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Abstract

The Polycomb system via the methylation of the lysine 27 of histone H3 (H3K27) plays cen-

tral roles in the silencing of many lineage-specific genes during development. Recent exper-

imental evidence suggested that the recruitment of histone modifying enzymes like the

Polycomb repressive complex 2 (PRC2) at specific sites and their spreading capacities from

these sites are key to the establishment and maintenance of a proper epigenomic landscape

around Polycomb-target genes. Here, to test whether such mechanisms, as a minimal set of

qualitative rules, are quantitatively compatible with data, we developed a mathematical

model that can predict the locus-specific distributions of H3K27 modifications based on pre-

vious biochemical knowledge. Within the biological context of mouse embryonic stem cells,

our model showed quantitative agreement with experimental profiles of H3K27 acetylation

and methylation around Polycomb-target genes in wild-type and mutants. In particular, we

demonstrated the key role of the reader-writer module of PRC2 and of the competition

between the binding of activating and repressing enzymes in shaping the H3K27 landscape

around transcriptional start sites. The predicted dynamics of establishment and mainte-

nance of the repressive trimethylated H3K27 state suggest a slow accumulation, in perfect

agreement with experiments. Our approach represents a first step towards a quantitative

description of PcG regulation in various cellular contexts and provides a generic framework

to better characterize epigenetic regulation in normal or disease situations.

Author summary

The regulation of gene expression in eucaryotes is in part regulated by specific biochemi-

cal modifications of chromatin, the so-called epigenetic marks. In particular, the Poly-

comb system deposits repressive marks that participate in the silencing of many genes

during development. Recent experimental evidence suggested that the recruitment of spe-

cific enzymes (like PRC2) at dedicated genomic sites and their capacities to spread epige-

netic marks from these sites are key to the functioning of the Polycomb repression. Here,

we developed a mathematical model to test whether such mechanisms, as a minimal set of

qualitative rules, are quantitatively compatible with data in mouse embryonic stem cells.
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We showed that the model well predicts the epigenetic landscape around repressed genes

as well as the kinetics of its establishment and maintenance. We demonstrated the key

role of the reader-writer module of PRC2 and of the competition between the binding of

activating and repressing enzymes in Polycomb regulation. Our approach represents a

first step towards a predictive description of epigenetic regulation in various cellular

contexts.

Introduction

Cells sharing the same genetic information may have very different functions and phenotypes.

The regulation of gene expression is central to control such cellular identity. In eukaryotes, a

key layer of regulation lies in the modulation of the accessibility to DNA and in the recruit-

ment of the molecules driving transcription to chromatin. In particular, biochemical modifica-

tions of DNA and of histone tails, the so-called epigenetic or epigenomic marks, are believed

to be essential in controlling such modulation [1]. Each cell type is characterized by a distinct

pattern of epigenetic marks along the genome with specific modifications associated with

active or silent regions [2]. Such epigenetic information should be robust and maintained

across DNA replication and cell divisions but may also need to be plastic and modified during

development or to adapt to environmental cues [3]. A key question at the heart of epigenetics

is thus to characterize the generic principles and mechanisms regulating the establishment,

maintenance and conversion of the epigenomic marks.

Experimental studies suggested along the years that the regulation of these marks follows

similar rules [4–6]: chromatin regulators like histone modifying enzymes (HMEs) are

recruited at specific DNA sequences leading to the nucleation of an epigenetic signal that sub-

sequently spread to form more or less extended domains along the genome. In particular, the

spreading process was found to be driven by a variety of ‘reader-writer’ enzymes that can

‘read’ a given chromatin modification at a given locus and ‘write’ or ‘remove’ the same or

another mark at other genomic positions [1,7].

To formalize such rules, several mathematical models investigating the generic regulation

of histone marks have been developed [8–18]. In their simplest form, these models consider

that the local chromatin state can switch between active and repressive marks [19,20]. They

suggested that the reader-writer-eraser capacity of HMEs may generate positive feedback

loops and cooperative effects in the system that are essential to provide stability to the local epi-

genetic state. Applications of such formalism, contextualized to specific marks at specific loci,

have shown that it is fully consistent with many experimental observations [13,14,17,21–25].

However, quantitative comparisons with experiments are still rare in particular on how epige-

netic marks organize around the nucleation sites, which may bring crucial information on the

spreading and maintenance mechanisms [15,26]. In this work, we aim to provide a modeling

framework able to quantitatively describe the genomic profiles of epigenetic marks in the con-

text of the Polycomb system in mouse embryonic stem cells (mESCs).

The Polycomb regulatory system is found in many higher eukaryotes and has been shown

to play a critical role during development in the silencing of lineage-specific genes [27]. It

involves the methylation of the lysine 27 of histone H3 mainly via the coordinated action of

two Polycomb-group (PcG) complexes, PRC1 and PRC2, tri-methylation of H3K27

(H3K27me3) being associated with gene repression. mESCs have been for years a model sys-

tem to investigate the Polycomb system in mammals [28], as it is involved in the maintenance

of the pluripotency of these cells [29]. Recently, many experimental studies in mESCs have
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measured quantitatively the patterns of H3K27 modifications along the genome [6,26,30–34].

For example, genes targeted by PcG proteins, the so-called PcG-target genes, are characterized

by high H3K27me3 levels around their transcriptional start sites (TSS) and intergenic regions

are dominated by H3K27me2 representing more than 50% of all H3K27 modifications [6].

Perturbations of this H3K27 landscape when altering PRC1/2 have allowed to shed light on

the functions of their molecular constituents in the establishment and maintenance of the epi-

genetic signal (Fig 1A) [6,30,31,35–37]. Briefly, the recruitment of a non-canonical PRC1 vari-

ant at CpG islands mediates locally the mono-ubiquitination of H2AK119 [35–40]. This

localized signal in turn recruits PRC2 through the interactions of cofactors like JARID2 [6,41–

43]. Around its core subunit Suz12, PRC2 contains the EZH1 or EZH2 catalytic subunit, both

capable of methylating H3K27 and of nucleating the epigenetic signal. PRC2 includes also a

‘reader’ subunit, EED, that allosterically boosts the activity of the ‘writer’ EZH2 in presence of

H3K27me3 residues [44] and allows the long-range spreading of the signal around the nucle-

ation site [6]. Canonical PRC1 may then bind to H3K27me3-tagged regions leading to the

local compaction of chromatin and repression of gene expression [35–37,45]. The silencing

action of PcG proteins is antagonized by Trithorax-group proteins like MLL2 that recruit

demethylases like UTX/JMJD3 and acetyltransferases like p300/CBP [46] mediating, respec-

tively, the removal of the methyl groups from methylated H3K27 residues [47] or the addition

of an acetyl group to unmarked H3K27 residues [48,49], which is crucial for transcriptional

activation.

All this suggests that the recruitment of HMEs at specific sites and their local and long-

range spreading activities from these sites are designing the epigenetic H3K27 landscape in

mESCs. While these different mechanisms were discovered and characterized in a heteroge-

neous set of in vivo and in vitro experimental assays, it is unclear whether, all together, they

provide a complete set of processes that can quantitatively describe in vivo experimental epige-

netic profiles.

Here, to address this question, we turn this experimentally-derived knowledge into a quan-

titative mechanistic model. Building on previous generic mathematical models of epigenetic

regulation (see above), we contextualize our framework to precisely account for the occupancy

of key HMEs and for the major processes described above. Using this integrated model, we

investigate how the ‘spreading’ tug-of-war between the repressive (H3K27me3) and active

(H3K27ac) marks is tied to the properties and locations of HMEs around TSS. In particular,

we show that the model predictions are in quantitative agreement with Chip-Seq H3K27 pro-

files measured around PcG-target, active or bivalent genes in wild-type (WT) and perturbed

conditions and with Stable Isotope Labeling by Amino-acids Cell culture (SILAC) experiments

monitoring the maintenance and spreading dynamics of H3K27 methylation. We demonstrate

the central role of the reader-writer module of PRC2 and of the competition between activat-

ing and repressing mechanisms in shaping the relative levels of mono-, bi- and trimethylation

around TSS. Finally, we conclude and discuss the perspectives and limitations of our

approach.

Results

A dynamical model for the regulation of H3K27 epigenetic modifications

in mESC

Based on previous experimental findings, we consider that the de novo establishment and

maintenance of H3K27 modifications in mESCs is mainly carried out by the stable recruitment

of HMEs to their cognate DNA recruitment sites and that the patterns of epigenetic marks
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around genes result from a complex network of local and long-range spreading or erasing

mechanisms mediated by these HMEs [6] (Fig 1A).

To test this hypothesis quantitatively, we simulated the stochastic dynamics of H3K27 mod-

ifications in a 20kbp-region around the TSS of a gene. This region, made of 100 nucleosomes,

is modeled as an array of 200 histones where we assume that each nucleosome (~200bp) is

made of two consecutive independent H3 histones (each covering ~100 bp). The H3K27 status

of each histone can fluctuate among five states (Fig 1B): unmodified (u), acetylated (ac), sin-

gle-methylated (me1), double-methylated (me2) and tri-methylated (me3). Our model

assumes that the dynamics of individual histones is mainly driven by the sequential addition

or removal of acetyl and methyl groups by HMEs and by histone turnover [14,50–52]. Below,

we describe the three main features of this model (Fig 1A and 1B). Their mathematical transla-

tion into reaction rates that control the stochastic transitions between histone states can be

found in the Materials and Methods section.

