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Abstract

Polyploidy is one of the major forces of plant evolution and widespread mixed-ploidy species

offer an opportunity to evaluate its significance. We therefore selected the cosmopolitan

species Urtica dioica (stinging nettle), examined its cytogeography and pattern of absolute

genome size, and assessed correlations with bioclimatic and ecogeographic data (latitude,

longitude, elevation). We evaluated variation in ploidy level using an extensive dataset of

7012 samples from 1317 populations covering most of the species’ distribution area. The

widespread tetraploid cytotype (87%) was strongly prevalent over diploids (13%). A subse-

quent analysis of absolute genome size proved a uniform Cx-value of core U. dioica (except

for U. d. subsp. cypria) whereas other closely related species, namely U. bianorii, U. kiovien-

sis and U. simensis, differed significantly. We detected a positive correlation between rela-

tive genome size and longitude and latitude in the complete dataset of European

populations and a positive correlation between relative genome size and longitude in a

reduced dataset of diploid accessions (the complete dataset of diploids excluding U. d.

subsp. kurdistanica). In addition, our data indicate an affinity of most diploids to natural and

near-natural habitats and that the tetraploid cytotype and a small part of diploids (population

from the Po river basin in northern Italy) tend to inhabit synanthropic sites. To sum up, the

pattern of ploidy variation revealed by our study is in many aspects unique to the stinging

nettle, being most likely first of all driven by the greater ecological plasticity and invasiveness

of the tetraploid cytotype.

Introduction

Polyploidy, sometimes referred to as whole-genome multiplication, is generally considered a

major force in plant evolution, producing novelties which may eventually lead to single-step

speciation, that is, saltation [1–4]. Moreover, the substantial success of angiosperms, the largest

clade of land plants, is attributed to polyploidy [5]. Probably 15% (but at least 2–4%) of all spe-

ciation events in angiosperms are estimated to have involved polyploidization [6, 7]. Different
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ploidy levels can either correspond to already discrete lineages or species [8], or constitute

intraspecific variation [9]. Newly established polyploid lineages frequently undergo subsequent

diploidization [10–12], which is usually followed by genome downsizing [13–15]. Neverthe-

less, distinct cytotypes frequently coexist in sympatry and, according to the current state of

knowledge, at least 16% of all vascular plant species consist of multiple cytotypes [16].

Polyploidy directly affects a number of key biological features (e.g. cell and plant size and

duration of mitosis) ultimately associated with distinct physiology and ecology [17, 18]. Such

novelties frequently result in improved adaptation potential, fitness, etc. [19–21], which is fur-

ther mirrored, for example, by broader ecogeographic and climatic niches of polyploids com-

pared to their diploid or lower-ploidy progenitors [22–24]. Specific features of plants have

repeatedly been linked to polyploidy (e.g. phenology, mycorrhizal colonization, pollinator

behaviour, herbivore predation, salinity tolerance and migration potential [25–30]). Moreover,

polyploid cytotypes tend to inhabit a broad range of synanthropic habitats, in contrast to their

diploid congeners (Arabidopsis arenosa (L.) Lawalrée, Cardamine amara L., Centaurea stoebe
L., Solidago gigantea Ait., etc. [31–35]), and their greater ecological plasticity and synanthropic

affinity can increase their invasive potential [36, 37].

The essential first step when gaining insight into the evolution of polyploid plants is cyto-

geography, the study of cytotype diversity and its past and predicted future distribution pat-

terns [13]. Knowledge of the cytotype distribution pattern usually reveals phenomena such as

environmental segregation or reproductive isolation of cytotypes [38–40].

Despite the undisputed evolutionary significance of polyploidy, there is a lack of compre-

hensive cytogeographical studies, with only a few focusing on widespread weedy plants [41]

even though they represent highly suitable model taxa for investigating the evolutionary poten-

tial of polyploids (e.g. Mercurialis annua L., Tripleurospermum inodorum (L.) Sch. Bip., Senecio
inaequidens DC. [42–45]). Surprisingly, the stinging nettle Urtica dioica L., one of the most

troublesome polyploid weeds, remains considerably understudied, despite being highly impor-

tant in agriculture, the textile and cosmetics industries [46–48], and medicine [49, 50]. The

species represents a nitrophilous, synanthropic and invasive species with a cosmopolitan dis-

tribution [51–53]. Urtica dioica is characterized by huge variation mirrored by a high number

of intraspecific taxa distinguished either solely based on morphological characters (e.g. various

types of indumentum [54–56]) or with consideration for sexual morphs (predominantly sto-

chastically occurring [54, 55, 57]). Finally, polyploidy is a truly substantial source of variation

in U. dioica. Published diploid chromosome counts frequently refer to plants from relict or

semi-natural habitats (e.g. alluvial forests [58–60]) whereas tetraploids have been reported to

occur in habitats of various types, even highly synanthropic ones [58, 61–63]. However, even

though relatively many chromosome counts have been published (e.g. [64]), the distribution

pattern has so far only been studied marginally and locally. Moreover, ploidy levels were not

directly considered in recent phylogenetic reconstructions [65–68].

We have adopted the only current taxonomic treatment of U. dioica consisting of several

subspecies. Apart from the nominate tetraploid and widely distributed subspecies U. d. subsp.

dioica, all subspecies are supposed to be diploid and somewhat restricted in their distribution

area: U. d. subsp. kurdistanica (found in alpine habitats of Anatolia and Near Eastern moun-

tain ranges [69, 70]), U. d. subsp. pubescens (scattered in lowlands from Italy across the Balkan

Peninsula to the delta of the river Volga [71–73]), U. d. subsp. sondenii (tundra marches [59,

73, 74]) and U. d. subsp. subinermis (alluvial forests, floodplain forests [54, 55, 71, 75]). Finally,

the unique steno-endemic U. dioica subsp. cypria is treated as a subspecies of U. dioica (a single

population in Cyprus, population UP1219; S2 Table) even though its morphology is distinct

[72, 76]. However, the infraspecific phylogeny of U. dioica is still largely unresolved [68] and

the ranks of its infraspecific taxa also remain a matter of debate [58]. Three recent phylogenies
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[65, 67, 68] also place four other taxa within the crown clade of Urtica (corresponding to U.
dioica): U. atrovirens Req., U. bianorii (Knoche) Paiva, U. kioviensis Rogow. and U. simensis
Hochst. ex A. Rich.

