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Abstract

Glycosylation of viral envelope proteins is important for infectivity and interaction with host
immunity, however, our current knowledge of the functions of glycosylation is largely limited
to N-glycosylation because it is difficult to predict and identify site-specific O-glycosylation.
Here, we present a novel proteome-wide discovery strategy for O-glycosylation sites on
viral envelope proteins using herpes simplex virus type 1 (HSV-1) as a model. We identified
74 O-linked glycosylation sites on 8 out of the 12 HSV-1 envelope proteins. Two of the iden-
tified glycosites found in glycoprotein B were previously implicated in virus attachment to im-
mune cells. We show that HSV-1 infection distorts the secretory pathway and that infected
cells accumulate glycoproteins with truncated O-glycans, nonetheless retaining the ability
to elongate most of the surface glycans. With the use of precise gene editing, we further
demonstrate that elongated O-glycans are essential for HSV-1 in human HaCaT keratino-
cytes, where HSV-1 produced markedly lower viral titers in HaCaT with abrogated O-gly-
cans compared to the isogenic counterpart with normal O-glycans. The roles of O-linked
glycosylation for viral entry, formation, secretion, and immune recognition are poorly under-
stood, and the O-glycoproteomics strategy presented here now opens for unbiased discov-
ery on all enveloped viruses.

Author Summary

Information on site-specific O-glycosylation of viral envelope glycoproteins is generally
very limited despite important functions. We present a powerful mass-spectrometry based
strategy to globally identify O-glycosylation sites on viral envelope proteins of a given
virus in the context of a productive infection. We successfully utilized the strategy to map
O-linked glycosylation sites on the complex HSV-1 virus demonstrating that O-glycosyla-
tion is widely distributed on most envelope proteins. Moreover, we used genetically engi-
neered keratinocytes lacking O-glycan elongation capacity to demonstrate that O-linked
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glycans are indeed important for HSV-1 biology as HSV-1 particles produced in these
cells had significantly lower titers compared to wild-type keratinocytes. These tools enable
wider discovery and detailed analysis of the role of site-specific O-glycosylation

in virology.

Introduction

Enveloped viruses contain one or more membrane proteins important for adhesion and entry
to host cells [1]. The majority of envelope membrane proteins are predicted or confirmed to be
covered with glycans with important functions in protein folding, transport, formation of in-
fectious particles, entry into host cells, and shielding from the host’s immune system [2-7]. Nu-
merous studies have addressed the structures and functions of N-linked glycans on membrane
glycoproteins from different viruses [8-13], and N-glycosylation has attracted particular atten-
tion for the human immunodeficiency virus (HIV), where a cluster of N-glycans constitute the
epitope for the 2G12 and other antibodies with broadly neutralizing function [14, 15]. In strik-
ing contrast, information on O-linked glycans and, in particular, where O-glycans are found is
generally missing, which leaves a void in knowledge of the biological functions of O-glycosyla-
tion. This is in spite of substantial evidence suggesting that O-glycosylation is important for
viral infectivity and virus-induced immunomodulation for several viruses [4, 7, 16-18].

Viral proteins destined for the virion surface travel through the host’s secretory pathway
where they hijack the host cell’s glycosylation machinery and get decorated with glycans [19].
Protein glycosylation is controlled by hundreds of glycosyltransferases that reside in the secre-
tory pathway and that, in a non-template fashion, orchestrate the diversity of glycan structures
found on proteins [20]. There is substantial evidence that many viral membrane proteins are
N-glycosylated, although there is surprisingly limited experimental evidence for actual glyco-
sylation sites for many viruses with few exceptions [21, 22]. However, to a large extent the con-
sensus sequence motif NXS/T (X—all amino acids except P) enables reliable prediction of N-
glycosites [23]. There is less evidence for the presence of O-glycosylation (GalNAc-type) on
virus membrane glycoproteins, and this largely relies on the presence of mucin-like sequence
motifs with high density of PST residues. Such are found in e.g. HSV-1 gC [24] and Ebola virus
glycoprotein [25], but recent studies suggest that O-glycosylation is more prevalent in non-
mucin-like regions and often exist as isolated sites or in small clusters [26]. Site-specific O-gly-
cosylation in such isolated or clustered positions may exert co-regulatory functions of basic
processes such as pro-protein processing and ectodomain shedding [27], which may affect
viral fusion protein activation and function [28, 29]. In contrast to N-linked glycosylation that
can be predicted with reasonable certainty our knowledge of O-glycosylation is hampered by
lack of simple consensus motifs for prediction of O-glycosites. O-glycosylation is unique in
being controlled by 20 polypeptide GalNAc-transferases (GaINAc-Ts) that transfer GalNAc to
select Ser, Thr and, possibly, Tyr residues [30]. The initial GaINAc residues are further elongat-
ed, branched, and capped by a large number of different glycosyltransferases in subsequent
processing steps. The large number of GaNAc-T isoenzymes with distinct peptide substrate
specificities and cell expression patterns provides a high degree of differential regulation of O-
glycosylation capacity directed by the repertoire of GalNAc-Ts in a given cell. This unprece-
dented complexity of protein glycosylation adds to the need for direct experimental analysis of
O-glycosylation in the appropriate cellular context to probe biological functions. It is therefore
essential to develop strategies to enable characterization of the O-glycoproteomes of viruses
produced in representative host cells during virus infection.
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Fig 1. Glycopeptide enrichment strategy and glycoprofiling of human embryonic lung (HEL) fibroblasts. (A) A schematic representation of protein
digestion and glycopeptide enrichment strategy for glycoproteomic analysis. (B) Glycoprofiling of mock- or HSV-1 Syn17+ infected (MOI of 10) HEL
fibroblasts fixed and permeabilized at indicated time points. A panel of carbohydrate-specific monoclonal antibodies was used forimmunofluorescent
staining: 3C9 mAb (T structure; Galp1-3GalNAc1a-O-Ser/Thr); 5F4 mAb (Tn structure; GalNAca1-O-Ser/Thr); 3F1 mAb (STn structure; NeuSAca2-