Addition and removal of the methyl groups by PRC2 and UTX. Methylation of H3K27

is catalyzed by the PRC2 complex [53]. In mammals, PRC2 is predominantly recruited at CpG

islands by several cofactors including JARID2 [6,41] or PRC1-mediated H2AK119 mono-ubi-

quitination [35–40]. Its methyltransferase activity is carried out by the subunits EZH1 or

EZH2 [31]. While the EZH1 activity remains largely local, interactions between the PRC2 sub-

unit EED and H3K27me3-marked histones at the core recruitment region may allosterically

boost the EZH2 activity which is then allowed, via a reader-writer mechanism, to spread

Fig 1. Model for the regulation of H3K27 modifications in mESCs. (A) Scheme of the different histone modifying

enzymes (HMEs) involved in the regulation of H3K27 modifications, and of their actions. PRC2 complexes are

recruited site-specifically and methylate H3K27 either locally, on site or at long-range if they are bound to

trimethylated histones. CBP/p300 acetylates the H3K27 residues, UTX/JMJD3 and HDACs remove the methyl and

acetyl groups from H3K27, respectively. (B) Multi-state dynamics of the H3K27 modifications: unmodified histones

(u) are methylated to me1, me2 and me3 or acetylated to ac by the action of PRC2 (local and long-range) and p300

(local), respectively. Demethylation is conditional to the local UTX occupancy while deacetylation by HDACs is

considered uniform. The long-range spreading of methylation mediated by PRC2-H3K27me3 allosteric activation is

shown as dashed lines. Histone turnover and DNA replication are not shown here for clarity. (C) Summary of the

computational framework with its inputs and outputs. The model takes HME profiles as inputs and makes predictions

(based on the model depicted in (A,B)) on the probabilities to find a given mark at a given position and on methylation

valencies, defined as the relative ordering of H3K27me levels around the TSS region.

https://doi.org/10.1371/journal.pcbi.1010450.g001

PLOS COMPUTATIONAL BIOLOGY Mathematical modeling of the Polycomb regulation in mESC

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010450 September 2, 2022 4 / 31

https://doi.org/10.1371/journal.pcbi.1010450.g001
https://doi.org/10.1371/journal.pcbi.1010450


methylation at long-range, outside the PRC2 cognate binding sites [6,30,44]. To account for

this dual activity, we assumed that the methylation propensities at a given histone position are

composed (i) by a local, on-site, nucleation term (of rate kmex
with x2{1,2,3}) proportional to

the PRC2 occupancy at this position; and (ii) by a long-range term (of rate �mex
) accounting for

the spreading capacity in 3D of distant PRC2 complexes bound to H3K27me3 histones at

other positions that may spatially contact the locus by DNA looping [6]. As kmex
and �mex

rates

reflect the catalytic activity of the same complex (PRC2), we further considered that the ratios

�mex
=kmex

ðx 2 f1; 2; 3gÞ, which characterizes the fold-change in effective activity of the alloste-

rically-boosted, long-range spreading vs local nucleation, is state-independent, ie �mex
=kmex

¼

R for all x (see Materials and Methods).

H3K27 methyl groups can be actively removed by the demethylase UTX with no evidence

suggesting that UTX “spreads” its activity at long-range [47]. Therefore, we modeled the

demethylation propensities as being local and simply proportional to the local UTX density

with a rate γme that, to simplify, we assumed to be independent of the methylation status.

Addition and removal of H3K27 acetylation. Acetylation of H3K27 is mediated by sev-

eral acetyltransferases such as p300 or CBP recruited by transcription factors [46,48,49]. For

p300-mediated acetylation, there is evidence suggesting that the bromodomain of p300 may

trigger a reader-writer spreading process of acetylation [54], similar to the EZH2-mediated

methylation. Such a mechanism would imply a long-range spreading of H3K27ac around the

p300 binding sites. However, after analyzing H3K27ac and p300 ChIP-seq data around pro-

moters, we found that p300 peaks are actually even slightly wider than the acetylation peaks

(Fig 2B and 2C). Furthermore, while the inhibition of bromodomain enzymatic activity of

p300 results in major loss of acetylation at enhancers, it only leads to minor changes at pro-

moters [46]. Since we aimed to describe acetylation at promoters, we neglected the bromodo-

main interplay and we simply assumed an on-site enzymatic activity with the acetylation

propensity being proportional to the p300 occupancy with a rate kac.

In general, deacetylation kinetics is fast and the half-lives of acetylated histone residues

have been measured at many sites [55]. Therefore, we modeled the action of histone deacety-

lases (HDACs) as a uniform rate of 0.6 event per hour [56] acting on H3K27ac histones.

Histone turnover and DNA replication. In addition to the previous reactions that

involve specific enzymes, the local state may be affected by histone turnover [58,60]. We

assumed that this process leads to the replacement of the current histone state by a ‘naive’,

unmodified (u) histone with a rate of 0.03 event per hour as measured consistently by two dif-

ferent studies [58,61].

DNA replication is also a major perturbative event for the epigenome as the ‘mother’ epige-

netic information is diluted among the two sister chromatids [62]. Since mother histones are

symmetrically redistributed [63,64], we modeled replication as specific periodic events, occur-

ring every 13.5 hour (the median cell cycle length in mESC [59]), where half of the histone

states are randomly lost and replaced by a ‘u’ state.

All together, these three main features drive the dynamic transitions between the different

states of H3K27. This epigenetic model takes as inputs the binding profiles of HMEs like

PRC2, p300 or UTX (Figs 1C and S1) and, for a given set of (de)methylation and (de)acetyla-

tion rates (Table 1), makes predictions about the corresponding profiles of H3K27ac/u/me1/

me2/me3 modifications based on the simulations of many single-cell stochastic trajectories of

small regions of the epigenome (see Materials and Methods).

In this paper, we focused on three gene categories in mouse ES cells grown in 2i medium

for which lots of data are available (see Materials and Methods and Table 2): (i) Polycomb-
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target genes are repressed and exhibit high H3K27me3 levels, low levels of H3K27me1 and

me2 and the quasi-absence of H3K27ac; (ii) Active genes are enriched with H3K27me1 and

H3K27ac marks; (iii) Bivalent genes, associated with lowly expressed or poised regions and

characterized by the co-occurrence of active (H3K4me3) and repressive marks [65], exhibit

intermediate levels of H3K27me2 and me3. Each of these categories, inferred from the statisti-

cal analysis of several transcriptomic and epigenomic information [26], are characterized by a

distinct methylation valency—defined as the qualitative relative ordering of H3K27me levels—

around the TSS (Fig 1C): me3>>me2>me1 for PcG-target genes, me1>me2>>me3 for

active genes and me2>me3>me1 for the bivalent category.

The model recapitulates the epigenetic landscape of Polycomb-target genes

under various conditions

We first asked if our working hypotheses and the corresponding mathematical model are con-

sistent with the average epigenetic landscape observed around PcG-target genes [26]. For that,

we designed a multi-step inference strategy (Fig 2, S2 Fig) in order to fix, from available experi-

mental data, the remaining free parameters of the model, namely the methylation nucleation

rates (kme1/me2/me3), the methylation spreading rates (�me1/me2/me3), the demethylation (γme)

Fig 2. Fitting the model with various perturbation experiments around PcG-target genes. All profiles in the figure

are around the TSS (position 0) of PcG-target genes. (A,D,G,J) Schematic representation of the epigenetic models used

to simulate EZH1/2 DKO, EZH2KO, WT and UTX KD cases. (B) Average p300 occupancy in WT. (C) Fit (right) of

the average experimental H3K27ac profile in EZH1/2 DKO cells (left). (E,H) Average SUZ12 occupancy for the

EZH2KO (E) and WT (H) cases. (F,I) Experimental (left) and simulated (right) profiles of H3K27 marks for the

EZH2KO (F) and WT (I) cases. (K) Fit of the average H3K27me3 profile for the UTX KD condition. In (B,C,E,F,H,I,

K), circles correspond to normalized Chip-Seq profiles (gray for HMEs, colored for H3K27 marks), gray full lines to

gaussian fits of the HME profiles and colored full lines to the predicted profiles of the epigenetic states.

https://doi.org/10.1371/journal.pcbi.1010450.g002
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and acetylation (kac) rates. In particular, we exploited data from wild-type and from perturba-

tion experiments [30,33] where the activities of some HMEs have been modified.

Latent acetylation of Polycomb domains in EZH1/2 double knockout. In wild-type

mESCs, the acetylated H3K27 histones sites are mostly spotted at the enhancers and promoters

of active genes, overlapping with the genomic occupancy of both UTX and p300 [49,60].

Although p300 is present at the promoters of PcG-target genes (S1 Fig), there is almost zero

H3K27 acetylation (orange circles in Fig 2I). However, on knocking out both methyltrans-

ferases EZH1and EZH2 [30], PcG genes become significantly acetylated (orange circles in Fig

2C) and a deregulation of gene expression is observed [30]. In this DKO situation where

H3K27 methylation is absent, the epigenetic model reduces to a simple two-state model

between u and ac states (Fig 2A). This allowed us to infer the acetylation rate kac = 1.03 h−1

based on the p300 average occupancy around PcG promoters (Fig 2B) by fitting the corre-

sponding average H3K27ac profiles (orange line in Fig 2C) (see Materials and Methods). Inter-

estingly, our estimation of kac is consistent with acetylation rates measured in human

embryonic kidney cells for various residues after HDAC inhibition [66]. Since kac is of the

same order than the HDAC-mediated deacetylation rate (~0.6h−1), it also suggests that acetyla-

tion levels result from a fast exchange dynamics of acetyl groups.

