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ABSTRACT: The most striking characteristic of CHO cells is their
adaptability, which enables efficient production of proteins as well
as growth under a variety of culture conditions, but also results in
genomic and phenotypic instability. To investigate the relative
contribution of genomic and epigenetic modifications towards
phenotype evolution, comprehensive genome and epigenome data
are presented for six related CHO cell lines, both in response to
perturbations (different culture conditions and media as well as
selection of a specific phenotype with increased transient
productivity) and in steady state (prolonged time in culture under
constant conditions). Clear transitions were observed in DNA-
methylation patterns upon each perturbation, while few changes
occurred over time under constant conditions. Only minor DNA-
methylation changes were observed between exponential and
stationary growth phase; however, throughout a batch culture the
histone modification pattern underwent continuous adaptation.
Variation in genome sequence between the six cell lines on the level
of SNPs, InDels, and structural variants is high, both upon
perturbation and under constant conditions over time. The here
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presented comprehensive resource may open the door to improved
control and manipulation of gene expression during industrial
bioprocesses based on epigenetic mechanisms.
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Introduction

The epigenetic regulation and genomic variation which define the
behavior of cells, for instance during development of cancer,
embryogenesis, or the reprogramming of stem cells, were the focus
of numerous recent studies. However, while rapid changes occur in
epigenome and transcriptome upon adaptation of primary cells to
in-vitro culture, little data is available on the contribution of the
above towards adaptation of continuous cell lines that may be
maintained in culture under a variety of conditions or towards
specific selected phenotypes.

Epigenetic mechanisms may influence gene expression both
on a short term (as within a batch culture during changing
environmental conditions) (Hernandez-Bort et al., 2012; Le et al.,
2013; Wippermann et al., 2014) and on a long-term basis (as during
prolonged culture periods over months or during permanent
adaptation to different media/culture conditions). The later could
explain the phenomenon of phenotypic drift that has been observed,
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for instance, in long-term cultures (Bailey et al., 2012). Epigenetic
control is conveyed via two primary, interacting mechanisms, namely
DNA-methylation, and modifications of histones. While the former
tends to be more long term, histone modifications, which can have
both repressing and enhancing effects on transcription, can change
faster in response to environmental stimuli. The effect of these
modifications is a change in chromatin structure, influencing
the activity of the transcriptional machinery at the respective locus
(Cedar and Bergman, 2009; Rose and Klose, 2014). This can be
further modified by additional mechanisms, such as the interaction
with long non-coding RNAs or by structural DNA sequences such as
matrix associated regions or ubiquitous chromatin opening elements
that lead to chromatin remodeling (Brinkman et al., 2012; Sarkies
and Sale, 2012). So far, these mechanisms were mostly investigated in
the context of cancer and developmental biology, so that very little
information is currently available on changes in epigenetic regulation
in cells maintained in culture (Nestor et al., 2015; Wippermann et al.,
2015). The concept of changing the epigenome globally, however, has
been used to advantage, both for cell line optimisation (Seth et al,,
2006) and for short-term transcriptome modification to increase
recombinant productivity by histone deacetylase inhibitors such as
sodium butyrate (Kantardjieff et al., 2010; Lee et al., 2014; Liu et al.,
2014). The few available studies of epigenetics in Chinese Hamster
Ovary (CHO) focused on biotechnologically important issues, such as
the silencing of the product gene (Osterlehner et al., 2011; Spencer
et al,, 2015; Yang et al.,, 2010), but did not investigate the global
dynamics of epigenetics. Several reports indicate changes of the
transcriptome during the changing nutrient and metabolite
concentrations encountered by cells during batch or fedbatch culture
(Hernandez-Bort et al., 2012; Le et al, 2013), while most of
the available literature compares gene expression patterns in different
CHO clones that produce recombinant protein(s), trying to capture
the differences that define their performance in industrial processes,
with a focus on high productivity and growth (Charaniya et al., 2009;
Clarke et al., 2011; Dinnis et al., 2006; Doolan et al., 2008; Nissom
et al, 2006; Vishwanathan et al, 2014). Although epigenetic
regulation of gene expression was proposed as one possible
contributor to the diversity observed in phenotypes (Dahodwala and
Sharfstein, 2014), the issue was marred by the fact that a large
number of genomic variants are frequently found in continuous cell
lines, due to the high number of divisions they incur (Lin et al., 2014;
Weissbein et al., 2014). Similarly, continuous cell lines exhibit
variation in the number of chromosomes per cell even within a clonal
population, a phenomenon that occurs frequently in cancerous cell
lines (Jefford and Irminger-Finger, 2006) and is well documented
for CHO cells (Derouazi et al., 2006). In addition to chromosome
number aberrations, frequent translocations within and between
chromosomes occur resulting in interesting and varying karyotypes
(Cao et al, 2012). In addition, there are indications that this
phenomenon is not entirely due to specific properties of immortal or
cancer cell lines, but may be a result of in vitro culture conditions and
the frequent number of divisions that cells undergo in culture, as
similar observations were made in stem cells after prolonged in vitro
culture periods (Weissbein et al., 2014).

