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Abstract: Pancreatic ductal adenocarcinoma is one of the most aggressive solid malignancies 

and is characterized by poor response to current therapy and a dismal survival rate. Recent 

insights regarding the role of cancer stem cells (CSCs) and epithelial–mesenchymal transition 

(EMT) in tumorigenesis have brought further understanding to the field and have highlighted 

new therapeutic targets. CSCs are a distinct subset of cancer cells, with the ability to differentiate 

into other cell types and self-renew in order to fuel the maintenance of tumor amplification. 

Transition of a cancer cell from an EMT leads to increased migratory and invasive properties, 

and thus facilitates initiation of metastasis. EMT is regulated by a complex network of factors 

that includes cytokines, growth factors, aberrant signaling pathways, transcription factors, and 

the tumor microenvironment. There is emerging evidence that the EMT process may give rise 

to CSCs, or at least cells with stem cell-like properties. We review the key pathways involved in 

both of these processes, the biomarkers used to identify CSCs, and new therapeutic approaches 

targeting CSCs and EMT in pancreatic ductal adenocarcinoma.

Keywords: epithelial-mesenchymal transition, cancer stem cells, tumor microenvironment, 

pancreatic ductal adenocarcinoma

Background
Pancreatic ductal adenocarcinoma (PDAC) is one of the major causes of cancer death 

worldwide, responsible for an estimated 227,000 deaths each year. At the time of 

diagnosis, less than 20% of the patients diagnosed with PDAC present with localized 

disease amenable to surgical resection, while 40% present with locally advanced, 

unresectable disease; the remaining patients already suffer from distant metastases.1,2 

Treatment strategies have not succeeded in significantly extending patient survival, 

and clinical outcome has not improved substantially over the past 35 years; the overall 

5-year survival rate remains dismal, at around 5%.3 The ability of PDAC to metas-

tasize in early stages is a primary reason for its lethality. Evidence suggests that this 

process may be mediated by cancer stem cells (CSCs) as well as the ability of cells 

to undergo epithelial–mesenchymal transition (EMT).4 Recent insights regarding the 

role of CSCs and EMT have brought further understanding to the field by identifying 

novel signaling pathways involved in tumorigenesis and tumor progression and have 

highlighted new potential therapeutic targets.

Cancer stem cells
CSCs have been identified as a distinct subset of cancer cells, with unique proper-

ties that differentiate them from the majority of cancer cells comprising a tumor. 
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While unrestrained proliferation and resistance to apoptosis 

are hallmarks of cancer cells, CSCs are distinct in their 

ability to self-renew, differentiate into other cell types, and 

form tumors in immunodeficient mice.5 These properties of 

CSCs fuel the maintenance of tumor amplification and tumor 

mass.6,7 This distinct population was initially identified in 

leukemias, with subsequent identification in solid malignan-

cies of the breast, lung, prostate, colon, brain, head and neck, 

and liver, as well as in PDAC.8–13

Stem cell subpopulations  
in pancreatic cancer
Identification of CSCs is based upon the expression of cell 

surface molecules. These molecules, however, are not uni-

form across tumor types and are the topic of much debate. 

