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Abstract

Motivation: miRNA isoforms (isomiRs) are produced from the same arm as the archetype miRNA with a few nucleo-
tides different at 5 and/or 3 termini. These well-conserved isomiRs are functionally important and have contributed
to the evolution of miRNA genes. Accurate detection of differential expression of miRNAs can bring new insights
into the cellular function of miRNA and a further improvement in miRNA-based diagnostic and prognostic applica-
tions. However, very few methods take isomiR variations into account in the analysis of miRNA differential
expression.

Results: To overcome this challenge, we developed a novel approach to take advantage of the multidimensional
structure of isomiR data from the same miRNAs, termed as a multivariate differential expression by Hotelling’s T2

test (MDEHT). The utilization of the information hidden in isomiRs enables MDEHT to increase the power of identify-
ing differentially expressed miRNAs that are not marginally detectable in univariate testing methods. We conducted
rigorous and unbiased comparisons of MDEHT with seven commonly used tools in simulated and real datasets
from The Cancer Genome Atlas. Our comprehensive evaluations demonstrated that the MDEHT method was robust
among various datasets and outperformed other commonly used tools in terms of Type I error rate, true positive
rate and reproducibility.

Availability and implementation: The source code for identifying and quantifying isomiRs and performing miRNA
differential expression analysis is available at https://github.com/amanzju/MDEHT.

Contact: yanlu76@zju.edu.cn or pyliu@zju.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

MicroRNAs (miRNAs) are a class of small non-coding RNA mole-
cules with 19–24 nt in length (Lagos-Quintana et al., 2001).

miRNAs are critical post-transcriptional regulators of gene expres-
sion that act by degrading their RNA targets or by repressing the
translation of mRNAs (Ha and Kim, 2014). miRNAs are abundant
and highly conserved in organisms and have been estimated to
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regulate > 50% of genes in the genome (Friedman et al., 2009).
With the advent of next-generation sequencing technology, over
2000 miRNAs have been identified in the human genome. miRNAs
play a critical role in numerous cellular functions in diverse proc-
esses such as cell proliferation, cell death, fat metabolism, hemato-
poietic differentiation and immunity (Hanna et al., 2019; Wang
et al., 2019). Aberrant miRNA expression is associated with many
diseases, including cancer (Acunzo et al., 2015; Andrew et al., 2019;
Yan et al., 2019).

Most miRNAs are transcribed from DNA sequences into primary
miRNAs (pri-miRNAs) and processed into precursor miRNAs (pre-
miRNAs) and mature miRNAs (Ha and Kim, 2014; Macfarlane and
Murphy, 2010; O’Brien et al., 2018). Specifically, miRNA biogenesis
is involved in the following major steps: (i) DNAs are transcribed
into pri-miRNA with the processing of RNA polymerase II/III. (ii)
The pri-miRNA is cleaved to generate the pre-miRNA by the micro-
processor complex comprised of Drosha and DGCR8. (iii) The pre-
miRNA is assembled into a complex with the nucleocytoplasmic
transport factor Exportin-5 and RanGTP and is subsequently translo-
cated into the cytoplasm. (iv) The cytoplasmic pre-miRNA is proc-
essed into miRNA duplex by Dicer. (v) The miRNA duplex liberates
the mature miRNA to assemble into the Argonaute family of proteins
to form RNA-induced silencing complex.

miRNA isoforms (isomiRs) are miRNA sequences that have var-
iations with respect to the reference sequence (Morin et al., 2008).
These sequence variants typically differ from the mature miRNA ref-
erence sequences at either their 5�or 3�ends. isomiRs are probably
generated by the sequential cleavages catalyzed by Drosha and/or
Dicer enzymes, although other endonucleases enzymes could also be
involved (Neilsen et al., 2012). isomiRs are produced constitutively
in human tissues, and their expression depends on tissue type, tissue
state, disease subtype, person’s sex, population origin and race
(Telonis et al., 2017). Many isomiRs are conserved across species
and in some cases, differentially expressed according to the tissue or
developmental stages (Neilsen et al., 2012).

