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Abstract: The high efficiencies (>22%) reached by perovskite-based optoelectronic devices in a very
short period, demonstrates the great potential and tunability of this material. The current challenge
lies in translating such efficiencies to commercially feasible forms produced through industrial
fabrication methods. Herein, a novel first step towards the processability of starch-perovskite inks,
developed in our previous work, is investigated, by using inkjet printing technology. The tunability
of the viscosity of the starch-perovskite-based inks allows the selection of suitable concentrations
to be used as printable inks. After exploration of several printing parameters, thick and opaque
starch-perovskite nanocomposite films were obtained, showing interesting morphological and optical
properties. The results obtained in this work underline the potential and versatility of our approach,
opening the possibility to explore and optimize, in the future, further large-scale deposition methods
towards fully printed and stable perovskite devices.
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1. Introduction

Inkjet printing, traditionally used in the graphics and publishing industries, has proven to be an
effective digital manufacturing technique for printed solar cells [1]. In this direction, the emergence of
organic–inorganic hybrid perovskite solar cells has represented a breakthrough technology, combining
solution-based deposition techniques with greater efficiencies than organic solar cells [1].

However, one of the most important challenges now for perovskite-based materials is improving
stability and reproducibility during fabrication, particularly by translating the high performance
obtained at laboratory scale to industrial fabrication methods [2–4].

Among the different potential techniques for depositing perovskite-based materials and other
functional layers of a solar energy device, inkjet printing is one of the most frequently used on a
laboratory scale due to its versatility and selectivity in the fabrication of functional layers from solutions
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or suspension inks [5]. The use of this deposition technique has many advantages, such as the low-cost
process, the reduced waste of the ink during deposition, the easy deposition of fine patterns at high
resolution on various substrates, and above all, the scalability, enabling rapid translation of learning
from small-scale, laboratory-based research into large-scale industrial roll-to-roll manufacturing [1,5,6].

The first application of inkjet printing of perovskite was reported in 2014 by Yang and
co-workers [7] for the fabrication of metal-electrode-free perovskite solar cells. They used inkjet
printing to deposit Methylammonium iodide (MAI) on top of a pre-deposited PbI2 layer, in a
double step fashion. This approach led to well defined crystallinity in the Methylammonium lead
tri-iodide (MAPbI3) thin film, reaching high performance in solar cells of power conversion efficiency
(PCE) = 11.60%, open circuit voltage (Voc) = 0.95 V, short circuit current density (Jsc) = 17.20 mA cm−2,
and fill factor (FF) = 71%. Song and co-workers [8] investigated the influence of the printing table
temperature of MAI and PbI2 on mesoporous TiO2, showing a strong correlation between printing
table temperature and film morphology. A mild temperature (50 ◦C) was found to result in larger
crystals with high surface coverage, obtaining a maximum PCE of 7.9%. By changing the perovskite
composition and adding MACl, the morphology and device performance were further improved,
achieving PCE ~12.3%, Voc ~0.91 V, Jsc ~19.55 mA cm−2, and FF ~69%. Hashmi et al. reported
an all-printable and ambient-processed hole transport layer (HTL) -free mesoporous perovskite
solar cell. The device architecture was glass/ Fluorine-doped Tin Oxide (FTO)/Titanium dioxide
(TiO2)/Zirconium dioxide (ZrO2)/MAPbI3/carbon, and was fabricated by infiltrating the MAPbI3