Inference of methylation-related rates using EZH2 KO, WT and UTX KD profiles. To

infer the methylation-related parameters of the model, we designed an iterative scheme (S2

Fig) by sequentially using data from EZH2 KO, wild-type and UTX KD cells (see Materials

and Methods section for details) for fixed ratios r13� kme1/kme3 and r23� kme2/kme3. (i) We

started by initializing the nucleation rate kme3 to an arbitrary value. (ii) Then, we took advan-

tage of available data for EZH2 KO cells [30]. Indeed, in this strain, while the average PRC2

occupancy is maintained (Fig 2E), PRC2 loses its allosteric long-range spreading capacity (Fig

2D). This leads to a drastic reorganization of the methylation landscape (Fig 2F) with me2

becoming the dominant methylation state in a 5 kbp-large portion surrounding the TSS (com-

pared to the wild-type case on Fig 2I). By fitting this change of valency using a simplified ver-

sion of the model with �me1/me2/me3 = 0 (no long-range spreading), we could infer the

demethylation rate γme. (iii) Next, we reintroduced the spreading parameters (Fig 2G) and

considered the wild-type profiles (Fig 2I) to fit the spreading-vs-nucleation ratio R based on

the methylation valency around promoters. (iv) After this step, there were no more free

parameter in the model, however inferred γme and R values may depend on the initial guess

made for kme3 at stage (i). We thus used an independent dataset to validate our full set of

parameters. For this, we compared the quantitative H3K27me3 profile given by MINUTE-

ChIP experiment for UTX KD cells [33] (Fig 2K) to the model prediction where active

demethylation by UTX has been inhibited (γme = 0) (Fig 2J). If not consistent, the same data

allowed us to correct and optimize the kme3 value, keeping all the other parameters fixed. By

repeating steps (ii)-(iv) for this corrected value, we reevaluated γme, R and possibly kme3, until

convergence (S2 and S3 Figs).

This overall inference strategy was applied to several values for r13 and r23 (S1 Table). Over

all the tested cases, only one pair of ratios (r13 = 3, r23 = 3) leads to the convergence of the infer-

ence scheme (S3 and S4 Figs). Qualitatively, such ratio values are consistent with in vitro
experiments on human EZH2 [50] showing a differential activity of PRC2 on H3K27u, me1 or

me2 substrates with faster methylation rates towards me1 and me2 states than towards me3

(r13�r23�1). Quantitatively, our estimation suggests that, in vivo, addition of the third methyl

group (me2 to me3 transition) is a rate-limiting step for chromatin to acquire a H3K27me3—

repressed—state, but at least 2 or 3 times less that initially observed in vitro [50]. The other

optimal parameters are kme3 = 0.81 h−1, R = 0.85 and γme = 1.5 h−1 (Table 1). Interestingly,

such close-to-one value for the spreading-vs-nucleation parameter R suggests that the allosteric
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boost of the EZH2 spreading efficiency mediated by H3K27me3 is of the order of 5- to 10-fold

(see Materials and Methods), in very good agreement with in vitro experiments on human

EZH2 [44,67].

While having an overall satisfying goodness of fit, the model still fails to capture some fea-

tures observed in the ChIP-seq data. In EZH2 KO cells, the slowly-decreasing shape of

H3K27me2 profile is not caught by the model (Fig 2F), suggesting the existence of an

unknown putative spreading mechanism acting only on me2. In EZH2 KO and WT cells, the

model predicts a decrease in H3K27ac levels at TSS while a slight gain is observed in the exper-

iments (Figs 2F and 2I). In WT cells, the predicted profiles for methylation marks are ~1.5 fold

stronger than the corresponding normalized ChIP-seq data (Fig 2I). Even if direct, absolute

comparison between the magnitudes of model predictions and experiments should be done

with great care (see Materials and Methods), this overestimation may translate a too strong

kme3 value.

PRC2 spreading efficiency dictates the shapes, valencies and correlations of methylation

profiles. Our inference process illustrates how the epigenetic model and the underlying

mechanistic hypotheses may consistently reproduce on the main lines the profiles of all

H3K27 marks around PcG-target genes. Remarkably, while parts of the inference are based on

qualitative fits of the average methylation valencies around the promoter, the model predicts

quantitatively the inversion of valency occurring far from the promoter in EZH2KO and wild-

type cells (Fig 2F and 2I respectively). We thus wondered what is the main mechanism driving

such inversion. By varying the value of the spreading-vs-nucleation ratio R while keeping

HME profiles and other parameters as in the WT-case, simulations strongly suggest that

valency around PcG genes is mainly driven by the long-range, allosteric spreading capacity of

PRC2 (Fig 3A). When R is very low (EZH2KO-like situation, R~0), me2 dominates at the

nucleation sites (Fig 3A, TSS < 2.5 kbp) while me1 is predominant in the rest of the region

(Fig 3A for distances to TSS> 2.5 kbp). Interestingly, in this low-R regime, while the propor-

tions of methylation states are overall limited, the model predicts that the levels of H3K27 acet-

ylation are still low (less than 10%) everywhere and therefore we may expect that most of the

PcG-target genes should remain inactive. This is in line with experimental observations show-

ing that the massive transcriptional deregulation of PcG-target genes observed in EZH1/2

DKO cells is already rescued in EZH2 KO cells [32]. As R increases, we progressively observed

the emergence of H3K27me3 as the dominant state. The increase in me3 follows a switch-like,

Table 1. Parameters of the epigenetic model.

Parameter Description Best value

kme1
PRC2-mediated methylation rate (u!me1) 3� kme3

kme2
PRC2-mediated methylation rate (me1!me2) 3� kme3

kme3
PRC2-mediated methylation rate (me2!me3) 0.81±0.1 h−1

R spreading-vs-nucleation ratio (�mex
=kmex

) 0.85±0.01

�me1
EZH2 allosteric spreading rate (u!me1) R� kme1

�me2
EZH2 allosteric spreading rate (me1!me2) R� kme2

�me3
EZH2 allosteric spreading rate (me2!me3) R� kme3

γme UTX-mediated demethylation rate 1.5±0.05 h−1

kac P300-mediated acetylation rate 1.03 h−1

γac deacetylation rate 0.6 h−1 taken from [57]

γturn histone turnover rate 0.03 h−1 taken from [58]

T cell cycle length 13.5 h taken from [59]

https://doi.org/10.1371/journal.pcbi.1010450.t001
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sigmoidal, function as a function of R (blue lines in Fig 3A), signature of a phase-transition

driven by the allosteric spreading. Strikingly, the inferred parameter for WT (R = 0.85, red dot-

ted lines in Fig 3A) lies in the transition zone between the low and the high me3 regimes.

More generally, we performed a sensitivity analysis for all the model parameters (Figs 3A

and 3B and S5). As expected, profiles around PcG-target genes are more sensitive to parame-

ters related to the (de)methylation dynamics (kme3, γme3) with kme3 having a similar impact

than R, and are more robust to variations of the other parameters, including histone turnover

rate, around their WT values. Interestingly, the system becomes very sensitive to the cell cycle

length for T�6h (Fig 3B), by favoring the u-state by dilution during the replication process

and thus by limiting the allosteric spreading. This suggests that regulation of the cell cycle

length, that may vary from few to dozens of hours, as observed during differentiation and

development [68] may participate in the global epigenetic regulation of gene expression

[17,69].

As the spreading mechanism is constrained by the presence of H3K27me3 marks at the

binding sites of PRC2, we expected to observe long-range correlations between the H3K27me3

Fig 3. Effect of spreading efficiency on PcG-target genes. (A,B) Average predicted proportion of a given mark as a

function of the spreading-to-nucleation ratio R (A) and of the cell cycle length T (B), all other parameters fixed to WT

values (Table 1 and red dotted lines for R and T). Panels from left to right correspond to regions close or far from TSS.

(C) Correlation between H3K27 states at different positions around TSS for the WT parameters. (D) Predicted (top)

and experimental (down) WT profiles around the gene Tcfap2b.

https://doi.org/10.1371/journal.pcbi.1010450.g003
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level around the TSS where HMEs bind and the methylation state at more distal regions. More

generally, to estimate the co-occurrence of H3K27 states at different positions, we computed

from the simulated stochastic trajectories (S6 Fig) the correlations (see Materials and Methods)

between the instantaneous local epigenomic state of any pairs of loci in the WT situation. Fig

3C illustrates the complex pattern of correlations existing between states and loci. As expected,

positive correlations are observed between H3K27me3-tagged loci. Acetylated loci are weakly

negatively (respectively positively) correlated with highly (resp. lowly) methylated states me2/3

(resp. me0/1). Due to the ‘synchronized’ dilution happening at replication, H3K27u-tagged

loci are highly correlated. Other correlations between states translate the local competition

between them and the long-range spreading capacity of H3K27me3 states at TSS. For example,

me2 at (resp. out of) TSS is negatively (resp. positively) correlated with me3 everywhere.

Indeed, me2 at TSS does not allow spreading methylation while me2 out of the nucleation

region is the path towards me3 via spreading by me3 from TSS.

So far, we have parameterized and analyzed our model using the average experimental densi-

ties of HMEs around PcG-target genes as inputs and the corresponding average experimental

profiles of H3K27ac/me1/me2/me3 modifications as outputs. Therefore, we wanted to test

whether the same parameters are also viable for individual genes. Overall, plugging HME densities

of individual genes into the simulations, we found that the individual profiles for each modifica-

tion as well as the methylation valencies are well captured by the model (see examples in Fig 3D

and S7 Fig). It is remarkable that we can still reproduce the specificity of each gene knowing that

our parameterization has been based on an average signal that smoothed out these specificities.

Parameter-free predictions of H3K27 modifications at active and bivalent genes

In our epigenetic model, the various methylation or acetylation patterns observed at different

loci emerge from the differential binding of HMEs at these regions. We therefore asked if the

shapes and valencies of H3K27 modifications observed around active and bivalent genes

[26,30] may be predicted by the model using the same parameters as previously inferred at

PcG genes but with the active and bivalent average HME profiles.

In EZH1/2 DKO cells, the model is able to predict quantitatively the acetylation profiles of

bivalent and active genes using their respective corrected p300 profiles (Fig 4A–4D). In EZH2

KO cells, the model correctly predicts the methylation valencies for both active and bivalent

genes but fails in capturing the acetylation level and the exact shapes of the methylation pro-

files (Fig 4E–4H). This suggests that the p300/UTX profiles that we took from WT as they

were not available in the mutant strain, may be strongly perturbed in EZH2KO around non-

PcG genes with a higher occupancy (as observed in EZH1/2 DKO cells).