The first subpopulation of pancreatic CSCs was identified 

using knowledge of surface markers based on studies of 

tumorigenic breast cancer cells.14 Li et al identified a sub-

population of cells derived from human tumors that had cell 

surface expression of CD44, CD24, and epithelial-specific 

antigen (ESA) (Figure 1).15 They demonstrated that while 

only 0.2%–0.8% of tumor cells had the CD44+CD24+ESA+ 

phenotype, injection of as few as 500 of these cells formed 

tumors that recapitulated the architecture of human PDAC 

from which they were derived.15 While this phenotype has 

clearly been demonstrated to identify a CSC subpopulation 

in PDAC, the functional significance of these markers is not 

entirely clear. These proteins may facilitate cell–cell interac-

tions, modulate signaling pathways (CD44 promotes c-MET 

activity and inhibits Hippo signaling; ESA upregulates c-myc 

and cyclin A/E) (Figure 1), or they may be a byproduct of 

transcriptional networks regulating the stem-cell properties 

of the cells.16–21

Subsequent studies have demonstrated that CD133+ cells 

isolated from human PDAC tumors were also highly tum-

origenic and resistant to gemcitabine treatment.22  Analysis 

of resected PDAC specimens from 80 patients revealed that 

CD133 expression was associated with a significantly lower 

5-year survival rate (P = 0.0002) compared to tumor speci-

mens that lacked CD133.23 The function of CD133 is not 

known, but it is expressed in non-CSCs as well as CSCs in 

other malignancies.24–27 In normal pancreatic tissue, CXCR4 

and its ligand stromal-derived factor-1 (SDF-1) are neces-

sary for the maintenance of pancreatic ductal cell survival, 

proliferation, and migration during pancreatic organogenesis 

and regeneration.28 In the CSC population, SDF-1 expressed 

on CD133+ cells with high metastatic potential, and it is also 

expressed at the invasive edge of tumors.22 This suggests the 
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Figure 1 eMT signaling pathways and CSC markers in pancreatic cancer.
Notes: (A) Hedgehog, Notch, and wnt signaling promote eMT, and are also active in pancreatic CSCs. (B) CSC surface markers CD44, CD24, and eSA may promote 
cell-to-cell interaction. The c-Met tyrosine kinase receptor binds HGF and is a marker of tumorigenicity. The function of CD133 and ALDH (not shown) in CSC regulation 
is not known.
Abbreviations: ALDH, aldehyde dehydrogenase 1; CSC, cancer stem cell; EMT, epithelial–mesenchymal transition; ESA, epithelial-specific antigen; HGF, hepatocyte 
growth factor.
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existence of two distinct phenotypes of CSCs: stationary 

(eg, residing in the tumor bulk) and migratory (eg, meta-

static cells).

Aldehyde dehydrogenase 1 (ALDH) expression has 

also been shown to identify PDAC cells with stem cell-like 

properties – high tumorigenic potential and characteristics 

of EMT.28 Additionally, ALDH+ cells were identified in 

metastatic lesions arising from primary tumors without 

ALDH expression, and ALDH+ staining of the primary 

tumor was associated with a decreased median survival 

(14 versus 18 months, P = 0.05). In vitro studies have since 

demonstrated that ALDH+ cell populations have significantly 

enhanced tumorigenicity while ALDH+CD44+CD24+ cells 

did not exhibit this property, highlighting the fact that there 

is currently no universal marker that identifies pancreatic 

CSCs.29 The function of ALDH in regulating CSCs is not 

known, but in normal tissues it plays a central role in ethanol 

and cyclophosphamide metabolism as well as in retinoic acid 

biosynthesis.30

Another potential marker of pancreatic CSCs is c-Met, 

a receptor tyrosine kinase for hepatocyte growth factor 

(HGF) that has been shown to promote chemoresistance and 

malignancy (Figure 1).31 Initial work by Li et al based on the 

observation that c-Met is expressed in normal mouse pan-

creatic stem cells led to the discovery that c-Met-expressing 

cells were as tumorigenic as CD44+CD24+ESA+ cells, and 

also more tumorigenic than CD133+ cells.32 Of the various 

subpopulations of cells, they found that CD44+ cells with 

high expression of c-Met had the highest tumorigenic poten-

tial and formed tumors that recapitulated the histology of the 

tumors that they were derived from.

While much attention has been drawn to the markers that 

identify CSCs, the role of signaling pathway alterations and 

the tumor microenvironment in CSC differentiation and func-

tion are also being actively explored. Pathways that mediate 

EMT, such as Notch, Wnt and Hedgehog, also may play a 

role in CSC function and maintenance in PDAC (Figure 2), 

although the mechanisms of these interactions are not entirely 

clear.33–36 Signal transducer and activator of transcription 3 

(STAT3) is a transcription factor that regulates many cellular 

processes, and has been shown to be required for mainte-

nance of stem cell-like characteristics in other cancers, such 

as glioblastoma.37–39 The interactions that occur within the 

tumor microenvironment, however, also have an important 

role in promoting and maintaining tumorigenesis and the 

CSC population. The tumor microenvironment is comprised 

of many different cell compartments, including stellate 

cells, inflammatory cells, endothelial cells, and tumor cells, 

which are themselves a heterogenous population  comprising 

CSCs and more differentiated lineages derived from them. 

One example of the interaction between CSCs and stellate 

cells, also important in embryogenesis, is through Activin 

and Nodal, members of the transforming growth factor β 

(TGFβ) family. CD133+ CSCs express high levels of Activin 

and Nodal, while blockade of the Nodal/Activin receptor 

Alk4/7 reverses the intrinsic chemoresistance to gemcitabine 

observed in this cell population.40 Stellate cells have also been 

demonstrated to produce Activin and Nodal, which results 

in increased invasiveness of CSCs.41 There is clear evidence, 

then, that the CSC niche is but one factor driving treatment 

resistance that characterizes PDAC.