precursors by piezo based inkjet printing in screen printed TiO2, ZrO2, and carbon layers [9]. They have
used 5-ammonium valeric acid iodide (5-AVAI) in perovskite ink as a templating agent to improve the
crystalline network and charge-carrier lifetime of MAPbI3. This additive also prevented the clogging
of inkjet nozzles by slowing-down the perovskite crystal growth. Highly reproducible and stable
devices were achieved with the highest PCE of 7.83% under forward bias scan and 8.74% under reverse
bias scan. Venkataraman et al. have tuned the composition of the perovskite layer for improving the
performance and stability by in situ mixing of cations, Methylammonium (MA), and Formamidinium
(FA) from separate ink cartridges using Red-Green-Blu (RGB) color codes of the multichannel inkjet
printer [10]. They showed PCE of 11.1%, Voc ~0.87 V, Jsc ~18.77 mA cm−2, FF ~68% in the p–i–n
structure solar cell based on perovskite containing a MA:FA ratio of 2:1. Mathies et al. [11] introduced a
vacuum-annealing step after the printed of precursor ink in one step, in order to replace the antisolvent
quenching step used during spin-coating, which could not be adapted to ink-jet-printed perovskite.
Three sublayers and a drop spacing of 45 µm led to a PCE of 11.3%. By following the same approach,
Liang et al. [12] investigated the vacuum-assisted thermal annealing (VTA) post-treatment after the
printing of perovskite, to accelerate the solvent evaporation and obtain a better morphology. Indeed,
PCE of 17.04% was achieved for a small area device (0.04 cm2) and of 13.27% for a large area (4 cm2) in
one-step printed deposition by using a mesoporous architecture.

The highest performance with mesoporous architecture was achieved by Li et al. [13] with a
double step deposition. By exploring PbI2 ink precursor with various solvent compositions and using
Methylammonium iodide vapor as a reaction agent to transform PbI2 to the MAPbI3, they reported a
PCE of 18.63% for a small area device (0.04 cm2).

In this work, the printability of new inks based on perovskite and starch was investigated
for the first time in view of a future development of a more scalable and cost-effective method.
Very importantly, the composite perovskite:starch was proven to be more stable than the pristine
perovskite. Herein, several starch-perovskite-based solutions, developed and previously deposited via
spin coating [2], were investigated as inks for one-step ink-jet-printed deposition by optimizing all of
the printing parameters. The best nanocomposite printed films were characterized by X-ray diffraction,
UV visible absorption, morphological analyses (Optical microscope and Scanning electron microscopy),
and photoluminescence measurements in view of future implementation in a full printed device.
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2. Materials and Methods

2.1. Materials

Lead (II) iodide PbI2 ultra-dry 99.999% (metals basis) was purchased from Alfa Aesar (Haverhill,
MA, USA), and Methylammonium iodide CH3NH3I (MAI) from GreatCell Solar (Queanbeyan,
Australia). The corn starch used, Maizena, characterized by an A-type waxy corn structure [14],
was supplied from Unilever (London, UK). Dimethyl sulfoxide anhydrous 99.9 % (DMSO) and
chlorobenzene anhydrous 99.8% (CB) were purchased from Aldrich (Saint Louis, MO, USA). Poly
[N,N0-bis(4-butylphenyl)-N,N0-bis(phenyl) benzidine] (poly-TPD) was from Solaris Chem Inc.
(Saint-Lazare, QC, Canada). All the materials were used as received without any further purification.

2.2. Methods

2.2.1. Poly-TPD Solution Preparation

The solution of poly-TPD (1.5 mg/mL in chlorobenzene) was prepared by stirring at 40 ◦C for 2 h.

2.2.2. Starch-Perovskite Solution Preparation

The perovskite precursor solution containing an equimolar precursor stoichiometry, i.e.,
MAI:PbI2 = 1:1, was prepared by mixing MAI with PbI2 in DMSO with varying precursor weight
concentrations in DMSO, i.e., 10–20–30 wt%, as reported in Table 1. The solutions were stirred on a hot
plate at 80 ◦C for 30 min. After precursor solubilization, different starch/precursor ratios were added
to each solution, i.e., 1, 5, 10, and 15 wt%, and were stirred at 80 ◦C for 5 h in order to obtain a clear
solution after starch solubilization. The identification name (ID) of each sample with the correspondent
precursors and starch concentrations are reported in Table 1.

Table 1. Samples ID and compositions.