We here present a study of genomic and epigenetic variations in
related cell lines that underwent different evolutionary pressures,
including adaptation to different media formulations, adaptation to
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growth in suspension, prolonged culture times and selection of
phenotypic variants by cell sorting and subcloning. We use CHO
cells because (i) extensive data on their genome (Brinkrolf et al.,
2013; Hammond et al., 2012; Lewis et al., 2013; Schroeder Kaas
et al., 2015; Xu et al,, 2011), transcriptome (Hernandez-Bort et al.,
2012; Kildegaard et al., 2013; Le et al., 2013), their stability or rather
instability (Barnes et al., 2003; Kim et al., 2011) as well as the
diversity of phenotypes (Pilbrough et al., 2009) for this cell line is
available; (ii) they are a frequently used model system for many
applications, so that understanding the processes underlying
adaptation and environmental response may have implications for
interpretation of research results and finally; and (iii) because their
widespread use as a mammalian cell factory for production of
biotherapeutic proteins such as human antibodies has large
economical and medical consequences (Walsh, 2014).

Both full genome sequences and DNA-methylation patterns
were obtained. In addition, short-term response to environmental
changes was analysed during a batch culture on the level of
DNA-methylation and histone modifications. All data were collated
into an online resource.

Materials and Methods

Cell Lines and Culture Conditions

All cell lines analyzed were derived from serum-dependent CHO-K1
cells (ECACC CCL-61) which were grown in 1:1 DMEM/Ham’s F12
(Biochrom) containing 2% fetal calf serum (PAA) and 4 mM L-Gln
(Sigma-Aldrich), in T-flasks at 37°C in an atmosphere containing
7% CO, (ECS sample)., Cells were adapted to protein-free medium
and suspension growth by passaging at 1:3 dilution into CD-CHO
(Gibco/Life Technologies) with 8 mM L-Gln and Anti-Clumping
Agent (Gibco/Life Technologies). Cells recovered within 3 weeks
and were expanded into a master cell bank (MCB). All suspension-
adapted cells were grown in shaker flasks at constant shaking at
140 rpm. Cells were thawed from the MCB and allowed to recover
for 2 weeks (PF-MCB sample). Cells were then maintained in
culture by passaging twice weekly for 6 months (PF-6 months).
PE-MCB cells previously adapted to grow in the same medium
without glutamine (Hernandez-Bort et al., 2010) (no-Gln) were
sampled likewise 2 weeks after thawing as were cells from a
subclone obtained by cell sorting for increased transient
productivity (Pichler et al., 2011) (K1/1D9-MCB). These high-qP
cells were maintained in culture, their transient productivity
tested every month until it dropped from initially 13 pg/cell/day to
4 pg/cell/day after 3 months (K1/1D9-3 months). Testing for
transient productivity was performed by nucleofection using 20 ng
plasmid DNA per 107 cells as described previously (Pichler et al.,
2011). All samples were taken on day 3 of an exponentially growing
culture. For PF-MCB an additional sample was taken during
stationary phase (day 8) for bisulfite sequencing (see Fig. SI for
batch sampling points).

Isolation of Genomic DNA

Genomic DNA was isolated from 5 x 10° cells of a mid-exponential
culture (day 3 after seeding) following the protocol of the DNeasy



Blood & Tissue Kit (Qiagen Cat. No 69504). The sample was diluted
to 40 ng/p.L in a total volume of 100 L into 1.5 mLTPX microtubes
(Diagenode) and sonicated in a Bioruptor (Diagenode) at 4°C using
nine cycles at high setting [30 s “ON”/30 s “OFF”]. The average size
obtained was verified to be 400 bp by Bioanalyzer (Agilent DNA
7500 kit).

Library Preparation and Sequencing

Library preparation for genome sequencing was performed using
KAPA Library Preparation Kit Illumina series (KK8201) following
the manufacturer’s guidelines. The first sample sequenced
(PF-MCB) was analyzed using an Illumina HiSeq 2000 (paired-
end, 100 bp read length), all other samples were analyzed using the
upgraded Illumina HiSeq 2500 (paired-end, 150 bp read length).
Library preparation and sequencing for bisulfite-treated samples
was performed as previously described (Tomazou et al., 2015).

Data Preprocessing for Genome and Bisulfite Sequencing

Raw reads were preprocessed with cutadapt v1.7 (adapter
trimming) (Martin, 2011) using a maximum allowed error rate
of 0.05 and a minimum overlap length of 4 as well as with
CLC Assembly Cell clc-quality-trim v4.2 (quality trimming)
(http://www.clcbio.com/products/clc-assembly-cell/) with a quality
cut-off of 20. The quality was assessed with FastQC v0.10.1
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).