The present study aims to assess the ploidy and genome size variation within U. dioica
across Europe (with contiguous areas of West Asia). We placed particular emphasis on the fol-

lowing questions: (1) What is the general cytogeographic pattern of U. dioica in Europe (with

contiguous areas of West Asia)? (2) Is genome size a suitable taxonomic marker for resolving

current taxonomic ambiguities? (3) Do certain cytotypes occur in particular habitats?

Materials and methods

Materials

Plant material. Plants were collected between 2012 and 2018 at 1317 localities (1305 local-

ities of U. dioica and 12 localities of closely related species) across Europe and West Asia (Fig

1, S1 Table, S1, S2 and S6 Figs). Although the sampling was primarily random, we focused par-

tially on relict and semi-natural habitats (e.g. ravine and alluvial forests, alpine vegetation and

tundra marches, Mediterranean mountains) because (partly allegedly) diploid taxa (U. d.

subsp. kurdistanica, subsp. pubescens, subsp. sondenii, subsp. subinermis) were often reported

from such habitats [54, 55, 59, 69–75]. In total, 7012 plants (6977 individuals of U. dioica and

35 individuals of closely related species) were sampled (5–10 plants per population; the dis-

tance between sampled plants was at least 3 m to avoid re-sampling of the same clone). As a

rule, fresh leaves were used for flow cytometric analyses, in some cases silica-gel-dried leaves

were used (~10% of samples). A subset of plants was transferred to the experimental garden of

the Institute of Botany of the Czech Academy of Sciences in Průhonice (N49.99474,

E14.56617, 320 m a.s.l.) for further cultivation and chromosome counting. Voucher specimens

will be deposited in the Herbarium of the Charles University, Prague (PRC). GPS coordinates,

the elevation and type of habitat were recorded for each population (S1 Table). The study did

not necessitate any specific permissions and did not involve endangered or protected species.

Methods

Flow cytometry. Cytotypes were identified by means of flow cytometry, a technique

enabling us to analyse large numbers of samples over a short period and to collect appropriate

many samples of all taxa and cytotypes [77]. Relative genome size was ascertained for all plants

(S1 Table) and absolute genome size was estimated for a subset of samples (Table 1).

Sample preparation followed a simplified two-step protocol [78]. A part of a petiole was

chopped together with the internal reference standard Bellis perennis L. (2C = 3.38 pg; [79])

using a sharp razor blade in a plastic Petri dish containing 500 μl of the ice-cold buffer Otto I

(0.1-M monohydrate citric acid and 0.5% Tween 20). The suspension was filtered through a

42-μm nylon mesh and the isolated nuclei were stained for 5 minutes with 1 ml of the buffer

Otto II (0.4-M Na2HPO4 � 12H2O) supplemented with the fluorochrome 4’,6-diamidino-

2-phenylindole (DAPI; final concentration 4 μg �ml−1) and ß-mercaptoethanol (final concen-

tration 2 μl �ml−1).

Absolute genome size was estimated using the intercalating fluorochrome propidium

iodide (PI) supplemented with RNase IIA (both at final concentrations of 50 μg �ml−1). Each

sample were analysed three times on three consecutive days to rule out diurnal fluctuation. If

the deviation among all particular measurements of the same individual exceeded the thresh-

old of 3%, additional analyses were conducted [78].

To assess heteroploid hybridization, seeds from the mixed population (i.e. population

UP0466) were also analysed. Achenes were removed from the pericarp and chopped in the
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Fig 1. Distribution of two dominant cytotypes of Urtica dioica in Europe and West Asia. Map of all samples based on flow

cytometric analyses of 1305 populations. The size of the circles reflects the number of populations.

https://doi.org/10.1371/journal.pone.0218389.g001

Table 1. Summary of absolute genome size of Urtica dioica and closely related species (2C-values in pg) and detected numbers of (somatic) chromosomes.

Taxon No. of individuals analysed/No.

of populations

Mean Cx-value (pg)

± SD �

2C-value range

(pg)

Chrom. number

(2n)

Difference compared

to 2x (%)

Difference compared

to 4x (%)

U. d. subsp. dioica 32/27 0.55 ± 0.04E 2.08-2.20 52 – –

U. d. subsp. dioica
– 3x

1/1 0.54 – 39 – –

U. d. subsp.

kurdistanica
6/3 0.59 ± 0.01CC 1.15-1.20 – – –

U. d. subsp.

pubescens
16/14 0.58 ± 0.03CC 1.10-1.21 26 – –

U. d. subsp.

sondenii
4/2 0.57 ± 0.01CD 1.12-1.15 26 – –

U. d. subsp.

subinermis
19/13 0.58 ± 0.03C 1.10-1.25 26 – –

Closely related species:

U. atrovirens 4/3 0.60 ± 0.004C 1.18-1.19 – 3.5 45.4

U. bianorii 1/1 0.83A – – 43.5 24.3

U. d. subsp. cypria 6/1 0.55 ± 0.005DE 1.65-1.67 – 44.4 23.9

U. kioviensis 5/4 0.71 ± 0.025B 1.36-1.43 – 22.6 35.3

U. simensis 1/1 0.74B – – 28.7 32.1

� Different letters indicate groups of taxa that are significantly different in Tukey HSD test.

https://doi.org/10.1371/journal.pone.0218389.t001
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single-phase seeds buffer LBO1 (15M Tris, 2M Na2 EDTA, 0.5M spermine tetrahydrochloride,

80M KCl, 20M NaCl, 0.1% Triton X-100, stored at −20˚C [80]) together with the fluorochrome

4’,6-diamidino-2-phenylindole (DAPI) and ß-mercaptoethanol.