In the WT case, active genes exhibit an inverse H3K27 methylation landscape compared to

PcG domains with a valency me1 > me2 > me3 (Fig 4I). Interestingly, the average HME den-

sities are also inverse compared to those around PcG-target genes: poor PRC2 binding and

rich UTX/p300 occupancy (S1 Fig). Using these profiles as inputs, the model is able to cor-

rectly predict the average histone marks profiles including the observation that acetylation is

higher than the methylation levels at the promoter (Fig 4J), the behavior around individual

genes being also well captured (S8 Fig). At bivalent genes, H3K27me3 has the almost same

peak density (average) as H3K27me2 around the promoter (± 2.5 kbp), both being higher than

H3K27me1 and ac (Fig 4K). Our epigenetic model performs reasonably well in this region (Fig

4L) even if prediction for H3K27me3 is slightly lower than observed (see also S9 Fig). How-

ever, the model completely fails for more distal regions where ChIP-seq experiments show for

example a flat profile for H3K27me2 that we don’t capture. This suggests that other mecha-

nisms not included in the model might play an important role at bivalent genes, like, for
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example, the crosstalk with the regulatory machinery of other activating marks like H3K4me

or H3K36me, also present at bivalent genes [33,34].

Competition between activating and repressing factors shapes the local

epigenomic landscape

More generally, we asked how the differential recruitment of HMEs around TSS may impact

the local epigenetic landscape and subsequently gene regulation. To investigate this, we sys-

tematically computed the average profiles of H3K27 modifications as a function of the recruit-

ment strengths of p300/UTX and PRC2 (see Materials and Methods). For each recruitment

condition, we estimated the methylation valencies around TSS (S10 Fig) and found that the

phase diagram of the system can be divided into 3 qualitative behaviors (Fig 5): (i) conditions

with a PcG-target-like valency (me3>>me2>me1) observed for ‘high’ PRC2 and ‘low’ p300/

UTX recruitments; (ii) situations with an active-like valency (me1>me2>>me3) for ‘low’

PRC2 and ‘high’ p300/UTX recruitments, and (iii) all the remaining, intermediate conditions,

including bivalent-like valencies (me2>me3>me1). The approximate frontiers between these

regions exhibit a stiffer dependency to the PRC2 occupancy, signature of the asymmetric tug-

of-war between the acetylation by p300 and demethylation by UTX from one side and the

methylation by PRC2 on the other side. The levels of p300/UTX at an average PcG-target gene

in mESC (blue dot in Fig 5A) would need to be 3 times higher than the levels typically observed

around active genes in mESC (orange dot in Fig 5A) to switch the gene into the active area for

the same PRC2 level; while the level of PRC2 at an average active gene in mESC should be

increased by 80% of the typical level found at PcG-target genes in mESC to move the gene into

the PcG area. This suggests that activation of former PcG-target genes, during differentiation

for example, at more reasonable levels of p300/UTX would require a concomitant decrease in

PRC2 occupancy in parallel to the increase in p300/UTX recruitments. As repressors (PRC2)

and activators (p300/UTX) binding motifs or recruitment signals are usually colocalized

around TSS [70], a competition for their bindings to chromatin may naturally cause the inhibi-

tion of repressor occupancy while activator binding increases (or vice versa) [17].

Fig 4. Predictions of H3K27 modifications for active and bivalent genes. Experimental (A,C,E,G,I,K) and simulated

(B,D,F,H,J,L) profiles of H3K27 marks for the EZH1/2DKO (A-D), EZH2KO (E-H) and WT (I-L) cases around the

TSS of active (A,B,E,F,I,J) and bivalent (C,D,G,H,K,L) genes. Symbols correspond to normalized Chip-Seq profiles and

full lines to the predicted profiles of the epigenetic states.

https://doi.org/10.1371/journal.pcbi.1010450.g004
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The model captures the maintenance and spreading dynamics of

H3K27me3

Previously, we showed that the model well captures the average, ‘static’ epigenetic landscape

around genes for a population of asynchronized cells at steady-state. We finally sought to use it

to investigate the dynamics of regulation of H3K27 modifications.

We first interrogated how the epigenetic landscape is re-established after the strong, peri-

odic perturbation of the system occurring every cell cycle at replication where half of the epige-

netic information is lost. With the WT parameters inferred above, focusing on PcG-target

genes, we tracked the dynamics of each H3K27 marks after replication for a population of syn-

chronized cells in a periodic steady-state (Fig 6A). The me1 level rapidly increases up to

~4-fold (reached at ~T/7) and then slowly decays by 2-fold towards its pre-replication value.

The me2 profile reaches almost its pre-replication value after ~T/3. The me3 level slowly grows

along the whole cell cycle. This dynamics translates the gradual and slow re-establishment of

H3K27me3 marks from the unmarked histones newly integrated at replication that are rapidly

Fig 5. Differential recruitment of HMEs at nucleation sites. (A) Phase diagram of the model behavior obtained by

varying the strengths of recruitment of p300 (x-axis) or Suz12/PRC2 (y-axis) around TSS for WT parameters. P300

(Suz12) peak intensities are normalized by the corresponding value at active (PcG-target) genes. The blue area

represents situations where the methylation valency around TSS is PcG-target-like (me3>>me2>me1), the orange

area to active-like conditions (me1>me2>>me3), the white zone to other cases including bivalent genes

(me2~me3>me1). Colored dots give the positions of WT experimental profiles studied in Figs 2 and 4. Black dots are

other special examples shown in panel (B). (B) Predicted epigenetic state profiles at different positions in the phase

diagram (black dots in (A)). (C) Average predicted proportion of a given mark as a function of time after a switch, at

t = 0h, from: (top) active-like (orange dot in (A)) to PcG-target-like (blue dot in (A)) HME profiles; and (down) from

PcG-target-like (blue dot in (A)) to active-like (orange dot in (A)) HME profiles. Panels from left to right correspond

to regions close or far from TSS as in Fig 3A.

https://doi.org/10.1371/journal.pcbi.1010450.g005
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Fig 6. Dynamics of H3K27 modifications. (A,B) Intra-cell cycle dynamics for a population of synchronized cells as a function of the time after the last

replication, predicted by the model for the WT parameters averaged around mESC PcG-target genes (A) or measured by SILAC experiments (B) on HeLa cells

(data extracted from [62], see Materials and Methods). For each cell type, time is normalized by the corresponding cell cycle length (T = 13.5h for mESC

simulations, T = 24h for HeLa cells). Dotted lines in (B) are a guide for the eye. (C-F) In WT conditions, we tracked from a given time (t = 0) the dynamics of

marks in the pools of (E, F) newly incorporated (after turnover or replication) and (C,D) remaining (old) histones, for a population of unsynchronized cells.

Predictions for the WT parameters averaged around mESC PcG-target genes are given in (C, E); SILAC experiments on mESC in (D,F) (extracted from [61],

see Materials and Methods). Time is normalized by the effective histone decay time (te = 12.7h for simulations, te = 28.6h for experiments) (see Materials and

Methods). (G, H) A population of unsynchronized cells is first evolved in presence (EZH2i) or absence (WT) of an EZH2 inhibitor. Then, at t = 0, if present,

the inhibitor is washed out and the dynamics of marks in all histones (G) or in newly incorporated histones after t = 0 (H) is tracked. Predictions for the WT

parameters averaged around mESC PcG-target genes are given in (G, top; H); SILAC experiments on mESC in (G, bottom) (extracted from [61], see Materials

and Methods). Time is normalized as in (C-F).

https://doi.org/10.1371/journal.pcbi.1010450.g006
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methylated to me1, which represents a transient state towards higher methylation states. Even

if me2 reaches a plateau suggesting that the ‘me1 to me2’ and ‘me2 to me3’ fluxes equilibrate,

the system as a whole never reaches a steady-state during cell cycle due to the ‘me2 to me3’

rate-limiting step that occurs more slowly than the other transitions (r13 = 3, r23 = 3, see

above). Remarkably, our predictions are in qualitative agreement with the cell cycle dynamics

of whole-cell contents of H3K27me1/me2/me3 measured in human HeLa cells using SILAC

(Fig 6B) [62]. The model even captures the small decrease in H3K27me3 level just after replica-

tion, that in our model can be interpreted by a significant demethylase activity not yet com-

pensated by the methylation flux from the me2 state.

To better characterize the dynamics of newly integrated histones in the maintenance of a

stable epigenetic landscape, we turned to a simpler system of unsynchronized cells where we

tracked the time-evolution of the epigenetic state of unmarked histones incorporated in the

region after a given time t0 due to histone turnover or replication (scheme at the top of Fig 6C

and 6E). For this pool of ‘new’ histones, we observed the same type of dynamics than along the

cell cycle: me1 has a transient dynamics, me2 reaches a plateau and me3 grows very slowly (Fig

6E), confirming that the establishment of me3 marks on new histones extends over a long

period (~2T). Consistently, the proportion of me3 in the pool of ‘old’ histones that were inte-

grated before t0 is still slowly increasing after t0, while me2 levels remain almost constant and

the me1 content slightly decreases (Fig 6C). Again, both predictions on old and new pools are

qualitatively consistent with recent SILAC experiments performed on mESC (Fig 6D and 6F)

[61], the recovery rate of H3K27me3 being even slower in the experiments than predicted.