Genomic Mapping and Normalization

Preprocessed reads were aligned in paired-end mode to the Chinese
Hamster reference sequence published by Brinkrolf et al. (2013)
with BWA mem (Li and Durbin, 2009) using the default parameters
with -M and -R flags as recommended for SNP/InDel calling in
the corresponding variant calling documentation. Aligned
reads were coordinate sorted with Picard SortSam v1.112
(http://broadinstitute.github.io/picard/) and indexed with SAM-
tools index v0.1.19 (Li et al., 2009). Duplicates were removed with
Picard MarkDuplicates v1.112. The quality of the mappings was
assessed with QualiMap v2.0 (Garcia-Alcalde et al., 2012). The
mappings of all cell lines were normalized to match the coverage of
the cell line with the lowest average coverage using SAMtools view
v0.1.19. The average coverage was computed with QualiMap v2.0
and BEDtools genomeCoverageBed v2.17.0 (Quinlan and Hall,
2010). To normalize the PF-MCB data with a read length of 100 bp
(all other cell line data have a read length of 150 bp), the data was
subsampled to the lowest average coverage for SNP/InDel analysis
and to the lowest read count for SV analysis, as this analysis is based
on broken read pairs.

SNP/InDel Calling

Local realignment, SNP/InDel detection and filtering were
performed using the Genome Analysis Toolkit (GATK) v2.7-4
(McKenna et al, 2010) as recommended by the GATK
documentation, with default settings unless stated otherwise.
The pipeline was applied on every normalized and full-coverage

Feichtinger et al.: Comprehensive Genome and Epigenome Characterization of CHO Cells

dataset for each cell line separately. The GATK HaplotypeCaller was
run with a minimum phred-scaled confidence threshold at which
variants should be emitted of 10 and at which variants should be
called of 30 as well as with a minimum pruning of 10. Only SNP/
InDels with a quality score equal or higher than 30 were included in
further analyses. Summary statistics were computed using VCFtools
vcf-stats v0.1.11 (Danecek et al., 2011). SNP/InDel effects on coding
sequences were evaluated using CooVar v0.07 (Vergara et al., 2012).

Structural Variant (SV) Calling

Delly v0.5.9 (Rausch et al., 2012) was applied to call SVs with an
insert size cut-off of three (for deletions only) and a minimum
paired-end mapping quality of 20. All variants with a minimum of
five broken read pairs supporting the variant as well as with a
minimum length of 300bp (for deletions, inversions, and
duplications) were included in further analyses as recommended
by the Delly documentation.

Bisulfite Mapping and Methylation Calling

Preprocessed reads were aligned in paired-end mode to the
reference sequence (Brinkrolf et al., 2013) using Bowtie 2 v2.2.2
(Langmead and Salzberg, 2012) under the control of the Bismark
v0.13.0 (Krueger and Andrews, 2011) pipeline (non-default
parameters: N=1, D=20, R=3, score-min= “L,0,—0.3”).
Bismark was also used to remove duplicate reads. The quality of
the mappings was assessed with QualiMap v2.0.

Methylation profiles were generated for all C contexts using
Bismark v0.14.3 with default settings. Based on M-bias plots, the
first 15 bp from the 5’ end and 3 bp from the 3’ end were ignored in
both reads of a pair for all samples to avoid biases in methylation
calling.

Annotation

Annotation files were downloaded from NCBI for the reference
genome. SNPs/InDels were annotated by means of VCFtools
vcf-annotate v0.1.11, whereas SVs were annotated by means of
Delly io-ver v0.5.9. Methylation profiles were annotated using
BEDtools window v.2.17.

Comparative Analyses and Evaluations

The GATK SelectVariants v2.7-4 was used to compute concordance
and discordance SNP/InDel lists between all cell line datasets.
Comparative summary statistics were computed using VCFtools
vcf-compare v0.1.11. To compare SV variant lists between all cell
line datasets, BEDtools intersect v2.17.0 with a reciprocal fraction
overlap of 0.8, and a breakpoint deviation of 500bp (for
translocation only) was used, generating concordance and
discordance SV lists. Finally, the supporting read counts for
SNP/InDel and SV calls as well as the homozygosity (0/0) or
heterozygosity (0/1) of these calls were extracted from the variant
calling results (VCF files).

The differential analysis of methylation profiles was conducted
using the R package methylKit v0.9.2 (Akalin et al., 2012). After
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coverage normalization, methylation profiles were tiled with a
window size of 1 kb (step size 1 kb) and filtered to keep only regions
covered in all samples. DMRs were called with a minimum
difference in methylation of 25%, a minimal coverage threshold of
three and a Q-value < 0.1 (based on SLIM [Wang et al., 2011])
using Fisher’s exact test. R (R Core Team, 2013) and the
Bioconductor package GenomicRanges (Lawrence et al., 2013) were
used for assignment of called DMRs to genomic features and
preparation of summary statistics and plots.