All samples were incubated for 5–10 minutes at room temperature before being run

through each of two flow cytometers (relative genome size: CyFlow ML equipped with a

365-nm UV LED as the light source; absolute genome size: CyFlow SL with a diode-pumped

532-nm solid-state green laser; both Partec GmbH, Münster, Germany). The resulting histo-

grams were evaluated in Partec FloMax 2.3 software (Partec GmbH, Münster, Germany). Only

analyses providing peaks with a coefficient of variation of less than 3% for fresh and 5% for sil-

ica-dried material were processed further.

One-way analysis of variance (ANOVA), followed by Tukey’s honest significant difference

(HDS) test, was used to test the significance of genome size differences between the taxa ana-

lysed. Values of genome size were log-transformed before the analysis. All statistical analyses

were performed and all plots were produced in the R statistical environment [81].

Chromosome counts. Chromosome counts were determined from root tips of germinat-

ing seeds and cultivated individuals. Selected samples were processed according to the modi-

fied protocol of Mandáková & Lysak [82].

Fresh roots (~1 cm long) were put into 1.5-ml Eppendorf tubes with distilled water and

placed into a container with ice-flakes for 24 hours. Afterwards they were put into a freshly

prepared fixative (ethanol: acetic acid, 3: 1, v: v) and stored overnight in a refrigerator (~4˚C).

The material was stored at −20˚C in the fixative until further use.

The root tips were washed twice in distilled water (each time for 5 min), then a citrate buffer

was applied and roots were washed in an orbital shaker (twice for 5 min). Subsequently, the

buffer was sucked out of the sample and a 0.3% mixture of pectolytic enzymes (pectolyase, cel-

lulase, cytohelicase) was added, followed by incubation in an incubator (37˚C, 120 min). Then

the enzyme mixture was replaced with the same citrate buffer.

The white tip of the root meristem was cut under a stereomicroscope, excess buffer was

removed, and the sample was sprinkled with 60% acetic acid with an incubation time of 1–2

min. The root meristem was disintegrated using dissecting needles and the obtained meriste-

matic suspension was covered by a cover-slip. The slide was moved 2–3 times above a flame

and then the material was carefully squashed.

The slides were placed into a freezer (~−80˚C) and after 10 minutes in the freezer the

cover-slips were separated from the slides by razor. The samples were subsequently dyed with

15 μl of Vectashield with 40,6-diamidino-2-phenylindole (DAPI). The preparations were cov-

ered with new cover-slips and fixed with nail polish.

Chromosomes were observed under a Nikon Eclipse E600 microscope equipped with a

Nikon DS-Qi1Mc camera, and images were acquired using NIS-Elements AR software.

Ecological relations. We used exactly recorded locations of all populations to get a basic

grasp of the ecological preferences of major cytotypes (the diploid and tetraploid cytotypes of

U. dioica). To evaluate the ecological relations of major cytotypes, we applied simple modelling

using the Bioclim algorithm according to Chumová et al. [83]. In the first step, georeferenced

data were spatially stratified to avoid discrepancies caused by unequal sampling (R package

‘spThin’, Aiello-Lemmens et al. [84]; a 20-km and 5-km threshold distance for tetraploid and

diploid population, respectively, was used). The resulting 576 localities were used for the

extraction of bioclimatic data. Data from raster layers for all 19 bioclimatic variables were

extracted using the ‘extract’ function in the ‘raster’ R package [85]. Principal trends in the vari-

ation of bioclimatic variables were detected by PCA. Mutually uncorrelated variables were

identified by stepwise forward selection and subjected to linear discriminant analysis. All anal-

yses were conducted using the ‘MorphoTools’ R package for multivariate data handling [86].
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In addition, correlations of relative fluorescence intensity value with elevation (dataset divided

into two elevation ranges: 0–500 and>500 m above sea level), latitude and longitude were

quantified by fitting a linear or quadratic function. To assess the affinity of both cytotypes to

human-affected habitats, we adopted a four-level scale of synanthropy (sensu Tüxen 1956

[87]), which was arbitrarily assigned to each sampling locality. Subsequently, Pearson’s chi-

square test [88] was used to determine the dependence between the degree of synanthropy and

ploidy level.

Results

Flow cytometry

We determined the relative genome size of 6836 plants from 1295 populations (176 individuals

were excluded due to poor-quality flow-cytometric histograms). Our results confirm the

occurrence of two dominant DNA ploidy levels having the following mean relative fluores-

cence intensity values (± SD): 2x = 0.30 ± 0.01 (range: 0.24–0.36, 50% variation, n = 849),

4x = 0.57 ± 0.01 (range: 0.54–0.64, 18.5% variation, n = 5975). The average coefficient of vari-

ance (CV) was 1.68% (particular CVs are given in S1 Table). The tetraploid cytotype strongly

prevailed over the diploid one (2x = 13%, 4x = 87%). Diploids were found frequently in mixed

populations with prevailing tetraploids. For the first time we managed to detect a few triploid

(8) and pentaploid (4) individuals in a mixed-ploidy population of diploids and tetraploids

(3x = 0.44 ± 0.01 (range: 0.42–0.46, 9.5% variation, n = 8), 5x = 0.73 ± 0.02 (range: 0.71–0.77,

8.5% variation, n = 4); Fig 2, S3 and S4 Figs).

To assess the potential for heteroploid hybridization, we analysed 70 achenes from the

mixed population (i.e. population UP0466; S1 Table). From diploid maternal plants (33 seeds

overall), 82% of the progeny (27 achenes) was diploid (with 3x endosperm) and 18% (6) trip-

loid (4x endosperm). Tetraploid maternal individuals (37 seeds overall) produced 94% (35

achenes) of tetraploid seeds (with 6x endosperm) and one triploid (5x endosperm) and one

pentaploid seed (9x endosperm, S5 Fig).

