

In the present study, we examined OSA-related hypoxia profiles
and their association with glucose during sleep. The novel
finding of the study is that the pattern of hypoxia is an
important predictor of the overall effect of hypoxia on nocturnal
glucose level. Greater SPO2 overshoot was dose-dependently
associated with lower glucose, independent of mean SPO2

or the frequency of sleep apnea events. As expected, acute
hypoxia was also dynamically associated with elevated plasma
glucose. Interestingly, there was no relationship between the
frequency of OSA events or desaturation depth after these
events, and nocturnal plasma glucose levels. Taken together,
OSA characterized by nocturnal hypoxia and infrequent and
incomplete restoration of oxygenation reflects a phenotype
that may be more vulnerable to nocturnal glucose elevation.
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FIGURE 3 | Results of univariable models of glucose. Each point represents the change in glucose (±95% confidence interval) predicted by the number of

desaturation (A) or overshoot (B) during the preceding 10min prior to blood sampling. No statistically significant association was observed between desaturation

depth and glucose. In contrast, each apneic episode that was followed by partial normalization of oxygenation was associated with an increase in glucose by 0.49

mg/dL. With increasing degrees of SPO2 overshoot, the changes in glucose related to each event fell, and SPO2 peaks that exceeded baseline by >1% were

associated with reductions in glucose.

TABLE 2 | Regression models of associations between plasma glucose and SPO2 overshoot and sleep disordered breathing severity.

Uni-variable models Multi-variable model 1 Multi-variable model 2

Predictor Beta p-value Beta p-value Beta p-value

SPO2 Overshoot

<–1% 0.49 0.01 0.42 0.04 0.24 0.33

−1 to (−0.01)% −0.11 0.77 −0.01 0.67 – –

0 – 0.99% −0.14 0.54 −0.00 0.99 – –

≥1% −0.46 0.03 −0.40 0.07 −0.46 < 0.05

Mean SPO2 −0.89 0.005 – – −0.63 0.08

Apneas and hypopneas 0.10 0.36 – – 0.10 0.40

Conversely, large SPO2 overshoot may blunt the impact of
sleep disordered breathing on nocturnal glucose in OSA
patients.

Several mechanisms may explain the links between
oxygenation profiles and OSA-related glucose disturbances.
First, episodic oxygen restoration may mitigate nocturnal
hypoxia related to apneic events. Frequent intermittent oxygen
rises may be indicative of frequent arousals, which shorten apnea
and hypopnea duration (20–22). In addition, large inspiratory
efforts preceding brisk SPO2 rises could also increase oxygen
stores in the lungs and diminish subsequent desaturations.
Second, vigorous overshoot could be a marker of arousal
and/or lighter sleep, which limits the likelihood of developing
additional apneic events and metabolic disturbances (23). In
fact, the association between SPO2 overshoot of >1% and

glucose lowering did not attenuate with adjustment for mean
nocturnal SPO2, suggesting that SPO2 overshoot may reduce
plasma glucose through mechanisms independent of hypoxia.
Alternatively, the degree of hypoxia during apneic events and
subsequent overshoot could be influenced by comorbidities
(24–28). For example, patients with visceral obesity or cardio-
pulmonary dysfunction may exhibit both blunted SPO2 rises and
higher glucose excursions after apneic episodes.

In contrast to SPO2 overshoot, desaturation depth was
not related to the degree of glucose change. Further analyses
with commonly clinically reported metrics of hypoxia severity
including time with SPO2 < 90% also did not predict nocturnal
glucose (data not shown). The present study also did not
demonstrate an association between OSA events and dynamic
nocturnal glucose changes. These findings imply that existing
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metrics of OSA severity and related hypoxia do not adequately
predict the glycemic impact of sleep disordered breathing. In
contrast to previous approaches to characterizing nocturnal
hypoxia, we implemented a readily deployable, automated
algorithm that focuses on a novel dimension of the oxygenation
profile that captures the additional physiologic responses to sleep
disordered breathing. Our study demonstrates that frequency
and degree of oxygenation overshoots is an important predictor
of OSA-related metabolic sequelae, independent of traditional
measures of sleep apnea severity.

Our study has several limitations, which are worth considering
when interpreting the results. First, the observational nature of
our study limits causal inferences. Nevertheless, we demonstrated
that alterations in mean SPO2 and SPO2 overshoot occurred
before changes in nocturnal glucose. Moreover, SPO2 overshoot
predicted nocturnal glucose changes in a dose-dependent
manner. These findings are consistent with the notion that
hypoxia causes glucose elevations, which can be mitigated
by intermittent improvements in oxygenation. Second, our
method defines baseline SPO2 from polysonography while
treated with CPAP. The requirement for stable respiratory
patterns on a separate night may limit the ability to deploy
our methods to estimate metabolic risk in a clinical setting.
CPAP may also increase lung volumes and improve baseline
SPO2 (29). Nevertheless, low lung volumes and attendant
SPO2 reductions may be part of the causal pathway in the
pathogenesis of OSA-related hyperglycemia. Third, we examined
the relationship between oxygenation and glucose profiles in
non-diabetic patients with moderate-to-severe OSA. Additional
studies are required to determine the generalizability of these
methods to patients with diabetes and/or mild disease by AHI
criteria.

CONCLUSIONS

In summary, our study demonstrated that intermittent
restoration of SPO2 was independently associated with dynamic
nocturnal glucose reductions. In contrast, reductions in mean
SPO2 but not the nadir SPO2 after apneic events predicted
glucose elevations. These findings indicate that nocturnal
hypoxia is an important determinant of OSA-related glucose
disturbances. Our findings further imply that interventions that
improve oxygenation in OSA patients may mitigate nocturnal
glucose excursions. Additional studies are required to examine
the role of oxygen to prevent worsening glucose control, and
prospectively validate the use of oxygenation profile analysis to
predict metabolic risk in OSA.
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