Impact of Coverage on Identification of Variants

To estimate the effect of coverage on the reliability with which
variants are called unique at a coverage of 13.5, the reads of K1/1D9-
MCB, available at 21.5% coverage, were subsampled to three sets of
13.5x each, which were compared against each other both for SMs
and SVs. The reads of PF-MCB, available at 37.5%, were likewise
subsampled to 20x and compared. In addition, K1/1D9-MCB and
K1/1D9-3 months, both available at 21 x coverage, were compared at
this coverage in addition to the standard 13.5x (Suppl. File-WS13).

Batch Culture for ChIP-Seq—Cell Fixation and
Immunoprecipitation

PE-MCB cells were seeded into eight parallel 500 mL shaker flasks at
2 x 10° cells/mL, with working volumes of 250 mL. The cultures
were analyzed twice daily for total and viable cell count using a
ViCell analyzer (Beckmann Coulter). Samples were taken
as indicated in Suppl. File-WS14 from each flask and pooled for
ChIP-seq analysis.

Cell fixation and subsequent lysis of 107 cells were performed
following the protocol of the Shearing ChIP kit by Diagenode (kch-
redmod-400). Sonication was performed by Bioruptor (Diagenode)
using 1 run of 10 cycles [30 s “ON”, 30 s “OFF”] at high power setting,
10 min on ice, vortex and spin down, 1 run of 10 cycles [30s “ON”,
30s “OFF”] at high power setting, 10 min on ice, vortex and spin
down, 1 run of 15 cycles [30s “ON”, 30s “OFF”] at high power
setting, 10 min on ice, vortex and spin down, and 1 run of 5 cycles
[30s “ON”, 30's “OFF”] at high power setting. At this point sheared
chromatin was stored at —80°C after snap freezing in liquid Nitrogen.
Magnetic immunoprecipitation was performed following the
protocol from the iDeal ChIP-seq kit by Diagenode (AB-001-0024)
using 10° cells per 2 pg antibody (H3K4mel, H3K4me3, H3K9me3,
H3K27ac, H3K27me3, H3K36me3, and IgG as negative control). DNA
concentration was quantified using Quant-IT Picogreen dsDNA
(N°P7589, Life Technologies). DNA quality control and recovery were
assessed by Real-time PCR using TSS-GAPDH (Forward-primer:
CCCTTGAGCTGTGACTGGAT, Reverse-primer: CACTCTGCGGTTTT-
CACCTG) as positive control target and target myoglobin exon 2 as
provided by the kit as negative control. Final control of size and
quantity was performed on a Bioanalyzer (Agilent DNA 7500 and
DNA 12000 Kit—C5067-1506).

Data Preprocessing and Chip-Seq Mapping

Raw reads were preprocessed with Flexbar—v2.4 (Dodt et al., 2012)
using a minimum overlap of adapter and read sequence of 6, 2

2244

Biotechnology and Bioengineering, Vol. 113, No. 10, October, 2016

allowed mismatches, and gaps per 10 bases overlap and 18 as a
minimum read length to remain after removal. The quality was
assessed with FastQC v0.10.1  (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Although the required depth
depends on the nature of the mark and the state of the cells in each
experiment, ChIPseq experiments in mouse (Jung et al., 2014)
suggest that a depth of 25 million reads are sufficient. Therefore
only those samples with more than 25 million reads that passed
the filter (50 bp read length) were used. Preprocessed reads were
aligned in single end mode to the Chinese Hamster reference
sequence published by Brinkrolf et al. (2013) with BWA mem v0.7.7
with default parameters. Aligned SAM files were converted to BAM
files with SAMtools view v0.0.18. Aligned BAM files were coordinate
sorted with Picard SortSam v1.95 and duplicates removed with
Picard MarkDuplicates v1.95 (http://broadinstitute.github.io/
picard/).

Chip-Seq Peak Calling and Genome Annotation

The fragment size was modeled using the PhantomPeakQualTools
(http://code.google.com/p/phantompeakqualtools) ~ R script.
MACSv2.0.10 (Zhang et al., 2008) peak caller was used to compare
ChIP-seq mapped reads to a corresponding input sample sequenced
control with the fragment size predicted by PhantomPeakQualTools.
Both the standard method for H3K4me3 and H3K27ac and the—
broad flag method for H3K4mel, H3K27me3, H3K36me3,
H3K4me9 with default parameters were used. All samples were
normalized by sequencing depth in million reads with the flag—
SPMR. ChIPseeker package (Yu et al, 2015) and the Genomic
Features package for R (v.3.02) (Lawrence et al., 2013) were used to
annotate the location of normalized peaks relative to genomic
features.