To calibrate the measurements and detect differences between particular diploid subspecies,

we also estimated absolute genome size for a reduced set of accessions (78 plants from 60 pop-

ulations—U. dioica; 17 plants from 10 populations—closely related species; S2 Table, S6 Fig).

Core diploid subspecies (U. d. subsp. kurdistanica, subsp. pubescens, subsp. sondenii and

subsp. subinermis) did not differ from each other in absolute genome size whereas the other

closely related species (i.e. species closely related to U. dioica crown clade in recent phyloge-

nies) U. bianorii, U. d. subsp. cypria, U. kioviensis and U. simensis had significantly greater

DNA content. Only U. atrovirens, which is also ranked among the closely related species of U.
dioica, was assigned to the group of core diploid subspecies. We, for the first time, estimated

the absolute genome size of U. d. subsp. kurdistanica, U. d. subsp. cypria and the triploid cyto-

type of U. dioica (a plant morphologically identical with U. d. subsp. dioica). Absolute genome

size was determined for all the mentioned species and subjected to ANOVA and Tukey’s HDS

test (p<0.001; Fig 3, Table 1, S7 Fig).

Chromosome counts

All DNA ploidy levels were verified by subsequent chromosome counts. Ten plants were

checked for their chromosome numbers using fluorescent karyology. The chromosome num-

ber of 2n = 26 was ascertained for diploids (three plants classified as U. d. subsp. pubescens,
subsp. sondenii and subsp. subinermis, respectively), 2n = 39 was ascertained for triploids

(one plant morphologically identical with U. d. subsp. dioica), 2n = 52 was ascertained for
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tetraploids (five plants assigned to U. d. subsp. dioica) and 2n = 65 was ascertained for penta-

ploids (one plant also morphologically identical with U. d. subsp. dioica; Fig 4, Table 1).

Ecological relations

Bioclimatic and geographic pattern. To verify the habitat and ecological preferences of

individual ploidy levels, we used basic modelling. Our analysis of bioclimatic data in relation

to the ploidy levels of individual populations and their exactly recorded positions shows that

the variability of individual ploidy levels is interdependent. This is also confirmed by field

observations, as in most cases diploid individuals grow in mixed populations with the tetra-

ploid cytotype, which evinces a high degree of plasticity (e.g. ecological or morphological)

shared with diploid individuals. In the stepwise selection analysis, the following features were

the most contributing to group separation: BIO3 (Isothermality = BIO2/BIO7 � 100; this quan-

tifies how much day-to-night temperatures oscillate relative to the summer-to- winter (annual)

oscillations), BIO5 (Max Temperature of Warmest Month) and BIO17 (Precipitation of Driest

Quarter; Fig 5).

We found a positive correlation between relative fluorescence intensity and longitude

(cor = 0.161, p<0.001); Fig 6A) and latitude (cor = 0.133, p<0.001; Fig 6B) in the complete

dataset of European populations. In the reduced dataset of diploid accessions (the complete

dataset of diploids excluding U. d. subsp. kurdistanica), we detected a positive correlation

between relative fluorescence intensity and longitude (cor = 0.296, p<0.001). Diploid taxa

growing in relict habitats preferred lower elevations compared to the ubiquitous tetraploid

cytotype. Correlations of relative fluorescence intensity with elevation were significant for each

of the datasets fitted with a linear function (0–500 m above sea level: cor = −0.305, p <0.001;

>500: cor = 0.344, p<0.001) and in all data fitted with a quadratic function (cor = 0.208, p

<0.001; Fig 6C).

Fig 2. Box-and-whisker plot of relative fluorescence intensity of Urtica dioica. The numbers above the boxes indicate the

numbers of individuals analysed.

https://doi.org/10.1371/journal.pone.0218389.g002
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Affinity to synanthropic habitats. To determine habitat preferences, especially of relict

diploids, we used the data from assessment of individual locations. Using Pearson’s chi-

squared test, we have determined with a high degree of confidence that the probability of

occurrence of a diploid population depends on the type of environment (p<0.001). The distri-

bution of diploid and tetraploid populations with respect to the environment is presented as in

a contingency table (Table 2, Fig 7), along with associated standard residuals. The diploid cyto-

type of U. dioica (U. d. subsp. kurdistanica, subsp. sondenii and subsp. subinermis) tends to

occur in less human-affected habitats (habitat type 3 and 4 on the four-level scale of synan-

thropy; Table 3). A special case is the diploid subspecies U. d. subsp. pubescens from the Po

river basin, which occurs exclusively in highly synanthropic and strongly human-affected loca-

tions (habitat type 1 and 2 on the four-level scale of synanthropy; mode value for all diploid

subspecies of U. dioica: 3; mode value for U. d. subsp. pubescens: 2). This stands in contrast to

the tetraploid cytotype, which occurs in habitats of all types, although it prefers environments

with an increased degree of synanthropy.

Discussion

During our large-scale screening of Urtica dioica across Europe and West Asia, we found two

major ploidy levels: widely distributed tetraploids and less frequent diploids. We have not

Fig 3. Box-and-whisker plot of absolute genome size of Urtica dioica and closely related species. Absolute genome size of the 4x

cytotype (U. d. subsp. dioica), the 2x cytotype (U. d. subsp. kurdistanica, subsp. pubescens, subsp. sondenii, subsp. subinermis) and

closely related species (U. atrovirens, U. bianorii, U. d. subsp. cypria, U. kioviensis and U. simensis). The letters A–E show the

grouping based on a one-way analysis of variance (ANOVA) followed by Tukey’s test (HDS). The numbers above the boxes indicate

the numbers of individuals analysed.

https://doi.org/10.1371/journal.pone.0218389.g003
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proved any strong correlation supporting either the generally suggested hypothesis that poly-

ploids are more abundant at higher elevations and latitudes or the idea that diploids are con-

fined to Southern European glacial refugia whereas polyploids occur across broader

geographic ranges [89], often shifted to harsh environments. Instead, our results suggest that

diploid plants show some degree of affinity to habitats less affected by human activities, in con-

trast to tetraploids, which tend to grow in human-made or strongly influenced habitats. Fur-

thermore, our study has revealed a significant difference in absolute genome size between U.
dioica and its closely related species U. bianorii, U. dioica subsp. cypria, U. kioviensis and U.
simensis [72, 76, 90–95].