EMT in pancreatic cancer
Transition of a cancer cell from an epithelial to mesenchy-

mal morphology leads to increased migratory and invasive 
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Figure 2 Potential cellular signaling pathways linking to pancreatic CSCs and eMT 
in tumor aggressiveness.
Notes: The cellular signaling crosstalk and regulation of multiple cellular signaling 
pathways, including Notch, wnt, Hedgehog, Src, and STAT3, play critical roles in 
self-renewal of CSCs, eMT, tumor aggressiveness, metastasis, and therapy resistance. 
These signaling pathways’ activation drives two critical tumor-promoting pathways: 
(1) increase in CSC markers and (2) eMT promoting markers. These pathways 
interact with one another, leading to CSC- and eMT-dependent aggressive tumor 
type. Therefore, targeting these signaling pathways could eliminate pancreatic CSCs 
and eMT-type cells, which could lead to better treatment outcomes for patients 
diagnosed with PDAC.
Abbreviations: CSC, cancer stem cell; eMT, epithelial–mesenchymal transition; 
STAT3, signal transducer and activator of transcription 3; PDAC, pancreatic ductal 
adenocarcinoma.
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properties, and thus facilitates initiation of metastasis.42 

This process is utilized in embryonic processes, such as 

gastrulation, in order to allow partial or complete transition 

between epithelial and mesenchymal phenotypes. A key 

feature of EMT is decreased expression of E-cadherin, 

a transmembrane cell adhesion molecule necessary for 

maintenance of intercellular contacts and cellular polarity 

in epithelial tissue, and increased expression of one or more 

of the mesenchymal markers vimentin, fibronectin, and 

N-cadherin. Additionally, the loss of E-cadherin expression 

in PDAC tumors is associated with larger tumors, distant 

metastases, and increased stage.43

We have previously characterized PDAC cell lines as 

sensitive or chemoresistant based on IC
50

 values to chemo-

therapeutics, and also characterized the expression of EMT 

markers within these cell lines.44 BxPC3 cells, which are 

treatment sensitive, express high levels of E-cadherin and 

β-catenin, but have reduced expression of N-cadherin and 

vimentin. MIApaca2 and PANC1, which are more resistant 

cell lines, have increased expression of N-cadherin and 

vimentin and diminished expression of E-cadherin and 

β-catenin, indicating that a mesenchymal phenotype may 

be associated with chemoresistance.