A fundamental goal of RNA-sequencing (RNA-seq) is to identify
expression changes between different biological or disease condi-
tions (Chu et al., 2015). Many bioinformatics tools such as DEseq
and edgeR for detecting differential expression from RNA-seq count
data have been developed (Anders and Huber, 2010; Auer and
Doerge, 2011; Di et al., 2011; Love et al., 2014; Robinson et al.,
2010; Smyth, 2004). However, very few tools take isomiRs into ac-
count in differential expression analysis. In most analyses, isoforms
of a miRNA are treated as the same miRNA and read counts of
isomiRs are combined. The utilization of the relationship of isomiR
expression may aid in the detection of differential expression of its
canonical miRNA. To overcome this challenge, we developed a
novel approach to take advantage of the multidimensional structure
of isomiR data from the same miRNAs, termed as multivariate dif-
ferential expression by Hotelling’s T2 test (MDEHT; https://github.
com/amanzju/MDEHT). Hotelling’s T2 test is a generalization of the
Student’s t-statistic and is widely used for testing the difference in
two multivariate means. To utilize isomiRs, we also developed a
computational tool called isomiRseeker to identify isomiRs from the
miRNA-sequencing (miRNA-seq) data. We conducted rigorous and
unbiased comparisons of MDEHT with seven commonly used tools
in simulated and real datasets from The Cancer Genome Atlas
(TCGA; https://cancergenome.nih.gov/). Our comprehensive evalua-
tions demonstrated that the newly developed MDEHT method was
robust among various datasets and outperformed the other tools in
terms of Type I error rate, true positive rate and reproducibility. We
also performed in vitro cell-based assays for a novel miRNA miR-
335-3p in uterine corpus endometrial carcinoma (UCEC) for further
validation of MDEHT.

2 Materials and methods

2.1 Hotelling’s T2 statistic
The multivariate Hotelling’s T2 statistic is a generalization of the
univariate Student t-statistic, proportional to the F-distribution that

is used in multivariate hypothesis testing (Hotelling, 1931). Suppose
we generate read count data of miRNAs from a miRNA-seq study
where nx represents the sample size from the treatment group and ny

represents the sample size from the control group. Suppose that
there are a total of L isomiRs in a particular miRNA in both groups
(treatment and control). Each miRNA is used as a single variable to
construct a T2 statistic where each miRNA has more than one iso-
form. LetXikbe the expression level for kth isomiR of a tested
miRNA from ith sample in the treatment group andYjkbe the expres-
sion level for kth isomiR of that miRNA from jth sample in the con-
trol group. The expression level vectors for samples i and j are
defined as Xi ¼ Xi1;Xi2; . . . ;XiLð ÞT and Yj ¼ Yj1;Yj2; . . . ;YjL

� �T
in

the treatment and control groups, respectively. The mean expression
levels of kth isomiR of the tested miRNA in the treatment and con-
trol groups can be expressed as

�Xk ¼ 1=nx

Xnx

i¼1
Xik and �Y k ¼ 1=ny

Xny

j¼1
Yjk;

respectively. The mean expression level vectors for the tested
miRNA in the treatment and control groups can be expressed as
�X ¼ �X1;

�X2; . . . ; �XL

� �T
and �Y ¼ �Y 1;

�Y 2; . . . ; �Y L

� �T
, respectively. The

pooled variance–covariance matrix of expression levels for the
tested miRNA in both groups is then defined as,

P
¼

nx�1ð Þ
P

1þ ny�1
� �P

2

nxþny�2

¼ 1

nxþny�2

Xnx

i¼1
Xi� �X
� �

Xi� �X
� �T þ

Xny

j¼1
Yj� �Y
� �

Yj� �Y
� �T

� �
;

(1)

where
P

1 and
P

2 are the variance-covariance matrix of expression
levels for the tested miRNA in treatment and control groups, re-
spectively. Hotelling’s T2 statistic for miRNA differential expression
studies is then defined as (Lu et al., 2005),

T2 ¼ nxny

nx þ ny

�X � �Yð ÞR�1 �X � �Yð ÞT : (2)

Under the null hypothesis that the distributions in both groups
are the same, when both have a large sample size, the central limit
theorem dictates that,

nx þ ny � L� 1

L nx þ ny � 2
� � T2 (3)

is asymptotically F-distributed with L degrees of freedom for the nu-
merator and nx þ ny � L� 1 for the denominator.

A breaking assumption of Hotelling’s T2 statistic is that if the de-
terminant of the pooled variance–covariance matrix is zero, then
Hotelling’s T2 will break. Because an inverse of a square matrix is
not possible if the determinant of that matrix is zero, although this
condition arises very rarely. We overcame this problem using gener-
alized techniques for inversion of a non-invertible matrix.
Specifically, the most well-known Moore-Penrose inverse pseudoin-
verse technique was applied (Penrose, 1955), implemented using
‘ginv’ function from R package ‘MASS’.