Chromatin State Learning Across Time Points

Chromatin states were learned by applying the ChromHMM
hidden Markov Model v1.10 (Ernst and Kellis, 2012) at 200 bp
resolution to the six histone marks (H3K4me3, H3K4mel,
H3K9me3, H3K27ac, H3K27me3, H3K36me3) for each time
point. ChIP-seq mapped reads were converted to BED files with
BEDTools v2.16.2. Data was binarized in 200bp using the
BinarizeBed function of ChromHMMvl1.10, using the input
sample sequenced as a control. After testing a range of possible
states, an 11 state model was trained with the full data set, to
identify biologically meaningful patterns similar to previously
published states from human cell types (Roadmap Epigenomics
Consortium, 2015) using the ChromHMM LearnModel function.
Each time point was segmented using the 11 state model by the
MakeSegmentation function, resulting in a segmentation covering
99.8% of the genome. The enrichment of each state of the
segmentation was computed for a set of external coordinates
(CpG islands, mRNA, exon, TSS, transcription end site (TES) and
regions within 2kb of the TSS) in BED format. Finally, the
enrichment of each state at fixed positions relative to anchor
positions was computed with the NeighborhoodEnrichment
function. Chromatin state coverage was plotted for all reads
with ggplot package for R (v.3.02).
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Relationship Between Histone Marks and Methylation

An intersection between chromatin states and CpG-methylation
coordinates with a minimum read Coverage of three was calculated
with BEDTools v2.16.2 and a boxplot generated with ggplot2
package for R (v.3.02).

Differential Binding Analysis ChIP Seq Data

Peaks were subjected to DiffBind (http://bioconductor.org/
packages/release/bio/DiffBind/inst/doc/DiftBind.pdf) analysis to
perform differential analysis of histone modifications. The binding
matrix was calculated with affinity scores based on TMM
normalization (EdgeR), using read counts minus control read
counts and Effective Library size. PCA plots were generating using
affinity data for all sites. Then, a contrast between the three culture
phases was established to run edgeR analysis to identify
differentially bound sites using the default threshold of
FDR > =0.1.

Results

For our study, six related cell lines (Fig. 1) were sequenced both
for their genome sequence and DNA-methylation pattern. The
parental cell line CHO-K1 grown adherent in FCS supplemented

medium (FCS) was adapted to growth in suspension in a protein-
free medium, containing 8 mM glutamine, and a master cell bank
established (Pf-MCB). This cell line was also used for analysis of
histone modifications and changes in DNA-methylation patterns
during batch culture. After the initial sampling, cells were
passaged for 6 months and reanalyzed (Pf-6 months). Pf-MCB
cells were adapted to grow at similar growth rate and to high cell
density in the same medium lacking glutamine, the main energy
source in vitro, which required metabolic modifications to ensure
sufficient energy supply (no-Gln) (Hernandez-Bort et al., 2010).
In addition, a subclone isolated for threefold higher transient
productivity (Pichler et al., 2011) was analyzed at two time
points, 2 weeks after thawing (K1/1D9-MCB) and 3 months later,
after the phenotype of high productivity was lost (K1/1D9-3
months). Importantly, except for K1/1D9, cells were adapted to
the new culture conditions without subcloning, so represent
pools. To enable a valid comparison, all genomes were
subsampled to the lowest coverage (13.5-fold) for analysis of
SNPs and InDels <5bp (from now on summarized as small
mutations or SM) (Suppl. File WS2). For structural variant (SV)
comparison, subsampling was done to the matching number of
reads rather than coverage, as analysis for SVs is based on the
number of broken read pairs. All reads were mapped against the
chromosome assigned Chinese Hamster draft genome (Brinkrolf
et al., 2013).
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Cell lines analyzed, their relationship and development. K1-ECACC cells grown adherent in FCS (FCS) were adapted to protein free suspension growth (PF-MCB) and

subsequently cultivated for 6 months (PF-6 months). PF-MCB cells were adapted to growth in glutamine free medium (no-Gin). A subclone isolated for increased transient
productivity was isolated by repeated cell sorting and subcloning (K1/1D9-MCB). This subclone was also passaged for 3 months and reanalyzed (K1/1D9-3 months). Colors shown

are used in all figures.
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Genomic Variants Occurring During Cell Line Evolution