Sample ID MAPbI3/DMSO (wt%) Starch/MAPbI3 (wt%)

5MAPbI3 5 0

5MAPbI3-1S 5 1

5MAPbI3-5S 5 5

5MAPbI3-10S 5 10

5MAPbI3-15S 5 15

10MAPbI3 10 0

10MAPbI3-1S 10 1

10MAPbI3-5S 10 5

10MAPbI3-10S 10 10

10MAPbI3-15S 10 15

10MAPbI3-20S 10 20

20MAPbI3 20 0

20MAPbI3-1S 20 1

20MAPbI3-5S 20 5

20MAPbI3-10S 20 10

20MAPbI3-15S 20 15

20MAPbI3-20S 20 20

30MAPbI3 30 0

30MAPbI3-1S 30 1

30MAPbI3-5S 30 5

30MAPbI3-10S 30 10

30MAPbI3-15S 30 15
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2.2.3. Rheological Characterization of Perovskite Precursors Solutions

The viscosity of the perovskite precursor solutions by varying the precursor concentrations in
DMSO from 5 to 30 wt% and with a starch/precursor ratio from 1 to 15 wt%, was carried out in a
strain controlled rheometer (Malvern Kinexus Pro+, Malvern, UK) equipped by parallel plate geometry
(radius = 12.5 mm) in steady state mode with a shear rate ranging from 1–1000 s−1 at 23 ◦C. All the
liquid formulations were tested after stirring at 80 ◦C for 5 h and cooled to ambient temperature.
This was in order to better understand the influence of precursor and starch concentrations on the
viscosity of the as-prepared perovskite solutions before deposition. The rheological experiments were
repeated three times to check the repeatability of the results.

2.2.4. Surface Tension

The surface tension of the inks was measured by Krüss DSA100 (Bristol, UK) using the pendant
drop method.

2.2.5. Inkjet Printing Process

Patterns of 5 mm × 5 mm with various print resolutions were designed using the open source
software, GIMP (The General Image Manipulation Program, Spencer Kimball, Peter Mattis, 2.10.8
version, Berkeley, CA, USA). The files were saved as bitmap (.bmp) image file format and opened with
Dimatix drop manager (Fujifilm, Santa Clara, CA, USA) in order to be loaded by the printer software.

The printing frequency was set at 5.0 kHz and a customized waveform was used. The voltage
and the temperature of the cartridge were optimized based on the ink explored. The printing process
was carried out in air with a humidity of 20–30%. The temperature of the substrate was optimized
during the process through print platform heating. The diameters of the printed drops were analyzed
to optimize the drop spacing of each explored ink.

The substrate was prepared by washing the glass slide with isopropanol. Then, the poly-TPD
solution (1.5 mg/mL in clorobenzene) was printed at room temperature by using the same customized
waveform with a drop spacing of 60 µm (distance between droplets center to center) and a voltage of
23 V. Printed poly-TPD was annealed in air at 140 ◦C for 30 min, followed by UV treatment of 30 min
in order to improve the wettability, as already demonstrated in our previous paper [2].

2.2.6. Morphological Characterization

The surface morphology of the single droplets printed and of the printed starch-perovskite
composite samples was analyzed by an optical microscope (Nikon Eclipse–LV100ND, Tokyo, Japan).
Scanning electron microscopy (SEM) images of the printed starch-perovskite composite samples,
deposited on a glass/printed poly-TPD substrate, were collected by using Carl Zeiss Auriga
40 Crossbeam instrument (Oberkochen, Germany), in high vacuum and high-resolution acquisition
mode, equipped with Gemini column and an integrated high efficiency in-lens detector. The applied
acceleration voltage was 5 kV.

2.2.7. XRD Measurements

Wide-angle X-ray diffraction (XRD) patterns were obtained in reflection geometry by an
automated Bruker D8 Advance diffractometer (Billerica, MA, USA), equipped with nickel-filtered Cu
Kα radiation (1.5418 Å) as the X-ray source that was operated at 35 kV and 40 mA.