2.2 Identification of isomiRs from miRNA-seq
To utilize isomiRs, we developed a computational tool isomiRseeker
to identify isomiRs from miRNA-seq data. Briefly, we downloaded
the gene annotations (hg19) and corresponding reference sequences
of 2794 mature miRNA in human from miRbase (v21). Then, we
built the isomiRs annotation database using these mature miRNA
sequences. The start position of isomiRs can be from 5-nt upstream
and 5-nt downstream sequence of the 50 end of mature miRNA,
whereas its endpoint ranged from 5-nt upstream to 5-nt downstream
sequence of the 30 end of mature miRNA. As a result, we can gener-
ate a total 121 unique sequences (representing 121 isoforms) for a
single miRNA. According to this rule, a total of 338 074
(2794�121) unique sequences were generated in the isomiRs anno-
tation database.
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Next, we downloaded miRNA-seq BAM files of 5743 tumor
samples and 546 normal samples among 11 types of cancer from the
TCGA data portal (https://portal.gdc.cancer.gov/). These cancer
types include bladder urothelial carcinoma (BLCA), breast invasive
carcinoma (BRCA), head and neck squamous cell carcinoma
(HNSC), kidney renal clear cell carcinoma (KIRC), kidney renal
papillary cell carcinoma (KIRP), liver hepatocellular carcinoma
(LIHC), lung adenocarcinoma LUAD), lung squamous cell carcin-
oma (LUSC), pancreatic adenocarcinoma (PRAD), stomach adeno-
carcinoma (STAD), and uterine corpus endometrial carcinoma
(UCEC). Among these 11 cancer types, enough corresponding nor-
mal samples (n>15) were available (Supplementary Table S1).
Read mapping and quantification of isomiRs were analyzed using
our computational tool isomiRseeker. Briefly, the reads that aligned
to the reference human genome in the BAM files were first
remapped to our isomiR annotation database using bwa (Li and
Durbin, 2009), allowing no mismatch per reading. Then, these
remapped reads were used to count the number of reads belonging
to each of the candidate isomiRs. Currently, our isomiRseeker tool
can only handle template isomiRs that are based on known mature
miRNAs. However, users are allowed to manually add their non-
template isomiR sequences to the isomiRs annotation database so
that these non-template isomiRs can be analyzed in the study.

Prior to the differential expression analysis, isomiRs with zero
read count in >80% samples were filtered. In the count data matrix,
a row represents an isomiR, and a column represents a sample. The
expression level of isomiRs was calculated as Reads Per Million
(RPM) mapped reads, which has been commonly used in previous

miRNA and lncRNA studies (de Rie et al., 2017; Yan et al., 2015).
Furthermore, the expression of isomiRs was log2-transformed
across samples before subsequent downstream analysis.

2.3 Simulation studies
Simulated datasets that are generated from assumed probabilistic
models might not closely recapitulate the complex structure of real
RNA-seq data. Instead, we generated simulation datasets by directly
sampling miRNA read count data from TCGA datasets. Two types
of simulation datasets were generated (Fig. 1A), one for evaluating
the Type I error rate and another for evaluating the true positive
rate of different statistical tools for miRNA differential expression
analysis.

To evaluate the Type I error rate of statistical tools for identify-
ing miRNA differential expression, we generated simulated datasets
under the null hypothesis (i.e. two multivariate means are equal)
from TCGA tumor samples (Fig. 1A). Briefly, read count data of
isomiRs were obtained from miRNA-seq BAM files in TCGA using
our computational pipeline isomiRseeker as described above. Lowly
expressed isomiR was further filtered if read count of an isoform is
zero in > 80% of tumor samples in a cancer type. Then, read count
data were transformed into RPM values. Unsupervised hierarchical
cluster analysis was applied to the log2-transformed RPM data in
each cancer type. Euclidian distance and ward.D2 cluster method
were used in the cluster analysis. From the cluster analysis, the best
homogeneous samples were identified in each cancer type
(Supplementary Fig. S1). Since most cancer types have very limited
numbers of normal specimens, only tumor samples were used in the
clustering analysis to generate simulation datasets under the null hy-
pothesis. Finally, equal numbers of tumor specimens were sampled
without replacement from the best homogeneous samples in each
cancer type, forming the treatment and control groups.
Subsequently, differential expression analysis of miRNA was per-
formed on the simulated datasets using various statistical tools.
Type I error rate was defined as the proportion of miRNAs with P-
values <0.05 from a given statistical test. Simulation datasets were
generated from each cancer type separately; simulation studies were
repeated 100 times in each cancer type.