The first question investigated was the occurrence of genomic
modifications during adaptation and selection and over time in
culture. In Figure 2a and b, the shared and cell line specific calls of
SMs and SVs are presented for comparisons of each cell line relative
to the next stage of its evolution (absolute numbers and percentages
are listed in Suppl. File WS5 and WS9). Comparative analysis of SMs
indicates that 51-57% of these are shared between the two cell lines
compared in each case and the rest are uniquely found in one or the
other cell type, with SMs both disappearing and new ones appearing
at each transition. We observe a larger percentage of SMs lost than
gained relative to the total number of SMs within that comparison
during the transition from adherent culture to protein-free
suspension culture (—29% vs. +19% for FCS vs. Pf-MCB), which
suggests the selection of a suspension compatible genotype.
Subsequently, during selection of specific phenotypes such as
growth in glutamine-frre medium or enhanced transient
productivity, more SMs are gained than lost (—18% vs. +28%

for Pf-MCB vs. no-Gln and —19% vs. +30% for Pf-MCB vs. K1/
1D9-MCB, respectively). Overall, only ~1.0-1.2% of SMs have a
direct effect on protein sequence, while 98.5% are intergenic or
intronic (Suppl. File WS4).

The variation in SVs, consisting of duplications, deletions,
inversions, and translocations, is much higher, with only approx.
30% shared in each comparison. In all cell lines, the majority of SVs
consist of translocations (80% or more). Similar to the SMs, the
total number of SVs found in each population is comparable, with
the highest absolute number found in PF-6 months. The higher
overlap in SVs between K1/1D9-MCB and K1/1D9-3 months (37.9%
shared SVs vs. 28.4% in the comparison of PF-MCB against PF-6
months) may be explained by the shorter period that passed
between the two sampling points. A simulation using subsampled
datasets derived from a single sample available at higher coverage
also results in unique calls for each subsample (Suppl. File WS13),
an effect that decreases with higher coverage. Nevertheless, even at
13.5% coverage, the percentage of unique calls in the two-sample
comparison (1D9-MCB vs. 1D9-3 months) is distinctly higher than

En
a

978707 681469

1688577

1740512

629534 843887

592276

177770

3 €3 I

K1/1D9-

K1/1D9-MCB 3-months

636612 741889

1733434 2020797

1029252 743890

Figure 2. Comparative analysis of changes in SMs (a) and SVs (h). Venn diagrams are size proportional for each comparison, but not across all cell lines. The variants unique for

each cell line are presented in the respective colour assigned to the cell lines.
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in the subsample comparison from the same population (1D9-MCB
vs. MCB subsamples), thus supporting the theory of continuously
occurring rearrangements in the CHO genome.

An important question in this context is whether, on the genome
level, clones are more homogenous than pools. Variant calling in
populations comprising several subpopulations with more widely
varying genotypes (as expected in a pool) would lead to (i) a higher
number of variants with lower alternative allele frequencies and
confidence levels (Fig. 3a and b); (ii) a generally higher number of
variant calls with a larger proportion of heterozygous variants (Fig.
3c); and/or (iii) with confidence levels below the threshold
considered significant for a given coverage (Fig. 3d). The distribution
of homozygosity and heterozygosity for SVs is more diverse than for
SMs, with alarger number of heterozygous SVs (0/1) and a significant
fraction of variants with a small alternative allele frequency (0/0). In
all cases, however, there is no significant difference in distribution
between the pools and the clonal cell lines. In addition, the percentage
of translocations identified below the quality threshold ranges from
73-82%, with the highest percentage actually found in subclone K1/
1D9-MCB. Thus, on the level of genome homogeneity, the diversity of
a pool of cells is comparable to that of this clone derived from a
continuous, immortalized cell line.

DNA-Methylation Changes During Cell Line Evolution

Bisulfite-treated full genome DNA-sequences were mapped against
the reference genome (Brinkrolf et al., 2013) and differentially

methylated regions of 1kb (DMR) assigned to promoter regions,
transcription start sites (TSS), introns, exons, and intergenic regions
(Fig. 4a and b, Suppl. File WS11). Noticeably, time in culture has the
least effect on differential methylation (total number of DMRs: 2,947
for PF over 6 months and 2,480 for K1/1D9 over 3 months), indicating
that DNA-methylation patterns are largely passed on to daughter cells
under constant culture conditions. In contrast, adaptation to different
media/growth conditions causes intermediate changes in DMRs
(13,674 DMRs for transition from FCS-containing to protein-free
medium and 21,788 DMRs for adaptation to glutamine-free
medium). The highest number of DMRs (69,040) is found in the
comparison of the K1/1D9-MCB subclone with the parental PE-MCB,
where its establishment involved several rounds of sorting for this
specific phenotype (top 1% productivity) and a final round of
subcloning (Pichler etal., 2011). Overall, 55-65% of all CpGs are fully
methylated, and 15-20% fully demethylated (Fig. 4c). Hyper-
methylation of CpGs is highest in K1/1D9-MCB and lowest in no-Gln,
and it decreases over time in culture both for K1/1D9 and PE
Summarized, these results indicate that transcription patterns to fita
given set of culture conditions are laid down by corresponding
DNA-methylation patterns which are inherited by daughter cells, but
may be altered upon a change in culture conditions.