We are aware that the frequency of diploids detected would be significantly lower had we

chosen an entirely random sampling strategy instead of partly preferentially targeting relict

and natural habitats. Additional occurrences of the alluvial diploid cytotype (~U. d. subsp. sub-
inermis) can be expected in Western Europe (especially in France and the United Kingdom).

On the other hand, we sampled numerous relict habitats in Spain and northern Iran, and

detected only tetraploids there, so the occurrence of a diploid cytotype is, in concordance with

previously published chromosome counts [94, 96, 97], less probable in these two countries.

Major and minor cytotypes of Urtica dioica
The widely distributed tetraploids and the less frequent diploids possess the chromosome

numbers of 2n = 2x = 26 and 2n = 4x = 52, respectively, ascertained here and also reported

Fig 4. Microphotographs of somatic metaphases of Urtica dioica. (A) U. d. subsp. pubescens (population UP0009, Italy) − 2n = 2x

= 26; (B) U. d. subsp. sondenii (population UP0584, Finland) − 2n = 2x = 26; (C) U. d. subsp. subinermis (population UP0059, Czech

Republic) − 2n = 2x = 26; (D) U. d. subsp. dioica (population UP0033, France) − 2n = 4x = 52; (E) U. d. subsp. dioica (population

UP0718, Iran) − 2n = 4x = 52; (F) Pentaploid cytotype of U. dioica (population UP0770, Czech Republic) − 2n = 5x = 65

(morphologically identical with U. d. subsp. dioica).

https://doi.org/10.1371/journal.pone.0218389.g004
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previously [61–63]. However, for the first time we managed to capture a small percentage of

very rare triploid (8 individuals) and pentaploid (4 individuals) cytotypes, both in mixed-

ploidy populations of diploids and tetraploids. The origin of these minor cytotypes is discussed

below.

For some plants, we detected abnormal values of relative genome size (8 tetraploid individ-

uals, range of 2C pg: 1.66–1.74), which could be explained by aneuploidy. The values might

correspond to a loss of four chromosomes, i.e. to the frequently reported chromosome number

2n = 48 [61–64, 98–102]. Unfortunately, we did not succeed in cultivating any of these aber-

rant individuals, so we cannot confirm any hypothetical aneuploid counts.

Data from our screening of seeds from both diploid and tetraploid maternal plants from a

mixed-ploidy field population in southern Moravia (south-eastern Czech Republic—UP0466;

S1 Table) suggest that gene flow between the two cytotypes can occur. Besides the ploidy level

of the embryo, we also paid special attention to the ploidy of the endosperm in order to deci-

pher the contribution of the paternal cytotype and thus to determine the seed formation path-

way [80, 103]. The greater frequency of triploid embryos in seeds of diploid maternal plants

might be in line with the greater frequency of tetraploid plants and thus the larger greater

amount and pressure of diploid pollen grains (from tetraploid plants). Another explanation,

not mutually exclusive with the previous, supposes that the spatial pattern of (often large) male

and female clones of both cytotypes at the site may play a role. Although our data indicate the

origin of triploid seeds via heteroploid crosses, we cannot fully exclude the ability of diploid

Fig 5. Discriminant analysis of two groups (DA)—Stepwise forward selection using basic modelling (Bioclim algorithm).

Bioclimatic data related to the ploidy levels (diploid and tetraploid) of individual populations—stratified data. The features

contributing the most to the variability were BIO3, 5 and 17; striped area—tetraploid cytotype, dotted area—diploid cytotype, grey

area—overlapping of both cytotypes.

https://doi.org/10.1371/journal.pone.0218389.g005
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plants to produce triploid seeds via unreduced gametes (i.e. reduced gamete fusion with a male

unreduced gamete from diploid plants), in general, the formation of unreduced gametes is not

frequent [104, 105]. The frequency of triploid seeds (18% from diploid and 3% from tetraploid

maternal plants) also contradicts the frequency of adult triploid plants in mixed diploid-

Fig 6. Relations between relative fluorescence intensity and longitude, latitude and elevation fitted with a linear or quadratic

function. (A) Correlation of relative fluorescence intensity with longitude fitted with a linear function (complete dataset of European

populations); (B) Correlation of relative fluorescence intensity with latitude fitted with a linear function (complete dataset of

European populations); (C) Correlation of relative fluorescence intensity with elevation fitted with a quadratic function.

https://doi.org/10.1371/journal.pone.0218389.g006

Table 2. Contingency table with standard residuals of diploid and tetraploid populations depending on habitat type.

Ploidy level Environment type 1 Environment type 2 Environment type 3 Environment type 4

Diploids (2x) 1

(-3.90)

81

(-0.04)

182

(1.38)

4

(3.07)

Tetraploids (4x) 57

(3.90)

278

(0.04)

580

(-1.38)

1

(-3.07)

https://doi.org/10.1371/journal.pone.0218389.t002
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tetraploid populations (8 individuals). The most plausible explanation seems to be a triploid

block (lower fitness of or strong selection against triploid seedlings, or lower germination rates

of triploid seeds, or their inability to germinate, compared to diploid and tetraploid ones

[106]). The detection of a pentaploid individual (with 9x endosperm) in the offspring of a tet-

raploid plant indicates the formation of an unreduced gamete at the 4x level and its fusion

with a reduced (x) gamete from a diploid plant. Alternatively, pentaploids might originate

from crosses between tetraploids and hexaploids, but we detected neither adult hexaploid

Fig 7. Ratio of individuals in habitats of different types—Four-level scale of synanthropy. Relative proportions of the two major

cytotypes (diploid and tetraploid) captured in different types of human-affected habitats. For definitions and examples see Table 3.