To evaluate the true positive rate of statistical tools for identify-
ing miRNA differential expression, we also generated simulated
datasets under an alternative hypothesis (i.e. two multivariate means
are unequal) from TCGA tumor samples (Fig. 1A). Processing and
filtering the read counts of isomiRs from miRNA-seq BAM files
were performed as described above. Then, any two tumor types of
read count data were combined into a single data frame. This
resulted in a total of 55 combined datasets by considering all the
possible combinations of two cancers among 11 cancer types.
Similar cluster analysis was performed on the combined datasets.
Two distinct clusters were identified, each of which represents
homogeneous samples from one of the two tumor types in each of
the combined datasets (Supplementary Fig. S2). Finally, in each of
combined datasets, equal numbers of tumor specimens were respect-
ively sampled without replacement from the identified two clusters,
forming the treatment and control groups. Subsequently, differential
expression analysis of miRNA was performed on the simulated
datasets using various statistical tools. The true positive rate was
defined as the proportion of miRNA with an adjusted P-value <
0.05 from a given statistical test. Adjusted P-values (i.e. false discov-
ery rate) were obtained using the Benjamini–Hochberg method
(Benjamini and Hochberg, 1995). Simulation studies were repeated
100 times for any of the two cancer types.

2.4 Real data analysis
Similarly, processing and filtering of read counts of isomiRs from
miRNA-seq data in TCGA tumor and normal samples were per-
formed as described above. To evaluate the reproducibility of each
statistical method for detecting miRNA differential expression,
tumor samples were randomly divided into two groups (A and B)
with equal sample size in each cancer type. Since each cancer type
has limited normal samples, the normal samples are not split into

Fig. 1. Flowchart for simulation studies and real data analyses. (A) Simulation data-

sets were generated by directly sampling miRNA read count data from TCGA. Two

types of simulation datasets were generated, one for evaluating the Type I error rate

under the null hypothesis and another for evaluating the true positive rate under the

alternative hypothesis. (B) Real data from TCGA were used to evaluate the reprodu-

cibility of results from statistical methods and to detect DEmiRs in each cancer type.

To evaluate the reproducibility of DEmiR results, tumor samples were randomly

divided into two groups with equal sample size in each cancer type. Samples from

each tumor groups were compared with normal samples from the same cancer types

for identifying DEmiRs. To detect DEmiRs, all tumor and normal samples from the

same cancer type were analyzed by these statistical methods. Functional enrichment

analysis was performed on DEmiRs uniquely detected by the MDEHT method.

Eleven types of cancer from TCGA were used in simulation studies and real data

analyses. Read mapping and quantification of isomiRs were analyzed using our

computational pipeline isomiRseeker. HGS represents the homogeneous sample and

HCL represents the hierarchical cluster
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two groups. Samples from each tumor group were compared with
normal samples from the same cancer types for identifying differen-
tially expressed miRNAs (DEmiRs) (false discovery rate < 0.01;
Fig. 1B). The Jaccard similarity index from two datasets was calcu-
lated for evaluating the reproducibility of each statistical method
(Levandowsky and Winter, 1971).

We comprehensively assessed our new MDEHT with other seven
methods commonly used for differential expression analysis in simu-
lated and real datasets from TCGA. Specifically, for empirical ana-
lysis of digital gene expression in R (edgeR) (Robinson et al., 2010),
differential expression analysis for sequence count data (DESeq)
(Anders and Huber, 2010), DESeq2 (Love et al., 2014), negative bi-
nomial models for RNA-seq data (NBPSeq) (Di et al., 2011) and
two-stage Poisson model (TSPM) (Auer and Doerge, 2011), read
counts of miRNAs are directly inputted to the analysis, while for
Voom (þlimma; Smyth, 2004), Vst (þlimma; Smyth, 2004) and
MDEHT, RPM data of miRNAs are inputted to the analysis. All the
analyses were performed with default parameters.

2.5 Cell culture
HEC-1-B cells were obtained from the American Type Culture
Collection and were cultured in minimum essential medium (Gibco,
USA) supplemented with 10% fetal bovine serum (FBS) (Gibco) and
1% penicillin-streptomycin solution (Gibco). Cells were incubated
in a CO2 incubator (Thermo Fisher Scientific, USA) maintained at
37�C with humidified air and 5% CO2.

2.6 Tissue specimens
A total of 47 paired UCEC tumor tissues, and the corresponding ad-
jacent non-tumor tissues were obtained at the time of surgery. The
diagnosis of all the tissues was confirmed with histopathology, and
the TNM Classification of Malignant Tumors (TNM) clinical stages
were determined based on the American Joint Committee on Cancer
and the Union for International Cancer Control in 2002. The study
protocol was reviewed and approved by the Ethics Committees of
Women’s Hospital of Zhejiang University School of Medicine
(Hangzhou, China).