Epigenetic Response During Batch Culture

In the course of a batch culture, with its declining nutrient
availability and increasing waste metabolite concentrations, cells
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need to respond by rapidly changing gene transcription. PF-MCB
cells were seeded into shaker flasks and sampled every 12h for
ChIP-seq analysis of six histone modifications as recommended by
the International Human Epigenetics Consortium (http://ihec-
epigenomes.org/research/reference-epigenome-standards/) (Suppl.
File WS14). Using ChromHMM (Ernst and Kellis, 2012), a model
consisting of 11 defined chromatin states corresponding to putative
promoters, enhancers, transcribed or heterochromatic regions was
generated and these states assigned to in total 11,642,738 segments
of 200bp of the genome (Fig. 5). The majority of the genome
(~89%) is either quiescent (very low or no signal) or repressed
(Suppl. File WS13). Overall, ~22,3% of the 200 bp segments change
state during the course of the batch culture. Comparing DNA-
methylation patterns in exponential (day 3) and stationary (day 8)
phase, 143 regions of 1kb are differentially methylated, of which
only 19 are in annotated promoter regions (Suppl. File WSI11).

Intersection of CpG-methylation with the ChromHMM model
reveals high methylation in areas of high transcriptional activity,
while highly active promoters (state 9) are fully de-methylated
(Fig. 5¢). Methylation of promoters with weaker activity (state 10)
range from fully de-methylated to semi-methylated, which might
indicate activity in one allele and inactivity in the other. While there
are few DMRs between these two culture stages, the percentage of
methylation in the active chromatin states 4-11 do shift to
higher levels of methylation, indicating that those changes in
DNA-methylation that occur are predominantly found in active
regulatory regions. PCA analysis of histone modifications reveals
that highly active, transcription related modifications undergo a
continuous adaptation during the batch culture, while repressed
regions undergo fewer changes (Fig. 6; Table I). However, for all
marks there is a clear separation between these three culture
phases: exponential growth (tp 0-8 =0-101h), stationary growth
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Figure 6. Pca analysis of histone modifications during batch culture: Timepoints (Tp) are coloured according to culture phase as indicated.

(tp 9-12 = 114-149 h) and decline phase (tp 13-17 =162-210h).  Discussion

Together, these results indicate that short-term regulation of

transcription is a continuous, adaptive process that is primarily =~ Comparison of the different cell lines reveals that changes occur at
controlled by alterations in histone modifications. all levels, including SMs, SVs, and DNA-methylation, but are not
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Table 1. Percentage of chromatin states in the genome during batch culture and differential histone modification binding sites.

Day 3 Day 5 Day 7 Day 9
0.98 1.24 0.87 0.92
2. Quiescent/low 86.96 86.13 87.14 88.53
0.54 1.01 0.62 0.72
4. Strong transcription (H3K36me3) 5.72 5.60 4.89 5.51
0.32 0.40 0.37 0.20
2.90 2.84 1.81 0.75
0.91 0.94 1.76 0.65
8. Regulatory element 0.09 0.08 0.42 0.69
0.79 0.85 0.98 1.40
0.40 0.53 0.84 0.67
11. Flanking TSS 0.39 0.39 0.16 0.07
Percent differential binding sites
Transition H3K27ac H3K4me3 H3K4mel H3K36me3 H3K27me3 H3K9me3
Log-exp to stationary 44.9 20.7 31.5 30.6 0.7 0.7
Log-exp to decline 63.5 56.6 54.4 489 3.5 9.2
Stationary to decline 18.1 26.4 17.1 9.8 0.4 0.4

necessarily linked to the process of adaptation or selection. New
SMs and SVs occur also simply during time in culture. The highest
degree of variation occurs with SVs, most prominently with
translocations, confirming previous reports of chromosomal
rearrangements and irregularities in numbers (Cao et al., 2012;
Derouazi et al., 2006). Such genomic inconsistencies have also been
reported in another immortalized cell line, HEK293 (Lin et al.,
2014). Strikingly, variants disappear to a similar extent as new ones
appear which can only in part be explained by the sequencing
coverage used. Overall, the genome of immortalized cells is
seemingly undergoing a continuous and random rearrangement,
where certain variants may be prohibitive and therefore are
immediately lost (if they impact a vital gene or functionality), while
others are carried along or may even be expanded if they provide a
slight growth advantage. As only a small percentage of SMs have a
direct effect on protein sequence, there presumably is, for most
SMs, no evolutionary pressure that promotes or removes them from
the population. We note that the number of variants, their
distribution and frequency within a population is not higher in a
pool of cells compared to the subclone. Given the observed large
number of variants that are continuously generated and lost, a
“clone” would accumulate a comparable number of variants during
the 50-70 population doublings required to expand it into a cell
bank, thus essentially eliminating the initial genomic homogeneity
of a single cell.