2.2.8. UV-vis Absorption

UV-visible optical absorption spectra were recorded on Varian Cary 500 spectrophotometer
(Agilent, Santa Clara, CA, USA) in the 200–800 nm wavelength range at room temperature.
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2.2.9. Photoluminescence (PL) Experiments

Steady state and time resolved photoluminescence (PL) was measured by an Edinburgh FLS920
spectrometer (Livingstone, UK) equipped with a Peltier-cooled Hamamatsu R928 photomultiplier tube
(185–850 nm). An Edinburgh Xe900 450 W Xenon arc lamp (Livingstone, UK) was used as exciting
light source. Corrected spectra were obtained via a calibration curve supplied with the instrument
(lamp power in the steady state PL experiments ~0.6 mW cm−2, spot area 0.5 cm2). Emission lifetimes
were determined with the single photon counting technique by means of the same Edinburgh FLS980
spectrometer (Livingstone, UK), using a laser diode as excitation source (1 MHz, λexc = 635 nm, 67 ps
pulse width, and about 30 ps time resolution after deconvolution) and a Hamamatsu MCP R3809U-50
(time resolution 20 ps) as detector (laser power in the time resolution photoluminescence (TRPL)
experiment ~1.6 W cm–2, spot area 0.3 mm2) [15].

3. Results and Discussion

The printability of the starch-perovskite-based inks [2] was explored with the aim to evaluate
the possibility to deposit them through large scale methods. The printability of a solution can be
defined by the Z parameter that is directly dependent on viscosity, surface tension, and density of the
ink [16–18]. Therefore, these properties were, firstly, evaluated in order to select the solutions more
suitable for ink jet printing technology.

Figure 1 showed the steady state viscosity of the different solutions investigated, including a wide
range of perovskite precursor concentrations from 5 to 30 wt% and starch/precursor concentrations
from 0 to 15 wt%. All the perovskite precursor formulations, without starch, showed a Newtonian
behavior with almost constant viscosity ranges from ~0.002 to ~0.007 Pa s by increasing the precursors
content. By increasing the starch content, at lower perovskite precursor concentrations, i.e., 5 and
10 wt%, the solutions still showed a Newtonian behavior, with an increased viscosity up to ~0.01 Pa s.
By increasing the perovskite precursors ratio to 20 and 30 wt%, a pseudoplastic behavior was observed
in the presence of starch content higher than 5 wt%.
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The starch used for the solutions was widely characterized in our previous work [14], as well as
its role as a rheological modifier [2], with the interesting discovery that the gelatinization process of the
starch into DMSO together with the interaction between the OH groups of the starch and the perovskite
precursors highly influences the rheological behavior of the solutions. Interestingly, the results of
the rheological characterization showed that by tuning the concentration of the precursors and of
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the starch, it is possible to obtain a solution with rheological properties suitable to the deposition
technology used. By decreasing the perovskite precursor ratio down to 5–10 wt%, we were able to
move from spin coating to ink jet printing of perovskite-starch deposition. Together with the viscosity,
the surface tension and the density of the inks are key parameters to investigate the “ejectability” of a
solution. In general, values between 20–40 mN/m are considered more suitable for ink jet printing
processes, lower than the surface tension values reported in Table 2 for the solutions with varying
perovskite precursors, from 5 to 10 wt%, and starch content from 0 to 10 wt%. The respective densities,
calculated by weighing a known volume of each solution, were reported in Table 2, together with the
Z value calculated by Equation (1).

Z = (ρaγ)1/2/η (1)

where η is the dynamic viscosity, ρ is the density, γ is the surface tension, a is the characteristic length
(usually the nozzle diameter) of the ink.

Table 2. Density, surface tension, viscosity, and Z parameter of the inks explored.

Ink Density (g/mL) Surface Tension (mN/m) Viscosity at 23 ◦C (mPa s) Z

5MAPbI3 1.095 44.24 ± 0.15 2 15.94

5MAPbI3-5S 1.369 53.34 ± 0.15 3 13.05

5MAPbI3-10S 1.365 53.15 ± 0.27 4 9.75

10MAPbI3 1.375 53.39 ± 0.32 2 19.63

10MAPbI3-5S 1.392 53.32 ± 0.16 4 9.86

10MAPbI3-10S 1.410 53.30 ± 0.33 8 4.96

The solution containing the 5 wt% of perovskite precursor in solvent showed a surface tension of
44.24 ± 0.15 mN/m, close to the solvent used for the solution, DMSO (45.25 ± 0.47 mN/m). In the
presence of starch, as well as with a higher precursor concentration, the surface tension increases up to
about 53 mN/m. As reported in Table 2, Z values decreased by increasing the starch content, driven by
the increased viscosity, and were much lower for the ink containing 10 wt% of precursors, showing a
good influence of the presence of the starch on the ink ejectability calculated from Z. Indeed, Z values
between 1 and 10 are more suitable for ink jet printing technology, even though the value of a printable
Z number is still under investigation [19–21].