2.7 Oligonucleotide transfection
The miR-335-3p inhibitor was designed and synthesized by
GenePharma (Shanghai, China). Cells were transfected in individual
wells of 6-well plates with an inhibitor targeting miR-335-3p or
negative control (NC) using GeneMuteTM reagent (Shanghai,
China), according to the manufacturer’s instructions. The coding
strand of the inhibitor was 50-GGUCAGGAGCAAUAAUGAAAAA-
30.

2.8 Quantitative real-time PCR analysis
Total RNA was extracted from cells or tissues using the TRIzolV

R

re-
agent (Invitrogen, USA). For miRNA detection, reverse-transcribed
complementary DNA was synthesized with the HiScriptV

R

. II first
Strand cDNA Synthesis Kit (Vazyme, China) with gene-specific pri-
mers for miR-335-3p (Ribobio, China). qPCR analyses were per-
formed with HiScriptV

R

II One Step quantitative real-time PCR
(qRT-PCR) SYBR Green Kit (Vazyme) and normalized to U6 small
nuclear RNA expression. The primers were ordered from Ribobio.

2.9 Western blot analysis
The whole-cell lysates were prepared using RIPA lysis buffer
(Beyotime Biotechnology, China) following by centrifugation at 13
000 rpm for 15 min. The protein concentration was determined with
a BCA assay (Thermo Fisher Scientific, USA). Equal amounts of pro-
teins were separated on 10% SDS-PAGE, then transferred onto pol-
yvinylidene fluoride membrane, blocked with 5% skim milk and
incubated overnight with primary antibody at 4�C. The membranes
were then incubated with a suitable secondary antibody conjugated
with horseradish peroxidase for 1 h at room temperature, and visu-
alization of hybridization was carried out using a chemiluminescen-
ce’s reagent. The primary antibodies used are phospho-Wee1

(Ser642), Wee1, Cyclin E2, CDK2, cdc42, p21, p16 and GAPDH
obtained from Cell Signaling Technology (Danvers, MA, USA).

2.10 Cell proliferation assay
Cell proliferation was measured with the Cell Counting Kit-8 (CCK-
8) (MedChemExpress, USA) following the manufacturer’s instruc-
tions. In brief, �3000 cells were placed into each well of 96-well
plates after transfection for 24 h, and CCK-8 solution was added
after cells attached to the wall (0 h). CCK-8 solution was added into
cells every 24 h for 4 days. The absorbance was measured at 450 nm
after incubating for 2 h at 37�C.

2.11 In vitro migration and invasion assays
For transwell migration assays, 3�104 serum-free cells were plated
in the top chamber of each insert (Corning, USA) with a non-coated
membrane. For invasion assays, 3�104 serum-free cells were added
to the upper chamber with Matrigel (Corning, USA). For both assay
types, 500 ll of medium supplemented with 10% FBS was injected
into the lower chambers. After incubating for 16 h, the inserts were
fixed in 100% methanol and stained in 0.1% crystal violet. Cells
adhering to the lower membrane of the inserts were imaged with a
Leica DM4000 microscope (Germany).

2.12 Cell cycle analysis
After transfection for 48 h, the cells were harvested and fixed over-
night in 70% ethanol at �20�C. The fixed cells were washed three
times with phosphate-buffered saline and stained with propidium
iodide (BD Biosciences, USA). DNA contents were measured with a
Cytoflex S flow cytometer (Beckman, USA), and the results were
analyzed using FlowJo 7.6.1 software.

3 Results

3.1 Type I error rate and true positive rate
We generated simulated data under the null hypothesis by directly
sampling tumor specimens in TCGA. Primarily, equal numbers of
tumor specimens were sampled without replacement from the best

Fig. 2. Type I error rate of different tools for detecting DEmiRs. Simulated data

were generated under the null hypothesis by directly sampling tumor specimens

from 11 types of cancer datasets in TCGA. Briefly, equal numbers of tumor speci-

mens were sampled without replacement from the best homogeneous samples in

each cancer type, forming the treatment and control groups. For each dataset, the