The numbers in columns indicate the number of populations depending on habitat type, corresponding to Table 2.

https://doi.org/10.1371/journal.pone.0218389.g007

Table 3. Evaluation of the affinity of particular Urtica dioica cytotypes to human-affected habitats.

Level Vegetation types and habitats Degree of influence by man

1 intensively managed habitats (agricultural, ruderal, etc.), road

margins, urbanized areas

highly nitrophilous and intensively

human-affected locations

2 extensively cultivated landscapes, agricultural marginal habitats,

cultivated and plantation-like forests

partly synanthropic and extensively

cultivated locations

3 semi-natural vegetation, recent vegetation +/- corresponding to

the potential natural vegetation �
semi-natural habitats

4 tundra marches, Mediterranean alpine zones, natural alluvial

associations, other relict habitats

least human-affected habitats (~primary

habitats)

� sensu Tüxen 1956 [87]

https://doi.org/10.1371/journal.pone.0218389.t003
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plants nor pentaploids with the embryo: endosperm ploidy ratio indicating this hybridization

history (5x embryo: 7x endosperm). A combination of a more extensive seed screen (incl.

experimental hybridization) and molecular analyses should be carried out to assess the rate of

gene flow. Nevertheless, we have confirmed the possibility of heteroploid hybridization, which

might cause genetic erosion and therefore pose a threat to the far less abundant diploid

populations.

Diploids as indicators of natural habitats versus synathrophic invasive

tetraploids?

We detected geographically stratified elevational and ecological segregation. In Central

Europe, the Balkans and the Baltic region, diploids are likely confined to lowland alluvial, espe-

cially white willow, gallery forests. In addition, river banks and the surroundings of water bod-

ies, together with forest-tundra stands and ravine forests, are the predominating habitats of

diploids in Northern Europe. By contrast, diploids in Anatolia tend to occupy natural habitats

at higher elevations (e.g. screes). The species assembly of ancient Central European semi-natu-

ral alluvial forests was formed in the Early Holocene. Since the Neolithic period, the flood-

plains of lowland rivers experienced vast changes caused by erosion, soil deposition and

eutrophication. The human-driven decline of woodlands, especially in the Medieval period,

and changes in species composition led to the fragmentation of semi-natural woodlands,

which are currently confined to more or less small patches within agricultural landscapes [107,

108]. The diploid cytotype of U. dioica is restricted to well preserved alluvial forests in Central

and Western Europe, so diploids may also indicate relict habitats of this type. The rather nar-

row ecological niche of diploids compared to tetraploids might indicate, besides other phe-

nomena, ploidy-related drought tolerance and greater plasticity in polyploids allowing

tetraploid to occupy a broader spectrum of habitats [109–111]. Similar ecological diploid-poly-

ploid differentiation has been described in the grass species Deschampsia cespitosa (L.) P.

Beauv. (tussock grass) in Britain [112] and Dactylis glomerata L. (cock’s-foot) in Spanish Gali-

cia [22]. Diploids appeared to be restricted mainly to low-density forest-floor habitats in wood-

lands of mostly ancient, semi-natural origin whereas tetraploids were found in varied habitats,

but they predominated in open places such as in meadows, pastures, plantations, their verges

and waste grounds. Based on our observations, both cytotypes are ecologically differentiated,

but tetraploids do not exhibit local adaptation. Instead, they have greater fitness across both

diploid- and polyploid-occupied regions.

In contrast to diploids in Central Europe, Anatolian diploids occur at higher elevations

compared to tetraploids and also in different habitats. Instead of European lowland and ravine

forest they mostly occur in mountain screes. Analogously to Europe, however, the vast major-

ity of Anatolian populations (from various habitats, including screes) are formed by tetra-

ploids. Surprisingly, even in Anatolia a single diploid was found in an alluvial population

(Cappadocia—population UP0038; S1 Table).

In general, however, we have not confirmed the frequently made assumption that poly-

ploids are more abundant at higher elevations and latitudes because of their potentially greater

ecological tolerance and colonization ability [1, 17, 113–116]. However, considering only the

invasiveness of polyploids, our results are well in agreement with general suggestions. The

widespread tetraploid cytotype of U. dioica is also often supposed to be an allopolyploid or a

group of allopolyploids with different evolutionary histories (e.g. [117]). Polyploidization and

hybridization likely went hand in hand, resulting in rapid divergence of the neopolyploid. Tet-

raploids were possibly predisposed to spread into ranges thanks to their potential for subse-

quent adaptation due to greater genetic diversity, higher survival rates and better fitness
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ascribed to the heterosis effect, restoring sexual reproduction following hybridization [37]. A

more or less stable occurrence of diploids in semi-natural habitats and tetraploids in mainly

human-made habitats, together with a recent spread of tetraploids, has also been reported for

Centaurea stoebe [32, 33, 118] and Seseli libanotis (L.) W.D.J.Koch [119]. Although a positive

correlation between invasiveness and ploidy seems to be in conflict with a negative correlation

between invasiveness and genome size [120], it is their interaction that underlies their actual

effects on plant phenotypes and physiology, and, ultimately, on invasion success [36].

Taxonomic consequences

In the two most recent phylogenies [67, 68], the crown clade of Urtica (predominantly formed

by U. dioica) consist of different additional related taxa, depending on the molecular markers

used. Based on a concatenated tree (combining nuclear and plastid markers [68]), U. dioica in

the strict sense, an exclusively Eurasian group including U. dioica (except for subsp. cypria), U.
kioviensis from western Eurasia and U. platyphylla Wedd. from Northeastern Eurasia is a sister

group to Mediterranean endemics (U. atrovirens, U. bianorii) and two African species (U. mas-
saica Mildbr., U. simensis). Together these taxa form a well-supported cluster. Our genome

size data partly support this concept. Urtica bianorii and U. d. subsp. cypria clearly fall outside

of the U. dioca s.str. group in published phylogenies, which is in concordance with our genome

size data. Urtica kioviensis, which could not be separated from U. dioica s.str. in previous phy-

logenies [68], could be reliably separated from the Eurasian U. dioica s.str. clade using geno-

typing-by-sequencing data [121], and this separation is well supported and justified by our

genome size estimations. Only U. atrovirens, which is ranked close to U. dioica s.str., did not

significantly differ from diploid subspecies of U. dioica even though it is distinctive morpho-

logically [93, 94]. We have thus confirmed that genome size can significantly contribute to the

delineation and detection of taxa, and that differences between genome size values may be

indicative of genetic distance (see e.g. [103, 122, 123]).