Next, we analyzed the spreading dynamics of H3K27me3 around PcG-genes. We prepared

the system as a population of unsynchronized cells evolving with a EZH2 inhibitor (R = 0, no

spreading; WT values for other parameters) (scheme at the top of Fig 6G and 6H). Then, at a

given time t0, the inhibitor is washed out (R = 0.85, WT parameters) and we tracked the estab-

lishment of the epigenetic landscape after t0 (full lines in Fig 6G, top). Due to the inhibition of

EZH2, at t = t0, the global level of me1 is higher than in normal WT condition (dashed lines in

Fig 6G, top), while me2 and me3 are less present (see also Fig 2F and 2I). For t>t0, we observed

that the spreading of H3K27me3 and the recovery towards the WT state is slow and takes a

few cell generations (~2T). These predictions are in perfect agreement with similar experi-

ments on mESC studied with SILAC (Fig 6G, bottom) [61] or Chip-Seq [32] but also with

EED-KO rescue experiments in mESC showing a recovery of the WT levels about 36 hours

after the rescue [6]. After the release of the inhibition, we also followed the dynamics of newly

incorporated histones (full lines in Fig 6H) and compared it to the dynamics of new histones

but in WT conditions (Fig 6E and dashed lines in Fig 6H). Overall, we observed a shift of ~T/5

in the establishment of the epigenetic identity of the new histones compared to WT, consis-

tently with SILAC experiments [61]. This delay is imputable to the weak density of H3K27me3

marks at the nucleation sites at t0 that limits initially the long-range spreading by PRC2. This

highlights the role of pre-existing H3K27me3 in controlling the dynamics of de novo methyla-

tion states thanks to the reader-writer capacity of PRC2.

Finally, we used the model to predict the establishment dynamics of new epigenetic land-

scapes after rapid and significant changes in the HME binding properties in an asynchronous

cell population. We investigated differentiation-like situations where sets of active genes

became repressed (Fig 5C, top) or vice-versa (Fig 5C, down). After a switch from active-like to

PcG-target-like HME profiles, close to the TSS (<2.5kbp), we observed a successive “wave” of

methylation with me1 being dominant, then me2 and finally me3. The establishment of the

steady-state takes about one cell cycle and is mostly driven by the on-site action of HMEs. At

larger genomic distances (>2.5kbp), establishment is slower (~ 2T) due to the time delay

needed for the region close to the TSS to be trimethylated enough to allow allosteric long-
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range spreading. For a switch from PcG-target-like to active-like profiles, a rapid, progressive

wave of demethylation is visible around TSS. For larger distances, the kinetics is slowed down

due to the allosteric spreading of the few PRC2 bound at a basal, background level at TSS

which is still significant during a short time period just after the switch.

Discussion and conclusion

In this work, we developed a model which accounts for the recruitment of HMEs at a domain

of interest and then determines the histone modification levels as a consequence of a complex

competition between the spreading and erasing capacities of these HMEs. In the light of rich

quantitative data available from recent experiments, we picked up the case of H3K27 modifica-

tions in mESCs which allows, by modeling one residue, to investigate Polycomb-repressed,

active and bivalent genes at the same time. By integrating key mechanistic details like the

reader-writer capacity of PRC2 and experimental data of HME occupancy (Fig 1), this frame-

work allowed us to analyze different conditions under one umbrella.

In particular, we inferred model parameters using data from WT and mutant conditions

(EZH1/2 DKO, EZH2 KO, UTX KD) around PcG-target genes (Fig 2). We found that, to

reach the repressive H3K27me3 state, the me2 to me3 transition was the limiting time step

[50]. Our strategy also highlights the importance of looking at the full density profiles and

methylation valencies around TSS (or nucleation sites) to efficiently estimate the spreading

activity of PRC2. In particular, we estimated that the ‘writing’ efficiency of PRC2 is boosted by

5- to 10-fold when bound to H3K27me3 histones [44].

Our analysis suggested that such long-range, enhanced mechanism drives a transition

between a low and high me3 regime and is essential for maintaining a proper H3K27me land-

scape (Fig 3A). The sigmoidal shape of this transition suggests that the epigenetic landscape

could be sensitive to variations in the spreading efficiency [9]. While this may be advantageous

for WT embryonic cells that are plastic and may need to differentiate rapidly following devel-

opmental cues, perturbations of this key allosteric capability may have deleterious impacts on

gene expression. For example, gene deregulation in pediatric gliomas is associated with a loss

of the EZH2 allosteric stimulation, mediated by the interactions between PRC2 and the onco-

histone H3K27M or the oncoprotein EZHIP [71].

While the model was parameterized using average data around PcG-target genes, it was

able to predict semi-quantitatively the H3K27 densities around individual PcG-target genes,

but also around active and bivalent genes, by only plugging in the corresponding HMEs pro-

files (Fig 4). A systematic analysis of the role of HME recruitment (Fig 5A) allowed us to char-

acterize the competition for epigenetic control between active and repressive factors. We

showed that genes can be categorized as repressed or active depending on the levels of recruit-

ment of activators and repressors. In particular, we observed that PRC2 binding at promoters,

even at mild degrees, is essential to avoid spurious transcription by increasing the level of

P300/UTX recruitment needed for transcriptional activation [14,34]. Activation of PcG-target

genes should be necessarily accompanied by a significant decrease in PRC2 binding via, for

example, the competition with activators for the binding at promoters [17,72]. Moreover,

looking at the consistency between the predicted category of expression (silenced, active) and

the observed one may be used to identify genes that are under the direct control of the H3K27

marks and associated HMEs.

Beyond the ‘static’, average description of H3K27 profiles around TSS, the model can be

used to predict the dynamics of maintenance or establishment of the epigenetic landscape

(Figs 5C and 6). In perfect agreement with experiments [61,62], we observed that the (re)for-

mation of H3K27me3 domains de novo or after replication is a slow process in cycling mESCs.
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This indicates that regulation of the cell cycle length during embryogenesis for example may

also impact the stability and plasticity of the epigenetic landscape [17,69] (Fig 3B). We showed

that the reader-writer capacity of PRC2 strongly influences such dynamics at PcG-target

genes. Simply put, PRC2 which is recruited at promoters, first tri-methylates histones H3K27

at these nucleation sites, and then, thanks to allosteric activation, can tag more distal sites and

spread methylation. The initial presence of H3K27me3 thus accelerates this process. This sug-

gests that defects in partitioning of maternal H3K27me3 histones between the leading and lag-

ging daughter strands [63,64] may generate asymmetries that may propagate to further

generations as the H3K27me3 recovery dynamics is slow [73].

Previous generic models of epigenetic regulation [8–11,17] suggested mathematically that

the maintenance of a robust and plastic epigenetic state may be associated with bistability that

emerges from the self-propagation capacity of some epigenetic marks [8,9]. Here, we pro-

posed, in line with recent experiments for the PcG system [6,32,74], that robustness is associ-

ated with the stable recruitment of HMEs at specific nucleation sites coupled to the long-

range, allosterically-boosted spreading capacity of PRC2. As it is, our model cannot lead to

mathematical bistability and does not support a self-sustainable, epigenetic memory: in our

framework, PcG-target-like repression and bivalency are not representative of a stable state

and of a rapidly-switching state, respectively, in a bistable regime [16], but rather correspond

to a bimodal and a highly fluctuating state, respectively (S11 Fig). Interestingly, recent studies

[32,75] showed that mESCs did not indeed have ‘memory’ as gene expression and H3K27 pat-

terns are fully restored at their initial WT levels after the full removal of H3K27me3 (by remov-

ing PRC2 activity) followed by re-expression of PRC2.

Compared to the few other explicit models of PcG regulation in mammals [14,19,26], our

framework also integrates a spreading process in competition with antagonistic erasing and

activating processes, but the mechanistic nature of spreading differs. Chory et al [26] did not

account for the allosteric enhancement of PRC2 and hypothesized that spreading from the

nucleation site occurs via histone exchange between nearest-neighbor (NN) nucleosomes.

Berry et al [14] and Holoch et al [75] considered the allosteric boost and that any H3K27me3

histone can spread methylation to its NN sites, allowing bistability to emerge. In both works,

in addition to the self-propagation, ‘reader-writer’-like capacity of PRC2, they also considered

explicitly another feedback loop where transcription promotes demethylation (e.g., via an

increase in histone turnover or via the recruitment of demethylase) and methylation inhibits

transcription. In our framework, the effect of transcription/active states on the demethylation

dynamics is also effectively integrated but as an open loop since the profile of the demethylase

UTX is an input of the model and is highly correlated to p300 occupancy and to the gene tran-

scriptional category. In terms of spreading, our formalism is closer to Erdel et al [15] that mod-

eled H3K9me3 regulation in S. pombe from the methylation long-range activity of enzymes

bound at a nucleation site.

In addition to the richness of available datasets, by modeling H3K27 regulation in mESCs, we

were hoping that the high plasticity of these cells would allow us to explain their epigenetic land-

scape by simply focusing on main, primary mechanisms while neglecting a priori secondary

effects. Our good description of the H3K27 profiles in different conditions around PcG-target

genes and, to a lesser extent, around active and bivalent genes validated our approach. However,

our predictions also contained several discrepancies, suggesting missing ingredients that may

improve the description of H3K27 regulation in mESCs but also in more differentiated cell types.

A strong hypothesis that we made is that H3K27 profiles are only readouts of the HME

occupancies via a complex network of interactions, but they do not feedback on the binding of

HMEs or on the model parameters like UTX activity [47] or the histone turnover rate that may

be impacted by transcription [14,26,76,77]. For example, the PRC2 ‘reader’ subunit EED is
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known to interact with H3K27me3 histones [44]. We assumed that such interaction was only

relevant at nucleation sites to enhance EZH2 activity, but it may also lead to the recruitment of

PRC2 at more distal sites and allow the self-propagation of the H3K27me3 mark [67]. We

expect however such an effect to be weak in mESCs as the profile of H3K27me3 around TSS is

much larger than the PRC2 binding density (Fig 2H and 2I) and a significant self-propagation

would have led to profiles with more similar shapes. To account for such feedback, one would

need to model explicitly the binding and unbinding of HMEs [18]. This would allow also to

describe in more detail the role of PRC1 variants in nucleation and maintenance [35–37] or

the competition for the binding of antagonistic HMEs around the same site [17].