Type I error rate was calculated over 100 replicates under different sample sizes
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homogeneous samples in each cancer type, forming the treatment
and control groups (Fig. 1A). All the statistical methods for miRNA
differential expression were performed on these simulated datasets.
Type I error rate was calculated over 100 replicates among 11 can-
cer types (Fig. 2). Our new MDEHT method consistently produced
a smaller Type I error rate than the other methods, �5%, under dif-
ferent sample sizes. MDEHT is slightly conservative when the sam-
ple size is small. Both methods based on the Limma statistical
package (i.e. Voom and Vst) also yielded a small Type I error rate
close to the expected level of 5%. DESeq and DESeq2 slightly
inflated the Type I error rate in all scenarios; whereas the other three
methods (edgeR, NBPSeq and TSPM) substantially inflated Type I
error rate. In most cases, the Type I error rate of the three methods
achieved 8–10%, nearly two times higher than the expected level.
These simulation results demonstrated that our proposed MDEHT
has a better performance in controlling Type I error rate and thus is
generally less prone to false positives than the other methods.

Next, we generated simulated data under the alternative hypoth-
esis by directly sampling tumor specimens in TCGA. Equal numbers
of tumor specimens were respectively sampled without replacement
from two distinct clusters, each of which represents the best homo-
geneous samples from one of the two tumor types, forming the treat-
ment and control groups (Fig. 1A). The true positive rate was
calculated over 100 replicates among any of the two cancer types
(Fig. 3). As expected, among all the methods for miRNA differential
expression, the true positive rate was increased with increasing sam-
ple sizes. In most scenarios, our MDEHT method gave the highest
true positive rates under different sample sizes. Voom, Vst, edgeR,
DESeq2 and TSPM yielded similar true positive rates, but much
lower than the MDEHT. NBPSeq and DESeq performed worst and
yielded the lowest true positive rates under different sample sizes.
These simulation results demonstrated that the MDEHT method
has higher statistical power than the other methods commonly used
for detecting miRNA differential expression.

3.2 Reproducibility
Tumor samples were randomly divided into two groups with equal
sample size in each cancer type to evaluate the reproducibility of
each statistical method for detecting DEmiRs. Samples from each
tumor group were compared with normal samples from the same
cancer types for identifying DEmiRs (false discovery rate < 0.01;
Fig. 1B). The Jaccard similarity index was used to measure the simi-
larity between two sets of DEmiRs detected from the same set of
cancer datasets. The Jaccard similarity index was calculated over 50
replicates among 11 cancer types (Fig. 4A–K). Our MDEHT method
generally yielded a higher Jaccard similarity index than other meth-
ods in most of TCGA datasets and had a much smaller variability in
the Jaccard index in each TCGA dataset. In rare scenarios, Voom
and Vst had a slightly higher Jaccard index than the MDEHT in
UCEC and lung adenocarcinoma, respectively; but these differences
are negligible, <1%. TSPM, NBPSeq and DESeq often gave the low-
est Jaccard index among all TCGA datasets. According to Jaccard
similarity index, our MDEHT ranked first in 9 out of 11 cancer
types and ranked second in the other two cancer types. On the other
hand, the MDEHT performed best based on the averaged Jaccard
index across all types of datasets (Fig. 4L). These data suggested that
the MDEHT method generates more reproducible results from
miRNA differential expression analysis than those from other
methods.

3.3 Identification of DEmiRs in real data datasets
Besides the above simulation studies, we also applied these statistical
methods to the analysis of DEmiRs in 11 cancer datasets from
TCGA (Fig. 1B). The MDEHT method identified the most extensive
list of DEmiRs than other methods in most of these cancer types,
whereas the NBPSeq method identified the smallest list of DEmiRs
in nearly all cancer types (Supplementary Fig. S3). Next, we took a
closer look at the overlapping DEmiRs detected by multiple methods

Fig. 3. True positive rate of different tools for detecting DEmiRs. Simulated data

were generated under the alternative hypothesis by directly sampling tumor speci-

mens in any of the two combined TCGA datasets. Briefly, equal numbers of tumor

specimens were respectively sampled without replacement from two distinct clus-

ters, each of which represents the best homogeneous samples from one of the two

tumor types, forming the treatment and control groups. For each combination of

any of the two cancer types, the true positive rate was calculated over 100 replicates

under different sample sizes

Fig. 4. Jaccard similarity index of different tools for detecting DEmiRs. The Jaccard

similarity index measures the similarity between two sets of DEmiRs detected from

the same cancer datasets. In each cancer type, tumor samples were randomly divided

into two groups with equal sample size. Samples from each tumor group were com-

pared with normal samples from the same cancer types for identifying DEmiRs

using these statistical methods. The Jaccard similarity index was calculated over 50

replicates in each cancer type. Higher Jaccard similarity index indicates better repro-

ducibility of statistical methods for detecting DEmiRs
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in the same datasets. These DEmiRs were classified into four catego-
ries: DEmiRs uniquely detected by a method, DEmiRs overlapped
by two to four methods, overlapped by five to six methods and over-

lapped by seven to eight methods. The proportion of these over-
lapped DEmiRs was shown in Figure 5. Overall, the MDEHT

method detected a more significant proportion of unique DEmiRs
that are not identified by other methods in TCGA cancer datasets,
which may also explain why the MDEHT method detected the most

extensive list of DEmiRs in most cancer types.