In addition to other already discussed reasons to recognize several intraspecific taxa of U.
dioica at the subspecies level (i.e. extreme morphologic forms and sexual morphs), polyploidy

evidently shapes the structured pattern confining diploid cytotypes to relict habitats (e.g. allu-

vial forests, tundra marches or Mediterranean alpine zones). The diploid subspecies (subsp.

kurdistanica, subsp. pubescens, subsp. sondenii and subsp. subinermis) are more or less mor-

phologically, ecologically and geographically defined and capture a considerable part of the

morphological diversity present in Western Eurasian Urtica dioica. However, any clear delin-

eation of some of them is anything but straightforward and even molecular approaches have

failed to resolve infraspecific relationships [67, 68]. Although published chromosome counts/

ploidy levels are very scarce, ploidy is widely accepted as a trait in the delineation of Urtica
dioica subsp. dioica (tetraploid) and the rest of the subspecies [56]. Here we generally confirm

that the diploid level (with the chromosome number of 2n = 26) is associated with plants mor-

phologically assigned to U. d. subsp. subinermis, U. d. subsp. sondenii, U. d. subsp. pubescens
and U. d. subsp. kurdistanica. We did not find any significant differences in genome size

between the subspecies, so genome size cannot serve as a supportive character in the delinea-

tion of homoploid taxa as in some another plant groups [123–126].

One particular matter for debate is the delimitation and geographic distribution of U. d.

subsp. pubescens. Geltman [127, 128] regards it as an endemic of wetland territories in the

Volga delta and its surroundings and in the lower Dnieper region whereas in its wide circum-

scription the species occupies a geographic area spanning Southern and Eastern Europe, west-

ern Turkey [72], Georgia and Azerbaijan [121]. According to Weigend [71] it can be identified

by its green-grey leaf colour, a distinctly hairy stem and leaves on both sides, and based on the
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ratio of the width to the length of the lamina. However, minor morphological differences

between populations (unpublished data) and, in addition, genetic differences between Euro-

pean and West Asian populations [121] may indicate a mosaic-like structure and different evo-

lutionary histories within subsp. pubescens in its broad circumscription. We carried out an

extensive screening of ploidy levels in populations of ‘hairy’ nettles from the Po river basin

(northern Italy), tentatively assigned to U. d. subsp. pubescens. Across the basin and in adjacent

mountain valleys, we found mostly diploid plants, even though this area is surrounded by

expanses dominated by tetraploids (even from the south, i.e. on the slopes of the Apennines).

Worth mentioning are two aspects: First, this is the only large area in our study that is most

likely occupied nearly exclusively by diploid plants (S1 Fig); otherwise, diploids occur as a rule

in mixed-ploidy populations, accompanied by tetraploids. Second, the Po river diploids regu-

larly occur both in a wide range of highly synanthropic types of habitats and in semi-natural

alluvial vegetation. Diploid populations might have survived the last glaciation in an refugium

extending along the lower elevations of the southern Alps and in adjoining areas, as demon-

strated for many alpine plants as well as for beech (Fagus) and some insect species [129–132].

Alternatively, diploids might have survived in more southerly located refuges in the Apennine

Peninsula [133, 134]. In any case, the Po river diploids definitely deserve a further biosys-

tematic/taxonomic evaluation.

The genome size of U. d. subsp. kurdistanica corresponds to 2n = 26 (diploid level)—the

same as in the other diploid subspecies. However, chromosome counts are not available for

this subspecies, so certain deviations from this number cannot be fully excluded. Nevertheless,

ours is the first DNA ploidy level estimation for this subspecies. Both localities visited over the

course of our study (Mt. Erciyes Dâgi (Argaeus) in Cappadocia the Gusguta valley in the

Bolkar Dağlari Mts. in southern Anatolia) are also mentioned by Weigend [72], which con-

firms the taxonomical identity of the plants under study. They occur on high-mountain screes

that are only marginally influenced by human activities (pastures) and therefore fall within the

broad concept that diploids tend to inhabit natural or semi-natural habitats. Long-term sur-

vival of these diploid populations seems to be a plausible explanation at least for two reasons:

In Anatolia there was no major Pleistocene ice-sheet similar to those covering the European

Alps or Scandinavia and only mountain peaks exceeding the height of ca 2200 m were glaci-

ated [135, 136]. Furthermore, higher elevations provided moist conditions contrasting with

the drier climate that prevailed in lower elevations of Anatolia during glacial periods [137].

We did not find diploids among a total of 80 plants from Iran. Weigend [72] reported two

subspecies of U. dioica from this country, namely subsp. dioica and subsp. kurdistanica. Our

plants can be more or less identified as subsp. dioica, and their ploidy is thus in line with the

general picture of diploid subsp. kurdistanica and tetraploid subsp. dioica. Still, several popula-

tions (north of Tehran—Mt. Damavand and its surroundings) formed a unique monoecious

population and their inflorescences consisted of equal numbers of male and female flowers

(male in the upper part of the inflorescence), which does not correspond to the morphological

description of either subsp. dioica or subsp. kurdistanica.