To perform the parameter inference, we assumed that, in the different mutant strains,

except the corresponding ‘mutated’ parameters that were set to zero (e.g., R = 0 in EZH2 KO),

all the other parameters were not perturbed. However, changes in gene expression occurring

in these cell lines [30] may have potentially modified the concentration or activity of regulatory

proteins and thus may have impacted the other parameters.

Another simplification made in our work was to only model H3K27 modifications. While

this might be sufficient to describe the regulation of PcG-target genes, a more accurate descrip-

tion of active and bivalent genes may require accounting for other ‘active’ modifications like the

methylations of H3K4 and H3K36 by Trithorax-group proteins [16,61,78] that may interfere

with H3K27me states [78]. Our model also does not explicitly account for the presence of his-

tone variants at gene promoters like H2A.Z or H3.3 that may promote or impair respectively

PcG regulation [79] and more generally for other mechanisms or modifications modulating the

local chromatin structure and thus potentially interfering with HME binding or activity.

In our formalism, the long-range spreading of methylation results from 3D contacts

between nucleation and distal loci. We have considered a simple, generic shape to describe

genome folding in which such contacts were dependent only on the genomic distance (P3D(i,j)
~1/|i−j|). However, the model can be run for any Pi,j matrices to account for specific locus-

dependent organization, for example, to explain why H3K27me3 profiles around PcG-target

genes in more compact regions are more extended (S12 Fig). Moreover, we also assumed that

the 3D organization was fixed and not affected by the local epigenetic landscape. However,

PRC1, that binds to H3K27me3, may form condensate [45,80–82], the so-called Polycomb

bodies, and may subsequently impact the local 3D organization of the locus [83,84], an

increased compaction that may in turn facilitate spreading [85–87]. Accounting for this posi-

tive feedback loop between long-range spreading and 3D chromosome organization may

allow a better characterization of the role of genome folding in epigenetic regulation [88,89].

To conclude, the ideas and formalism developed here are general in nature and are adapt-

able to other cell types or epigenetic systems. In particular, it would be interesting to investi-

gate the generality of the inferred parameters for more differentiated cells where H3K27me3

domains are usually more extended around PcG-target genes than in mESCs. It would allow

to understand if these changes are solely due to differential HME binding, to modifications of

rates like histone turnover [76,90] or to some unconsidered mechanisms as discussed above.

More generally, our approach represents a first step towards a quantitative description of PcG

regulation in various cellular contexts where ‘secondary’ effects may be integrated step-by-step

to better estimate their importance in normal or disease contexts.

Materials and methods

ChIP-seq data analysis

We collected the raw Chip-seq data of various histone modifying enzymes (SUZ12, p300,

UTX) and of H3K27-me3/me2/me1/ac marks from various sources as listed in Table 2.
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Corresponding fastq files were imported in the Galaxy environment [91] and mapped using

bowtie2 [92] to the mouse genome (mm9). For Chip-seq data with spike-in control, reads were

mapped to the combined mouse + drosophila genomes (mm9+dm6). After removing the

duplicates and sorting the bam files using samtools [93], reads were normalized by the total

number of mm9 mapped reads for normal Chip-seq and by the one of dm6 for Chip-seq with

spike-in [94]. While utilizing all of these tools, we made sure that the same settings as in the

original papers were used. To analyze the Chip-seq data, we first used bamcoverage from the

deepTools 2.0 suite [95] to generate genomic profiles at a binning of 50bp. Then, to make

quantitative comparisons between different histone modification levels, each profile was fur-

ther normalized as in [26], using R, by dividing each bin value by the maximal value of the bin

count over the genome, this maximum being estimated after removing outliers (bins outside

the quantile range (0.1%,99.9%)). Normalized average profiles around TSS for PcG-target,

bivalent and active genes were computed from the matrix files given by computeMatrix (deep-

Tools 2.0) [95] for each gene list. The gene categories (PcG-target, bivalent, active) were

directly taken from [26], in which Chory et al clustered genes using k-means based on

CATCH-IT, RNA-seq, H3K4me3, H3K9me3, H3K27ac/me1/me2/me3 data.

The above method was used for normal ChIP-seq data except for the UTX/JMJD3 inhibited

experiment (UTX-KD) obtained with MINUTE-ChIP [33]. In this case, the normalized bigwig

file was directly sourced and fed to computeMatrix. Different from normal Chip-seq or Chip-

seq spike-in experiment, the reads are normalized with total mapped reads of input to evaluate

the input normalized read count (INRC). Then, the INRC at PcG-target genes is further scaled

with the average peak density to approximate the actual density of H3K27me3 at PcG-target

genes in UTX/JMJD3 inhibited mESCs.

Description of the stochastic epigenetic model

Mathematical formulation of the kinetic transition rates. The dynamics of the epige-

netic state is driven by kinetic rates accounting for the main features of the model described in

the main text:

• Addition of one methyl group to histone i to reach state mex (x2{1,2,3}) is governed by (me0

� u)

mex� 1ðiÞ ! mexðiÞ ¼ kmex
csuz12ðiÞ þ �mex

X

j
P3Dði; jÞcsuz12ðjÞdj;me3 ð1Þ

kmex
csuz12ðiÞ represents the local nucleation of the mex (x2{1,2,3}) state with kmex

the corre-

sponding rate and ψsuz12(i) the density of bound PRC2 at locus i. Practically, ψsuz12(i) is given

Table 2. List of Chip-Seq data used in this study.

Antibody Cell line and perturbation Experiment Source

H3K27me3/me2/m1/ac Wild type mESCs-2i Chip-seq Spike-in GSE116603

SUZ12 Wild type mESCs-2i Chip-seq

H3K27me3/me2/m1 EZH2KO mESCs-2i Chip-seq Spike-in

SUZ12 EZH2KO mESCs-2i Chip-seq

H3K27ac EZH1/2 DKO mESCs-2i Chip-seq Spike-in

p300 Wild type mESCs-Serum Chip-seq GSM2417169

UTX Wild type mESCs-Serum Chip-seq GSM2575693

H3K27me3 UTX/JMJD3 inhibited mESCs-2i MINUTE-ChIP (calibration experiment) GSM3595377

https://doi.org/10.1371/journal.pcbi.1010450.t002
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by the normalized Chip-Seq profile of Suz12 (see below). The right part in Eq 1 describes the

long-range, allosteric spreading capacity of PRC2 with �mex
the corresponding enzymatic activ-

ity, δj,me3 = 1 if histone j is trimethylated (= 0 otherwise) and P3D(i,j) the probability of contact

between two histones i and j. To simplify, we do not account for the locus-specificity of P3D(i,j)
and assume that it only depends on the genomic distance |i−j| between i and j. Analysis of

experimental Hi-C data showed that, in average, P3D(i,j)~1/|i−j|λ, characteristic of the poly-

meric nature of chromatin [96]. In our simulations, we choose λ = 1 in accordance with Hi-C

data in mESC [97].

• Removal of one methyl group to a mex histone (x2{1,2,3}) at position i is driven by:

mexðiÞ ! mex� 1ðiÞ ¼ gmecUTXðiÞ ð2Þ

with γme the corresponding demethylation rates and ψUTX(i) the density of bound UTX at

locus i that we extracted from the normalized ChIP-seq data.

• Addition of acetylation at histone i follows the propensity:

uðiÞ ! acðiÞ ¼ kaccP300ðiÞ ð3Þ

with kac the acetyltransferase activity of p300 and ψP300(i) the density of bound p300 at locus i
that we extracted from the normalized ChIP-seq data.

• Removal of acetylation at histone i is given by

acðiÞ ! uðiÞ ¼ gac ð4Þ

with γac = 0.6 h−1 the uniform deacetylation rate.

• Histone turnover leads to the loss of the current histone state replaced by a ‘u’ state:

XðiÞ ! uðiÞ ¼ gturn ð5Þ

with X2{ac, me1, me2, me3} and γturn = 0.03 h−1 the uniform turnover rate.

• DNA replication occurs every T = 13.5 h. During this periodic event, the state of each histone

can be lost with a probability ½ and replaced by a ‘u’ state.

Relation between the nucleation and spreading rates. In the epigenetic model (see

above), a PRC2 complex bound to locus i has a local (nucleation) activity with rates kmex
and

may have, if i is trimethylated, a long-range activity on any locus j with rates �mex
P3Dði; jÞ (Eq

1). Actually, this last term represents the allosterically boosted activity of PRC2 ð�mex
�

F � kmex
Þ times the probability P3D(i,j) for PRC2 in i to contact j in 3D with F the fold-change

of PRC2 activity due to allostery. Simple polymer physics arguments lead to P3Dði; jÞ �
ffiffiffiffiffiffiffiffi
6=p

p
ða=dijÞ

3
with a the typical 3D ‘capture distance’ of PRC2 and dij�d0|j−i|λ/3 the average

distance between loci i and j. Therefore R � �mex
=kmex

¼ F
ffiffiffiffiffiffiffiffi
6=p

p
ða=d0Þ

3
is independent of x.