3.4 Functional enrichment analysis of novel DEmiRs
From the list of DEmiRs uniquely detected by the MDEHT method,

59 of these DEmiRs were detected in at least five cancer types
(Supplementary Fig. S4 and Supplementary Table S2). The subse-
quent analysis is focused on these 59 novel miRNAs to find out their

functionality. First, we collected clinical data of patients’ samples
from TCGA and implemented univariate Cox proportional regres-

sion analysis to assess the association of these novel miRNAs with
the patients’ overall survival (Supplementary Table S3). As a result,
14 miRNAs were significantly associated with clinical outcome of

patients in at least three types of cancer (Supplementary Table S4).
Then, we performed an enrichment analysis of targets that are regu-

lated by these survival-associated miRNAs using the DIANA online
tools (Vlachos et al., 2015). A total of 682 genes were predicted to
be targeted by these 14 survival-associated miRNAs. There are 39

significant pathways involved in these survival-associated miRNAs,
many of which are cancer-related pathways such as mitogen-acti-

vated protein kinase (MAPK), Wnt, PI3K-AKT, mTOR and TGF-
beta signaling (Supplementary Fig. S5). It is worth noting that many
pathways enriched for miR-335-3p targets are the most significant

among all the detected pathways. These data suggested that these
novel DEmiRs that were uniquely detected by the MDEHT method

are potentially involved in tumor development and progression.

3.5 Experimental validation of a novel DEmiR
miR-335-3p is one of the survival-associated miRNAs and has been
rarely studied. miR-335-3p is upregulated in UCEC, LUSC and KIRC
tumor tissues. Its upregulation is highly predictive of poor prognosis
in cancer patients (Supplementary Fig. S6 and Supplementary Table
S4). Therefore, we also performed in vitro cell-based assays for this
novel miRNA in UCEC for further validation of MDEHT. We first
performed qRT-PCR to examine the miR-335-3p expression in 47
cases of UCEC tissues and their matched adjacent non-tumor tissues.
Our qRT-PCR data showed that the miR-335-3p levels were signifi-
cantly upregulated in UCEC tumor tissues in comparison to their ad-
jacent normal tissues (Fig. 6A). To further investigate the potential
role of miR-335-3p in UCEC, HEC-1-B cells were transfected with a
miR-335-3p inhibitor to knock down its expression, and the expres-
sion level of miR-335-3p was decreased after the transfection when
compared with the NC group (Fig. 6B). As a result, the knockdown
of miR-335-3p significantly suppressed HEC-1-B cell proliferation
(Fig. 6C), whereas the ability of cell migration and invasion was bare-
ly affected (Fig. 6D), suggesting that the cancer-related roles of miR-
335-3p might be partly restricted to the regulation of cancer cell pro-
liferation. As cell cycle regulation is essential for cell growth, we fur-
ther examined the cell cycle distribution using flow cytometry. As
shown in Figure 6E, downregulation of miR-335-3p caused a signifi-
cant cell cycle arrest at the S stage. Meanwhile, the expression levels
of cell cycle-related proteins, such as phospho-Wee1 (Ser642), Wee1,
Cyclin E2, cdc42, p21 and p16, were significantly affected when
miR-335-3p was knockdown (Fig. 6F). Our data demonstrated that
miR-335-3p could play a role in promoting cell proliferation via
enhancing cell cycle progression in UCEC.