Subsequently, the ejectability of the inks was experimentally investigated by applying several
customized waveforms to the nozzle of the cartridge and by optimizing the voltage and the temperature
applied to obtain a drop ejected from the nozzle, as shown in Figure 2.

After optimization of the previous parameters, interesting results were obtained for most of the
inks reported in Table 1, by setting the voltage of the piezoelectric driven print-heads at each nozzle at
23 V and the temperature of the print-head at 23 ◦C. On the other hand, for the formulations containing
higher starch concentration, 5MAPbI3-10S, 10MAPbI3-5S, and 10MAPbI3-10S, higher voltage and
temperature were necessary to allow the ejection of the ink from the nozzle, i.e., 30 V and 40 ◦C, and
40 V and 45 ◦C, respectively. This latter result was probably due to the combination of higher surface
tension and viscosity, despite the lower Z parameter calculated. It is interesting to observe that the
shape and the length of the drop were highly influenced by the concentration of starch. In detail,
increasing starch molecular concentration lead to a longer drop tail due to greater long chain content,
typical of polymers with high molecular weight-based solutions [22].
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Figure 3 shows single droplets of the perovskite inks deposited on printed and annealed poly-TPD
by varying perovskite precursors and starch concentrations, before thermal treatment. It is evident
that the size of the drops increases from about 48.9 ± 4.9 µm for 5 wt% and 52.8 ± 1.3 µm for 10 wt%,
in absence of starch, up to 61.2 ± 0.4 µm and 66.2 ± 1.3 µm, respectively, after adding 10 wt% of the
biopolymer. Moreover, the presence of the starch allows for a more compact and homogeneous drop
on the substrate to be obtained, which is a key aspect in order to realize a good photoactive film.
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Figure 3. Single droplets of the inks deposited on printed and annealed poly-TPD by varying perovskite
precursors and starch concentrations.

From droplet to pattern printing, there are several aspects to consider; first, the choice of a proper
drop space, in order to have the appropriate overlapping of the droplets, which is essential to obtain
a continuous pattern. Hence, drop size is a crucial parameter and depends on the ink, wettability
of the substrate, and surface temperature as well. As the diameter of the print head nozzle is fixed,
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the droplet overlap is controlled by increasing or decreasing the resolution of the image (dpi) of the
pattern [23].

By considering the average drop size of the different inks tested, a drop space of 30 µm was firstly
selected to be used for printing continuous patterns. In addition, several annealing temperatures,
from 80 to 110 ◦C, were explored for printed perovskite precursor films and shown in Figure 4a.Nanomaterials 2019, 9, x FOR PEER REVIEW 8 of 13 
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Figure 4. Optical microscope images of different precursor perovskite solution printed patterns
annealed at different temperatures (scale bar 100 µm) (a), and “shift” of the drops observed after
thermal annealing at 110 ◦C for different starch concentrations (b).

All of the films annealed at 80 and 100 ◦C resulted in a needle-like morphology organized in
smaller islands, by increasing the temperature and the starch content (at fixed temperature). After
annealing at 110 ◦C, a more compact morphology was observed, irrespective of the starch content,
suggesting that the rate of the solvent evaporation is a key point during perovskite film formation;
by increasing the annealing temperature, then the rate of DMSO evaporation, a better perovskite
grain morphology could be obtained. However, a “shift” of the drops was observed during thermal
annealing, leading to a non-homogeneous perovskite film, as shown in the pictures in Figure 4b, which
was more evident as the starch content decreased.