Finally, despite our extensive screening, we failed to find diploid plants at several localities

of the morphologically defined taxon U. d. subsp. subinermis. This subspecies therefore has to

be considered only supposedly diploid, as no chromosome counts are presented in the respec-

tive papers. This applies, for example, to the Neusiedler See lake (northeastern Austria), where

precisely defined localities of plants morphologically assigned to U. d. subsp. subinermis are

mentioned by Geltman [127] and Weigend [71]. Tetraploid plants found over the course of

our study (5975 plants sampled) morphologically resemble U. d. subsp. subinermis, which

raises the question as to whether (auto)polyploidization has taken place in this subspecies,
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which would make the pattern of genomic evolution within the diploid-tetraploid complex of

Urtica dioica considerably more complicated.

Conclusion

Our large-scale cytogeographic screening of Urtica dioica has revealed a complex pattern

across a major part of the species’ distribution range, consisting of a widespread tetraploid

cytotype, low-abundant scattered diploids and sporadically occurring triploid and pentaploid

plants. We have not found any differences in genome size (Cx-values) between most subspe-

cies of U. dioica (U. d. subsp. dioica, subsp. kurdistanica, subsp. pubescens, subsp. sondenii and

subsp. subinermis). On the other hand, U. d. subsp. cypria does differ in genome size from the

rest of U. dioica. Moreover, Cx-values of closely related species (U. bianorii, U. kioviensis and

U. simensis) clearly differ from those of U. dioica, and genome size can thus serve as a valuable

supportive character in the delimitation of U. dioica. We have also found positive correlations

between genome size and longitude and latitude in our complete dataset of European popula-

tions and a positive correlation of genome size with longitude in a reduced dataset of diploid

accessions (the complete dataset of diploids excluding U. d. subsp. kurdistanica). Diploid taxa

growing in relict habitats are more frequent at lower elevations. In addition, our study has

revealed a significant affinity of diploids to less human-influenced semi-natural habitats (this

does not apply diploids from the Po river basin, assigned to U. d. subsp. pubescens) and (in the

European range) to lower elevations. The tetraploid cytotype, by contrast, tends to thrive even

in highly synanthropic sites and is able to expand to higher elevations.

Supporting Information

S1 Table. List of analyses of Urtica dioica (sorted by population identification number).

For each population, the following information is provided: geographic coordinates in the

WGS-84 system, elevation, country abbreviation, collector’s initials, number of analysed plants

in simultaneous analyses, relative fluorescence intensity, DNA-ploidy level, and coefficient of

variance of the standard and sample peaks.

(PDF)

S2 Table. List of analyses (absolute genome size) of Urtica dioica (sorted by taxon and pop-

ulation identification number). For each population, the following information is provide:

geographic coordinates in the WGS-84 system, elevation, country abbreviation, collector’s ini-

tials, absolute genome size—2C-value (pg), ploidy level, and coefficient of variance of standard

and sample peaks.

(PDF)

S1 Fig. Map of locations of Urtica dioica samples collected in the Po river basin (northern

Italy). The size of the circles reflects the number of populations. The blue line indicates the

outline of the Po river basin.

(TIF)

S2 Fig. Map of locations of Urtica dioica samples collected in the Czech Republic and Slo-

vakia. The size of the circles reflects the number of populations.

(TIF)

S3 Fig. Relative fluorescence intensity variation in Urtica dioica. Two dominant ploidy lev-

els were detected (red—2x and yellow—4x).

(TIF)
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S4 Fig. Flow cytometric histogram of all detected cytotypes of Urtica dioica. Simultaneous

analysis—from the left: 2x—diploid cytotype, 3x—triploid, 4x—tetraploid, 5x—pentaploid,

Bellis perennis—the internal standard.

(TIF)

S5 Fig. Proportions of cytotypes of Urtica dioica seeds. (A) Ratio of diploid and triploid

seeds from a 2x maternal plant (from the mixed-ploidy population); (B) Ratio of triploid, tetra-

ploid and pentaploid seeds from a 4x maternal plant (from a mixed-ploidy population).

(TIF)

S6 Fig. Map of locations of closely related species. Species closely related to the U. dioica
clade in recent phylogenies, namely: U. atrovirens, U. bianorii, U. kioviensis. The top-left sec-

tion shows the one population of U. simensis in Ethiopia. The size of the circles reflects the

number of populations. For more details see S2 Table.

(TIF)

S7 Fig. Absolute genome size variation in Urtica dioica and closely related species. Diploid

cytotype—U. d. subsp. kurdistanica, subsp. pubescens, subsp. sondenii and subsp. subinermis;
tetraploid cytotype—U. d. subsp. dioica; closely related species—U. atrovirens, U. bianorii, U.
d. subsp. cypria, U. kioviensis and U. simensis). Numbers of analysed individuals are presented

in parentheses.

(TIF)
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34. Zozomová-Lihová J, Malánová-Krásná I, Vı́t P, Urfus T, Senko D, Svitok M, et al. Cytotype distribution

patterns, ecological differentiation, and genetic structure in a diploid-tetraploid contact zone of Carda-

mine amara. Am J Bot. 2015; 102(8):1380–1395. https://doi.org/10.3732/ajb.1500052 PMID:

26290560

35. Baduel P, Arnold B, Weisman CM, Hunter B, Bomblies K. Habitat-associated life history and stress-

tolerance variation in Arabidopsis arenosa. Plant Physiol. 2016; 171(1):437–451. https://doi.org/10.

1104/pp.15.01875 PMID: 26941193

36. Pandit MK, Pocock MJO, Kunin WE. Ploidy influences rarity and invasiveness in plants. J Ecol. 2011;

99(5):1108–1115. https://doi.org/10.1111/j.1365-2745.2011.01838.x

37. te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubešová M, et al. The more the bet-
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116. Chumová Z, Krejčı́ková J, Mandáková T, Suda J, Trávnı́ček P. Evolutionary and taxonomic implica-

tions of variation in nuclear genome size: lesson from the grass genus Anthoxanthum (Poaceae). Plos

One. 2015; 10(7):e0133748. https://doi.org/10.1371/journal.pone.0133748 PMID: 26207824

117. Geltman D. Some problems of phylogeny of the species of the subsection Urtica of the genus Urtica

(Urticaceae). Bot Zhurn. 1990; 75:840–845.
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