4 Discussion

isomiRs are produced from the same arm as the archetype miRNA
with a few nucleotides different at 5 and/or 3 termini. These well-

Fig. 5. Proportions of detected DEmiRs for each method by consensus among meth-

ods. DEmiRs were divided into four categories based on their overlap among differ-

ent methods: uniquely detected by one method, overlapped by two to four methods,

overlapped by five to six methods and overlapped by seven to eight methods

Fig. 6. miR-335-3p promotes cell proliferation by affecting cell cycle in UCEC. (A)

qRT-PCR analyses of miR-335-3p expression level in 47 UCEC tumor tissues and

their matched adjacent non-tumor tissues. (B) Relative expression changes of miR-

335-3p in HEC-1-B cells transfected with miR-335-3p inhibitor or NC. (C) Cell

proliferation in HEC-1-B cells transfected with miR-335-3p inhibitor or NC

assessed with CCK-8 assay. (D) Migration and invasion assays following knock-

down of miR-335-3p in HEC-1-B cells. (E) Cell cycle distribution in miR-335-3p

knockdown HEC-1-B cells detected with flow cytometry. (F) Western blot analyses

of protein makers related to the cell cycle in HEC-1-B cells transfected with miR-

335-3p inhibitor or NC. GAPDH was used as control. Error bars represent the

standard deviation of three independent experiments. *P<0.05, **P<0.01,

***P<0.001 using a two-sided Student’s t-test
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conserved isomiRs are of functional importance and have contrib-
uted to the evolution of miRNA genes (Tan et al., 2014). However,
very few methods consider isomiR variations in the analysis of
miRNA differential expression (Anders and Huber, 2010; Auer and
Doerge, 2011; Di et al., 2011; Love et al., 2014; Robinson et al.,
2010; Smyth, 2004). In most analyses, isoforms of a miRNA are
usually not distinguished and read counts of isomiRs are combined
into one miRNA. Therefore, there is a pressing need to develop new
methods that account for the multidimensional structure of isomiRs
in the differential expression analysis.

In this study, we proposed a new statistical framework,
MDEHT, for analyzing isomiRs data. The utilization of the infor-
mation hidden in isomiRs enables MDEHT to increase the power of
identifying DEmiRs that are not marginally detectable in univariate
testing methods. We conducted rigorous and unbiased comparisons
of MDEHT with seven commonly used tools in both simulated and
real datasets from TCGA. To closely recapitulate the complex struc-
ture of real RNA-seq data, we generated simulation data by directly
sampling miRNA read count data from TCGA rather than from
assumed probabilistic distributions such as Poisson distribution and
negative binomial distribution. These comparisons revealed that the
MDEHT method performs much better in controlling the Type I
error rate, substantially increases statistical power and generally
yields higher reproducible results in differential expression analysis
of miRNAs. It is worth noting that the main usage of MDEHT is to
detect miRNAs that are differentially expressed between different
biological or disease conditions. Of course, once a DEmiR is identi-
fied by MDEHT, subsequent differential expression analysis can be
applied to its individual isomiRs. Focusing on DEmiRs detected by
MDEHT, multiple testing problems are much less serious than uni-
variate testing of all individual isomiRs.

In real data analysis, the MDEHT method identified the most ex-
tensive list of DEmiRs than other methods in most cancer types.
MDEHT tended to identify more unique DEmiRs than other meth-
ods in most of the 11 TCGA datasets. Among these unique DEmiRs,
59 were detected in at least 5 cancer types. Subsequent survival ana-
lysis of these 59 DEmiRs revealed that 14 were associated with clin-
ical outcome of patients in at least 3 cancer types. Targets of these
novel DEmiRs are significantly enriched in many cancer-related
pathways, implying their important regulatory roles in cancer devel-
opment and progression. Furthermore, we also performed in vitro
cell-based assays for the novel miRNA miR-335-3p in UCEC in fur-
ther validation of MDEHT. MiR-335-3p has rarely been studied,
and its role in cancer remains elusive. For the first time, our prelim-
inary data demonstrated that miR-335-3p play a role in promoting
cell proliferation via enhancing cell cycle progression in UCEC.
Further investigations are required to elucidate the molecular mech-
anisms of this novel miRNA in regulating cell cycle and the potential
role of its isomiRs in cervical carcinogenesis and progression.

Several caveats in MDEHT should be mentioned. First, the
MDEHT method cannot handle intricate experimental designs.
Only a two-group differential test is considered in MDEHT. Further
investigations are required to extend our current framework to ac-
commodate for simultaneously comparing means for multiple de-
pendent variables across two or more groups. Second, the small
sample size may not warrant multivariate normal distribution of the
data, in which permutation tests using the Hoteling’s T2 statistic
could be necessary for the MDEHT method.

In summary, the newly developed MDEHT method accounts for
the multidimensional structure of isomiRs in the differential expres-
sion analysis of miRNA. Our comprehensive evaluations demon-
strated that the MDEHT method was robust in various datasets and
outperformed the other commonly used tools in terms of Type I
error rate, true positive rate and reproducibility.
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