Furthermore, with the aim to overcome the crystallization issue by increasing the solvent
evaporation rate, and to better control the uniformity of the printed pattern, the perovskite
precursor-based inks containing 5 and 10 wt% of precursors and 5 wt% of starch were printed on a
hot substrate at 90 and 100 ◦C. As shown in the optical images reported in Figure 5, for both of the
concentrations explored, a higher temperature of the substrate enabled a morphology characterized
by perovskite grains, whereas a needles-like structure was observed by depositing the 5 wt% of
starch perovskite at 90 ◦C. Therefore, 100 ◦C was selected as the best printing temperature. Moreover,
a well-defined 5 × 5 mm2 printed pattern was obtained, as shown in the inset of Figure 5.
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photo of the 5 × 5 mm2 printed pattern in the inset.

With the aim to improve the coverage of the substrate, the drop space was decreased from 30
to 15 µm, leading to a more compact and homogeneous film, as shown in Figure 6 for 10MAPbI3-5S
perovskite ink.
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Therefore, in the following experiment, 5MAPbI3-5S and 10MAPbI3-5S were printed according to
the optimized parameters and the respective films were accurately characterized and compared.

The SEM images in Figure 7a,b show a morphology characterized by large grains of about 5 µm
in both samples. However, slightly larger and more compact grains were observed for 10MAPbI3-5S,
combined with a smaller quantity of gaps than 5Mapi-5S film. The X-ray diffraction patterns on
5MAPbI3-5S and 10MAPbI3-5S printed film in Figure 7c display a strong peak at 14.2◦ of the MAPbI3

crystal. However, the presence of a small peak at 12.7◦, in both of the samples, suggested the presence
of unreacted PbI2 in the film, maybe due to the deposition conditions (in air, in presence of humidity).
The characteristic absorption spectra of perovskite were shown for both of the concentrations explored
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in Figure 7d, with higher absorption intensity by increasing the precursor concentration due to
the increasing thickness of the film from about 1 µm (5MAPbI3-5S) to 1.7 µm (10MAPbI3-5S). It is
interesting to observe that thicker and more opaque films were achieved by inkjet depositing perovskite
inks at low precursor concentrations of 5 and 10 wt%, when compared to conventional spin-coating [2].
Moreover, despite the high thickness, printed perovskite films are highly converted, as demonstrated by
XRD patterns, which did not evidence the presence of peaks related to MAI-DMSO-PbI2 intermediate
complex (6.6◦, 7.2◦, and 9.2◦) [24].
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Aiming at future optoelectronic applications, the optical properties of the printed films were
investigated by steady-state PL measurements, as shown in Figure 8. The intense PL emission band of
10MAPbI3-5S peaks at 795 nm, and it is slightly blue, shifting to 790 nm for 5MAPbI3-5S. The emission
band position and intensities are in line with what was previously reported for these composites, and
suggests good optoelectronic properties for the perovskite component of the ink [25].Nanomaterials 2019, 9, x FOR PEER REVIEW 11 of 13 
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The time-resolved PL experiment (Figure 8b) further supports the claim of good optoelectronic
properties, as the lifetimes are reasonably long (9, 52 ns for 5MAPbI3-5S; and 5, 124 ns for 10MAPbI3-5S)
and suggest reduced parasite traps mediated the carrier’s recombination. The role of the starch has
already been proven to positively affect the optoelectronic properties of perovskite materials. Herein,
the increase of the lifetime associated to a higher precursor concentration suggests better optoelectronic
properties for 10MAPbI3-5S film, which could be due to an increase of the perovksite grain dimensions.

4. Conclusions

In this work, the possibility to print the starch-perovskite inks, developed in our previous work,
was explored by using ink jet printing as a first step towards a more scalable deposition process of
perovskite-based devices. The tunability of the viscosity of the starch-perovskite-based inks allowed
us to select the suitable concentration to be used as printable inks. Through the investigation of the
printing parameters, such as waveform, voltage, and temperature of piezoelectric driven print heads
from one side, and drop space, substrate temperature from the other, printed perovskite films with
good morphological, crystalline, and optical properties were realized. These results represent the first
demonstration of the versatility of the perovskite deposition approach developed during this work,
and open the possibility for further investigations towards upscaling of perovskite deposition.
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