While genomic diversification appears to be a continuous
process, changes in DNA-methylation patterns are more signifi-
cantly linked to changes in phenotype or culture conditions. Both
adaptation to different media (as with most cell pools analyzed) and
selection/subcloning for a specific phenotype (high transient
productivity, as with subclone K1/1D9) generates prominent
changes in DNA-methylation patterns. In contrast, long-term
maintenance under constant culture conditions results only in
minor changes in DNA-methylation. Interestingly, subclone K1/1D9
has the highest overall degree of CpG-methylation and the largest
number of differentially methylated promoters relative to its parent.
This confirms a recent transcriptome analysis of this cell line where
two thirds of differentially expressed genes were downregulated
(Harreither et al, 2015), indicating that a high productivity

Feichtinger et al.: Comprehensive Genome and Epigenome Characterization of CHO Cells

phenotype is only in part achieved by enhanced expression of genes
needed for production, but just as importantly requires focusing on
this specific task by reducing expression of unrelated functions and
pathways. Finally, the lowest overall level of CpG-methylation was
observed in no-Gln cells, which were harshly treated during their
adaptation and may need to express more genes to enable survival
and successful growth under such minimal conditions.

At the current state of the Chinese Hamster and CHO reference
genomes, the chromatin state model will be a valuable resource to
help with the annotation of promoters, TSS, regulatory regions and
both coding, and non-coding genes. Although active transcription
states in many cases overlap with annotated genes, frequently
transcription can be observed also in unannotated regions, while in
other instances promoter regions are found in the middle of an
annotated gene, possibly incorrectly assembled, although a
translocation in the CHO genome cannot be excluded. The
correctness of active promoter prediction is confirmed by the
overlap of predicted active promoters with highly demethylated
regions. While DNA-methylation in annotated promoter regions is
not notably altered during the batch culture, approx. 22.3% of the
chromatin state segments of the genome undergo changes,
indicating that short term changes in transcription in CHO cells
are controlled by histone modifications and that these occur in a
continuous adaptation to the altering conditions. Exponential
growth, stationary growth, and decline phase can be clearly
distinguished by PCA. The continuous adaptation during
exponential growth phase is most prominent in histone marks
that define regulatory units or promoters (H3K27ac, H3K4mel, and
H3K4me3), thus demonstrating the efficiency of cells in achieving
homeostasis in the form of constant output (= growth rate) during
this phase in spite of decreasing nutrient availability, but also
indicating the need for continuous adaptation.

In view of common procedures during cell line development,
which typically include the requirement for subcloning, it is striking
that the genome homogeneity of the analyzed subclone is not
significantly different from that of the pools. Thus, the common
expectation that a clone is more homogeneous should be
questioned when working with fast growing, immortalized cell
lines, as the divisions required to expand cells to sufficient numbers
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for a master cell bank or a bioreactor allows for accumulation of
high numbers of new variants. At the epigenetic level, we observe
that DNA-methylation plays a major role in defining and
differentiating between phenotypes and is inherited by daughter
cells. Besides established approaches of changing the epigenome,
such as addition of sodium butyrate or valproic acid, which both
have a global impact on epigenetic regulation, other, so far
unexplored mechanisms of targeted control of gene expression
could be put to good use, including long-non-coding RNAs (Holoch
and Moazed, 2015), or the application of site specific (de-)
methylases or histone modifying enzymes (Hilton et al., 2015; Lang
et al., 2015). Such methods open up new options for control of cell
behavior that, compared to classical overexpression or knock-out
engineering, may be easier to achieve on the one hand, but also
more difficult to stabilize and maintain on the other. In either case,
they would significantly enlarge the toolbox for metabolic
engineering of cell behavior.

Summarized, our results suggest that culture conditions
support and enforce a given phenotype as defined by the DNA-
methylome which in turn defines the gene expression pattern
required for this set of conditions. Short-term adaptation to
rapidly changing nutrient availability as observed during a batch
culture on the other hand is primarily controlled via a continuous
modulation of histone modifications. Insights gained from these
data will improve our understanding of the dynamics of the
genome and epigenome in cells that are used as model systems
for many basic research questions and that are maintained in
culture under a variety of conditions and over prolonged periods
of time. In view of the industrial use of CHO as a cell factory, they
may also guide future developments towards improved epigenetic
control and manipulation of cell behavior in the context of
industrial bioprocesses.

Accession Codes And Jbrowse Access

DNA-seq and BS-seq raw data: PRJEB9185; ChIP-seq results:
PRJEB9291. All data are available for download and visualized in a
JBrowse server available at cho-epigenome.boku.ac.at/ with a link
provided from www.CHOgenome.org.
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