Assuming that a~10 nm the typical size of PRC2 complex [98] and dij~100 nm for 10-kbp (|j
−i|~100 histones) genomic distance [99] (i.e., d0~22 nm), F~8×R.
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Simulations of the model. For given parameters (Table 1) of the epigenetic model and for

given profiles for Suz12, p300 and UTX (Fig 1B), the corresponding stochastic dynamics (S6

Fig) of the system was simulated using a home-made Gillespie algorithm [100] implemented

in Python 3.6 (S1 Data) that is available at https://github.com/physical-biology-of-chromatin/

PcG-mESC. All simulations were initialized to a fully unmodified state (‘u’ state for each his-

tone) and run long enough to reach a periodic steady-state, independent of the initial configu-

ration. For data in Figs 2, 3, 4 and 5, 32 independent trajectories per parameter set were

simulated over 25 cell cycles to ensure the system has reached a periodic steady-state. Predicted

average profiles of H3K27ac/u/me1/me2/me2 correspond to the probability for a given locus

to carry a given mark in an asynchronous cell population (i.e., averaged over time and trajecto-

ries) at steady state. For data in Figs 5C and 6, 500 independent trajectories were simulated

over 100h. In Fig 5C, the asynchronized population was first evolved for a given recruitment

condition (α;β) (see below) until steady state before switching to another condition at a given

absolute time (t = 50h). In Fig 6A (cell cycle dynamics), average proportions along the cell

cycle for each mark are given for a synchronized cell population (i.e., averaged over trajectories

and over various cell cycles) that has reached a periodic steady-state. In Fig 6C–6E, average val-

ues correspond to a population of asynchronized cells (i.e., at a given absolute time, different

trajectories may correspond to different relative times along the cell cycle) for which we

tracked the replacement of histones by turnover or dilution from a given absolute time

(t = 50h). In addition, for Fig 6G and 6H, the asynchronized population was first evolved in a

EZH2i-like situation (�mex
¼ 0) until steady state before being switched to a WT-like situation

at a given absolute time (t = 50h).

Profiles of HMEs used in the simulations. To simulate the average epigenetic landscape

around PcG-target, active or bivalent genes in 2i condition (Figs 2–4), we directly used the average

normalized Chip-Seq profiles of p300, UTX and SUZ12 around TSS for each gene category (S1

Fig), as described above. Note that SUZ12 profiles have been well measured in 2i condition but

p300 and UTX are taken from serum condition experiments (Table 2). However, we assumed

that p300 and UTX profiles are also valid for the 2i condition for all gene categories.

For predictions around single genes (Fig 3D), the noisy normalized Chip-Seq profiles (50

bp-binning) were smoothed out with a moving average over a 300bp-long window.

To investigate the interplay between the recruitment strengths of p300/UTX and PRC2 (Fig

5), we first fitted the average HME profiles in WT (S1 Fig) by Gaussian-like functions:

cmexp½� ði � i0Þ
2
=ð2s2

0
Þ� þ cb with ψb the background level, ψm the height of the binding peak

from background, i0 the position of the peak and σ0 the typical width of the peak. Then, we

predicted the average H3K27 proportions for hypothetical genes characterized by a Suz12/

PRC2 profile cSuz12ðiÞ ¼ a cm;Suz12ðPcGÞexp½� ði � i0;Suz12Þ
2
=ð2s2

0;Suz12
Þ� þ cb;Suz12, a p300 profile

cp300ðiÞ ¼ b cm;p300ðAct:Þexp½� ði � i0;p300Þ
2
=ð2s2

0;p300
Þ� þ cb;p300 and a UTX profile cUTXðiÞ ¼

b cm;UTXðAct:Þexp½� ði � i0;UTXÞ
2
=ð2s2

0;UTXÞ� þ cb;UTX where ψm,Suz12(PcG) is the amplitude

measured around PcG-target genes and ψm,p300/UTX(Act.) around active genes, α and β are

two multiplicative factors allowing to vary the amplitudes of the HME profiles around TSS.

Here, for simplicity, we assumed that p300 and UTX evolved with the same factor β. For exam-

ple, WT PcG-target gene in 2i condition corresponds to (α;β)�(1;0.3) and active genes to (α;

β)�(0;1).

Parameter inference

To fix the remaining free parameters of the model, we develop a multi-step inference strategy

based on the different perturbation experiments (EZH1/2DKO, EZH2KO, WT and UTXKD)
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from [30,33]. To be self-consistent and potentially smooth out sequence-specific biases that

may arise in ChIP-seq experiments, the fitting was carried out exclusively using the average
experimental profiles around PcG-target genes.

Note that we normalized the ChIP-seq data in EZH1/2DKO, EZH2KO and WT (see above)

with a method developed in [26] that allows quantitative relative comparisons between H3K27

profiles. However, we want to make it clear that these ChIP-seq profiles cannot simply be

interpreted as absolute probabilities of being modified but rather as being proportional to such

probabilities. That is why, most of our inference scheme is based on qualitative fits of the

methylation valencies around TSS (see below). The only exception is the MINUTE-ChIP data

in UTXKD (see above) that, after normalization, was shown to be representative of the true

density of H3K27me3 histones over the genome [33] under the assumption that, in UTXKD,

in absence of demethylase and demethylase-driven activation signals, PcG-target genes reach

their maximum possible H3K27me3 levels.

Acetylation rate. In EZH1/2 DKO cells, the epigenetic model becomes a two-state model

between the ‘ac’ and ‘u’ states since methylation is not possible. In this simple case, the proba-

bility of being acetylated at position i is given by

PacðiÞ ¼ kaccp300ðiÞ=½kaccp300ðiÞ þ gac þ gturn þ logð2Þ=T� ð6Þ

The p300 ChIP-seq density ψp300 for EZH1/2 DKO cells was not available, so we used the

wild type p300 occupancy with a correction factor. We first fitted the WT profile by a Gauss-

ian-like function (full line in Fig 2B), c
WT
p300
ðiÞ ¼ cmexp½� ði � i0Þ

2
=ð2s2

0
Þ� þ cb, with ψb =

0.1196 the background, non-specific binding level of p300, ψm = 0.1666 the specific maximal

increase of binding at the peak, i0 = −0.5438 the position of the peak and σ0 = 5.1875 the typical

width of the peak. Assuming a uniform difference in p300 occupancy between WT and DKO

situations, we model the DKO p300 profile as c
DKO
p300
ðiÞ ¼ cmexp½� ði � i0Þ

2
=ð2s2

0
Þ� þ acb with

α<1 the correction factor. Using this profile in Eq 6 and minimizing a chi-squared score

between model predictions and experiments (Fig 2C), we can infer kac = 1.03 h−1 and α = 0.6

(see also S13 Fig).

(De)methylation rates. Inference of methylation-related parameters follows an iterative

multi-steps strategy as described in the main text (see also S2 Fig).

1. Ratios r13� kme1/kme3 and r23� kme2/kme3 are fixed to arbitrary values.

2. The absolute nucleation rate kme3 is initialized to a random value.

3. In our model, EZH2 KO cells correspond to an epigenetic system without spreading

(�mex
¼ 0). For various values of γme, we simulated this situation using the SUZ12 Chip-seq

density measured in EZH2 KO by Lavarone et al [30]. We could not find the UTX/p300

occupancy of EZH2KO cells in literature, so wild type UTX/p300 occupancy was used. At

this point, we do not see any indication that knockout of EZH2 will significantly alter the

presence of UTX/p300 occupancy for PcG genes. As normalized Chip-seq densities are

more pertinent in terms of relative comparison, we fixed the value of γme that is qualitatively

consistent with the methylation valency observed around the promoter of PcG-target genes

in EZH2 KO cells, i.e., the profile of me2> profile of me3> profile of me1 at TSS (Fig 2F).

4. Using wild-type cells data, we then fixed the spreading rates �mex
, or more exactly the ratio

R ¼ �mex
=kmex

. Again, estimation of R was based on capturing the methylation valency at

PcG-target genes rather than absolute Chip-Seq density, such that H3K27me3 is prevalent

in the large regions around TSS’s and eventually overtaken by H3K27me2 at ~5 (±0.5) kb

from TSS (Fig 2I).
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5. At this point, all parameters have been fixed (kme1/me2/me3) or inferred (γme, R). We used

MINUTE-ChIP experiments for UTX inhibited cells to validate these parameters. The cor-

responding H3K27me3 experimental profile has been calibrated such that it quantitatively

corresponds to the probability that H3K27 is trimethylated [33] (see above) and can there-

fore be directly compared to model predictions. We simulated these cells with γme = 0 and

neglecting the acetylation pathway considering that UTX is a stimulant for p300 recruit-

ment [46]. By keeping R to the inferred value in step 4 and r13 and r23 to the imposed values

in step 1, we corrected the kme3 value to minimize a chi-squared distance between predic-

tions and experiments.

6. Steps 3 to 5 are repeated until convergence (S2 Fig) or failure of the fitting process when

steps 3 & 4 cannot capture the experimental methylation valencies.

7. Steps 2 to 6 are repeated for different initial values of kme3 (S3 Fig). We found that, in

absence of failure, the strategy always converged to the same final parameter values.

8. Steps 1 to 7 are repeated for different values of r13 and r23 (S1 Table). We limited the scan-

ning of these ratios to integer values between 1 and 9 with setting r13�r23 as suggested by

the in vitro experiment [50].

Correlations of the local epigenomic state

In Fig 3C, the correlation Ci,j(x,y) between the state x of locus i and the state y of locus j (x,y2
{ac, u, me1, me2, me3}) is given by the Pearson correlation between the random variables δi(x)

and δj(y) where δi(x) = 1 if the H3K27 state of locus i is x (= 0 otherwise) in the current simu-

lated configuration:

Ci;jðx; yÞ ¼ ð< diðxÞdjðyÞ > � < diðxÞ >< djðyÞ >Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
< diðxÞ >< djðyÞ > ð1 � < diðxÞ >Þð1� < djðyÞ >Þ

q

with<.> the time and population average of the given random variable.

Phase diagram driven by differential HMEs recruitment

The phase diagram given in Fig 5A was obtained by systematically varying α (from 0 to 1.4

every 0.2) and β (from 0 to 2 every 0.2), the factors controlling the amplitudes of the PRC2 and

p300/UTX profiles respectively (see above) and by computing the corresponding average

H3K27 profiles. For each pair of values, we estimated the predicted mean proportion �Px of

each H3K27 modification x2 {ac,u,me1,me2,me3} in a ±2.5kbp window around TSS (S10 Fig).