The EMT process is regulated by a complex network 

of factors that includes cytokines, growth factors,  aberrant 

signaling pathways, transcription factors, and the tumor 

microenvironment. TGFβ expression downregulates 

E- cadherin, and platelet-derived TGFβ has been demon-

strated to cause transition to an invasive mesenchmyal phe-

notype with enhanced metastatic capability in vivo.45,46

The Src family of tyrosine kinases plays a key role in 

the development of PDAC. Src is overexpressed in up to 

70% of pancreatic cancers.47–49 Src has been shown to play 

a role in E-cadherin regulation and EMT (Figure 2).50 Src 

activates STAT3 signaling and promotes STAT3 mediated 

tumor progression and communication within the tumor 

microenvironment. Constitutively active STAT3 activates 

the Twist promoter through epidermal growth factor recep-

tor activation and is an important inducer of EMT in cancer 

cells.51 Activation of the Notch pathway decreases E-cadherin 

expression through upregulation of Slug, while Wnt pathway 

activation induces EMT either directly or through TGFβ and 

other pathways (Figure 2).52–54 The Hedgehog pathway is an 

important embryonic pathway that is associated with many 

malignancies, including PDAC.55 Interaction between the 

Hedgehog and EMT pathways results in increased invasion, 

proliferation, and tumor progression, as well as in the promo-

tion of CSCs (Figure 2).53,56–58

The transcription factors Snail, Slug, Twist and ZEB1 play 

a central role in the induction of EMT and downregulation 

of E-cadherin.59 Upregulation of Snail in highly metastatic 

PDAC cell lines mediates inactivation of E-cadherin and 

induces EMT through a transcriptional repressor complex 

containing Snail and histone deacetylase 1 and 2.60 Snail, 

which has high to moderate expression in 78% of PDAC 

specimens, appears to be a highly relevant mediator of 

E-cadherin repression, metastasis promotion, and chemore-

sistance in PDAC.61,62 ZEB1 is a target gene of Snail that 

represses the expression of E-cadherin through binding of 

E-boxes in the promoter region, and also through regulation 

of microRNAs specific for genes relevant in metastasis and 

migration of CSCs.63 Twist1 is an inducer of EMT, and Tsai 

et al demonstrated that while activation of Twist1 increases 

the number of circulating tumor cells, downregulation of 

Twist1 led to increased proliferation and a higher number 

of metastases in an in vivo mouse model of skin cancer.64 

These results indicate that while EMT promotes stem cell-

like behavior and dissemination, reversion to an epithelial 

cell-type may be required to form metastases. Ocana et al 

identified homeobox factor Prrx1 as an EMT activator that 

is coexpressed and cooperative with Twist1, but that also 

suppresses stemness. The loss of Prrx1 was required for 

metastases in vivo, but in this model EMT and stemness were 

uncoupled, thus illustrating the complexity of the relationship 

between EMT and CSCs.65

The tumor microenvironment of PDAC is characterized 

by a dense desmoplastic reaction, also known as stroma, 

which leads to hypoxia and poor tissue perfusion. Hypoxia 

leads to upregulation of hypoxia inducible factor 1α, which 

leads to increased expression of Twist.66,67 Additionally, the 

matrix proteins secreted by pancreatic stellate cells, which 

regulate the fibrotic response, lead to the promotion of 

EMT and may contribute significantly to metastases.68–71 

Rather than passively laying down stromal proteins, stellate 

cells are thought to play an active role in establishing the 

metastatic site, promoting angiogenesis through secretion 

of vascular endothelial growth factor, and promoting self-

renewal of CSC through secretion of HGF, as well as Activin 

and Nodal.72,73

EMT-induced CSCs in pancreatic 
cancer
There is emerging evidence that the EMT program may give 

rise to CSCs, or at least cells with stem cell-like properties. 

As outlined above, CSCs exhibit activation of many path-

ways involved in EMT. In breast cancer, activation of these 
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EMT-related pathways results in increased invasiveness 

and metastatic potential.74 Mani et al were able to induce 

expression of stem cell markers by either conditionally 

overexpressing the EMT-inducing transcription factors Snail 

or Twist, or by exposing the cells to TGF-β1.75 In addition 

to expression of stem cell markers, these cells also adopted 

a mesenchymal phenotype and grew into mammospheres 

more effectively, suggesting that EMT is able to induce 

the characteristics associated with stem cells. This work 

identified the possibility that EMT also may have a direct 

relationship with CSCs, and may induce the CSC phenotype 

and enhance metastatic ability. Rhim et al have since dem-

onstrated that circulating tumor cells, which are thought to 

require EMT to extravasate into the blood stream, have a 

100-fold increase in CD24+CD44+ expression compared to 

the source pancreas.76

Targeting CSCs and EMT  
in pancreatic cancer
Targeting CSCs has been shown to be difficult in other 

malignancies. To evaluate treatment response in chronic 

myeloid leukemia, Graham et al showed in peripheral blood 

samples that even when a significant proportion of divid-

ing cells were killed with chemotherapy, CSCs were able 

to survive and remain viable in a quiescent state to poten-

tially cause relapse at a later date.77 Therapeutic strategies 

do not specifically target populations of cancer cells, but 

rather aim to debulk tumors either through cytotoxicity or 

through targeted inhibition of key signaling pathways. Due 

to the intrinsic chemoresistance of CSCs, monotherapy with 

cytotoxic agents, such as gemcitabine, has actually been 

demonstrated to increase the relative proportion of c-Met+ 

CSCs.32 Newer agents that target pathways or genes that are 

upregulated specifically in CSCs, such as c-MET or Alk-4/7, 

have been shown to reduce the number of CSCs and tumor 

burden in vivo.32,40 Targeting of the stroma with a hedgehog 

pathway inhibitor in addition to cytotoxic gemcitabine 

and targeted inhibition of Alk4/7 resulted in a synergistic 

response in vivo, as defined by progression-free survival and 

enhanced drug delivery.40

Other potential targets include the pathways mediat-

ing EMT, such as Notch, Wnt, Hedgehog, Src, and TGFβ. 

Other compounds, such as Silibinin, target EMT-inducing 

transcription factors, such as Zeb1, directly.78 While there 

are many clinical trials exploring the possibility of targeting 

CSCs and/or EMT-related pathways, this treatment strategy 

is in early stages of development. Other intriguing possibili-

ties include immunotherapy directed against CSC markers, 

such as ALDH, but this is complicated by the fact that many 

of these markers can be found on normal stem cells in the 

hematopoietic system.79

Conclusion
The discovery and characterization of CSCs in PDAC and 

recent advances in understanding the role of EMT and the 

tumor microenvironment have led to a greater understanding 

of tumor behavior and prognosis. Beyond characterization of 

cell surface markers, however, there is still much that remains 

unknown about CSCs, including the mechanisms they utilize 

to maintain their innate chemoresistance. If targeting CSCs is 

to become a viable strategy, then an understanding of the key 

signaling pathways involved in CSC maintenance and activity 

is required. Additionally, understanding the role of EMT in 

maintaining this niche could aid in the design of therapeutic 

strategies. While there is currently no effective treatment for 

PDAC, our increasing understanding of the disease compo-

nents brings hope for new strategies to target the cells and 

processes that make PDAC such a difficult disease to treat.
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