From this, we defined two regions characterized by a methylation valency qualitatively similar

to the experimental valency observed in WT for PcG-target (me3>>me2>me1) and active

(me1>me2>>me3) genes. More precisely, the PcG-target-like region was defined such that

�Pme2 >
�Pme1 and �Pme3 > 1:5 �Pme2 and the active-like region by �Pme1 >

�Pme2 and �Pme2 > 1:5 �Pme3.

The parameters that did not fall into these two regions form a third region that include methyl-

ation valencies compatible with bivalent genes.

Data extraction from SILAC experiments

Model predictions on the dynamics of H3K27 modifications (Fig 6) are compared to experi-

mental data obtained using the SILAC and mass spectrometry technologies that measure the

global, genome-wide proportions of a given modification in different pools of histones [61,62].
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Data in Fig 6B on the cell cycle dynamics of the different marks in all histones were

obtained by averaging the proportions a given mark in the pools of old (light medium) and

new (heavy medium) histones at different times after the release into S phase (which corre-

sponds also to the moment of medium change) extracted from Figs 3E and S4C of [62]. Here,

we arguably assumed that after replication and during one cell cycle, the pools of old and new

are of similar sizes, as also done in Fig 3A of [62].

Data in Fig 6D and 6F on the dynamics of the marks in new and old histones were obtained

from Figs 1D-F and S1A of [61]. The dynamics in the new histone pool were directly extracted

from Fig 1F, left (Generation 3). The dynamics in the old histone pool were computed as the

weighted average of the Generation 1 (extracted from Fig 1E, left) and Generation 2 (extracted

from Fig 1D, left) data. The weight for each generation at a given time was taken proportional

to the percentage of Generation 1 or 2 histones among all the histones (extracted from Fig S1A

of [61]).

Data in Fig 6G (bottom) on the dynamics of the marks in all histones after the release of the

EZH2 inhibitor were directly extracted from Fig S3C of [61].

In Fig 6A and 6B, to correct for differences in cell cycle lengths between simulations that

are made on mESC and experiments made on HeLa cells, time after replication is normalized

by the corresponding cell cycle length (T = 13.5h for mESC simulations, T = 24h for HeLa

cells).

In Fig 6C-H, to correct for differences in global histone turnover rates between simulations

and experiments, time is normalized by the corresponding effective histone decay time te that

captures the combined effect of direct histone turnover and of dilution after replication in a

population of unsynchronized cells. te is equal to the characteristic time of decay of the propor-

tion of ‘old’ histones among all histones and can be obtained by fitted the corresponding

curves by exp(−t/te). For simulations, we estimated te = 12.7 h. For experiments, we obtained te
= 28.6h by fitting the time-evolution of the sum of the proportions of Generation 1 and of

Generation 2 extracted from Fig S1A of [61].
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to a satisfying fit of the experimental profiles of H3K27 modifications around PcG-target

genes (S3 Fig). Failure of the combination r13 = r23 = 4 is illustrated in S4 Fig.
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S1 Fig. HMEs profiles. Average Chip-seq densities (normalized) of SUZ12, p300 and UTX of

PcG-target, bivalent and active genes around the TSS in WT condition.

(TIF)

S2 Fig. Iterative inference strategy. For fixed values of r12 and r23, an initial guess for kme is

used to initialize an iterative inference cycle where a parameter inferred at one step feeds (red

arrows) the next inference step based on various datasets (black arrows): EZH2KO data to

infer γme, WT for R and UTXKD for kme (see main text).

(TIF)

S3 Fig. Parameter inference for parameter r13 = 3, r23 = 3. The steps for fixing R, kme3 and

γme are illustrated. (A,D,G) H3K27 methylation are best fitted to EZH2 KO experimental pro-

file by fixing γme for a particular kme3. (A,D,G) Then, H3K27 methylation are best fitted to WT
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experimental profile by fixing R for a fixed pair kme3, γme. (C,F,I) Finally the fixed parameters

kme3, γme, R are tested if the H3K27me3 profile fits experimental density.

(TIF)

S4 Fig. Parameter inference for parameters r13 = 4, r23 = 4. With these parameters, simulated

H3K27 methylation profiles of EZH2 KO never capture the experimental methylation valency

at promoters (Fig 2F of the main text). Top panel is for kme3 = 0.9 h−1 and explores γme to find

a suitable kme3, γme pair to qualitatively capture methylation valency of EZH2KO. Bottom

panel explores γme for kme3 = 1.8 h−1.

(TIF)

S5 Fig. Systematic variation of model parameters. Average predicted proportion of a given

mark around PcG-target genes as a function of the different model parameters, all other

parameters fixed to WT values (red dotted lines). Panels from left to right correspond to

regions close or far from TSS. For kme3, we also varied kme1 and kme2 by keeping r13 and r23

constant to WT values (see Table 1 of the main text).

(TIF)

S6 Fig. Stochastic dynamics. Kymograph representing a typical simulation trajectory at peri-

odic steady-state around PcG-target genes with WT parameters obtained with the Gillespie

algorithm. The local epigenetic state fluctuates stochastically following the kinetic rates given

in the text.

(TIF)

S7 Fig. Predictions of single PcG-target genes. Predicting the H3K27 modification landscape

at single genes in PcG-target domains. Profiles of gene Tcfap2b (left column), Kcnq5 (middle

column), and Pcdh18 (right column). (First row) Input SUZ12 occupancies of three specific

genes. (Second row) Chip-seq H3K27 methylation and acetylation for corresponding genes.

(Third row) Simulated H3K27 modification profile of the respective genes.

(TIF)

S8 Fig. Predictions of single active genes. Predicting the H3K27 modification landscape at

single genes of active domain. Profiles of gene D11Wsu99e (left), Fam168b (middle) and Xpo5
(right). (First row) Input SUZ12 occupancies of three specific genes. (Second row) Chip-seq

H3K27 methylation and acetylation for corresponding genes. (Third row) Simulated H3K27

modification profile of the respective genes.

(TIF)

S9 Fig. Predictions of single bivalent genes. Predicting the H3K27 modification landscape at

single genes of bivalent domain. Profiles of gene Scl6a1 (left), Gm106 (middle) and Xkr4
(right). (First row) Input SUZ12 occupancies of three specific genes. (Second row) Chip-seq

H3K27 methylation and acetylation for corresponding genes. (Third row) Simulated H3K27

modification profile of the respective genes.

(TIF)

S10 Fig. Competition between HMEs. We varied the strengths of recruitment of p300 (x-

axis) or Suz12/PRC2 (y-axis) around TSS for WT parameters. For each condition, we com-

puted the average proportion of each H3K27 mark in a ±2.5kbp window around TSS. The cor-

responding stacked bar charts are given in the subplot (blue: me3, green: me2, magenta: me1,

orange: ac, white: u). This allows us to define qualitatively two regions depending on the rela-

tive methylation valency: a PcG-target-like region (blue area) with me3>>me2>me1 and an
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active-like region (orange area) with me1>me2>>me3.

(TIF)

S11 Fig. Distribution of H3K27 states. Probability distribution functions for the proportion

of a H3K27 state inside the region TSS±2.5kbp in a population of unsynchronized cells for

three values of HME recruitment strengths (Fig 5A of the main text), one in the Active-like

region ((α;β)�(0;1)), one with a bivalent-like inputs ((α;β)�(0.4;0.5)) and one in the PcG-tar-

get-like region ((α;β)�(1;0.3)).

(TIF)

S12 Fig. Relation between compaction and H3K27me3 profiles. For each PcG-target gene,

we estimated a compaction score that translates the density of 3D contacts around this gene.

More precisely, we took the Hi-C data of mESCs at 10kbp resolution from (Bonev et al, Cell,

171: 557–572.e24, 2017) that we distance-normalized (the Hi-C value of each bin (i,j) is nor-

malized by the average contact frequency at genomic distance |j-i|) to obtain the so-called

observed-over-expected contact matrix OE. For a gene g with a TSS at position ig along the

genome, we define its compaction score as the log2 of the median value of the OE matrix in a

±100kbp window around the TSS:

log2½medianfOEððig � 100kbpÞ : ðig þ 100kbpÞ; ðig � 100kbpÞ : ðig þ 100kbpÞÞg�. The distri-

bution of compaction scores in the ensemble of PcG-target genes is given in panel (A). We

divided this ensemble into three subgroups of the same size: Q1 with low compaction scores,

Q2 with intermediate and Q3 with high scores (A). Panel (B) shows the average H3K27me3

profiles around TSS for each subgroup (computed as the other average H3K27 profiles in the

main text). The more compact the gene is the more extended the profile is.

(TIF)

S13 Fig. Fit of acetylation rate. Experimental and fitted H3K27ac profile for different values

of α. The best fit α = 0.6 is picked for which kac = 1.03 h−1.

(TIF)
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58. Deaton AM, Gómez-Rodrı́guez M, Mieczkowski J, Tolstorukov MY, Kundu S, Sadreyev RI, et al.

Enhancer regions show high histone H3.3 turnover that changes during differentiation. Elife. 2016;5.

https://doi.org/10.7554/eLife.15316 PMID: 27304074

59. Waisman A, Sevlever F, Elı́as Costa M, Cosentino MS, Miriuka SG, Ventura AC, et al. Cell cycle

dynamics of mouse embryonic stem cells in the ground state and during transition to formative pluripo-

tency. Sci Rep. 2019; 9: 8051. https://doi.org/10.1038/s41598-019-44537-0 PMID: 31142785

60. Banaszynski LA, Wen D, Dewell S, Whitcomb SJ, Lin M, Diaz N, et al. Hira-dependent histone H3.3

deposition facilitates PRC2 recruitment at developmental loci in ES cells. Cell. 2013; 155: 107–120.

https://doi.org/10.1016/j.cell.2013.08.061 PMID: 24074864

61. Alabert C, Loos C, Voelker-Albert M, Graziano S, Forné I, Reveron-Gomez N, et al. Domain Model
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