6GalNAca1-O-Ser/Thr). ST structure (Neu5Aca2-3GalB1-3GalNAca1-O-Ser/Thr) was detected using 3C9 mAb plus neuraminidase treatment. HSV-1 was

detected using a FITC-conjugated polyclonal Ab. Hpi—hours post-infection; scale bar—20 pm. (C) Carbohydrate profile of permeabilized HEL fibroblasts

analyzed by flow cytometry at indicated time points. Tn structure (GalNAca1-O-Ser/Thr) was detected using FITC-conjugated Helix pomatia agglutinin
(HPA), other labels as in Fig 1B. HSV-1 infected samples were gated (S1 Fig) on HSV-1-positive cells (except for HPA-FITC labeled samples).

doi:10.1371/journal.ppat.1004784.9001

To address this need, we used herpes simplex virus type 1 (HSV-1) as a model to develop a

comprehensive viral O-glycoproteomics strategy. We first determined the major O-glycan

structures produced during virus infection, and used this to design a two-step sequential lectin
enrichment strategy for capture of desialylated O-glycopeptides in total proteolytic digests of
infected cells (Fig 1A). The strategy is based on our recent “SimpleCell” approach for O-glyco-
proteomics [26, 31], but extended to enable sensitive mapping of O-glycosites in cells with the
common sialylated core 1 O-glycosylation capacity such as found in human embryonic lung
(HEL) fibroblasts. Applied to HSV-1 as a proof-of-concept, we provide the first comprehensive
HSV-1 O-glycoproteome with identification of 8 of the 12 HSV-1 envelope proteins as O-gly-
coproteins with a total of 74 unique O-glycosites. We further took advantage of an isogenic cell
model in the human keratinocyte (HaCaT) cell line in which productive HSV-1 infection can
be established, and provide evidence that O-glycan elongation has functional consequences for
virus production and infectivity. The strategies and findings presented may have important

bearings for vaccine design.
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Results
Glycophenotyping of HEL fibroblasts

We glycoprofiled mock or HSV-1 infected HEL fibroblasts using a panel of well characterized
monoclonal antibodies to core 1 O-glycans. HEL fibroblasts infected with HSV-1 predomi-
nantly expressed sialylated core 1 O-glycan structure ST (Neu5Aco2-3GalB1-3GalNAcol-O-
Ser/Thr) and truncated O-glycan structure Tn (GalNAco1-O-Ser/Thr) (Fig 1B and 1C). In
order to have a more comprehensive view of O-glycan repertoire we also performed chemical
glycan release by reductive B-elimination and analyzed the native glycans by direct infusion
nanoESI-MS. Glycomic analysis in negative polarity (S4A and S4C Fig) identified the majority
of O-glycans as mono- or disialylated T structures in mock- and HSV-1-infected fibroblasts.
Due to a potential tendency of sialylated glycans to be ionized better at the negative polarity
compared to neutral ones, we have analyzed the same samples at the positive ion mode as well.
As it is shown in S4B and S4D Fig, sialylated core 1 O-glycan structures represented the most
abundant class of O-glycans in both mock- and HSV-1 infected fibroblasts. Non-sialylated T
structures (Galp1-3GalNAcla-O-Ser/Thr) and various core 2 O-glycan structures (non-,
mono-, and disialylated) were also present at lower levels. In conclusion, mock- and HSV-1-
infected fibroblasts exhibited similar O-glycan profiles with predominantly sialylated core

1 O-glycan structures.

Identification of O-glycosites on HSV-1 envelope glycoproteins

Given the finding that infected HEL cells expressed both ST/T and Tn glycans, we developed a
two-step lectin enrichment strategy to enable identification of O-glycosites. Enrichment of gly-
copeptides in total protease digest of complex mixtures of proteins is essential for sensitive de-
tection. The strategy to identify O-glycosylation sites in HSV-1 is depicted in Fig 1A. Cell
lysates from HSV-1 infected cells and released virions were digested sequentially with trypsin
and neuraminidase. We first employed peanut agglutinin (PNA) Lectin Weak Affinity Chro-
matography (LWAC) to capture T-glycopeptides and the flow through of this step was further
subjected to Vicia villosa lectin (VVA) LWAC to capture Tn-glycopeptides [32] (Fig 1A). The
elution fractions of PNA and VVA LWACs were analyzed by tandem mass spectrometry
equipped with ETD fragmentation to identify O-linked glycosylation sites on HSV-1 envelope
glycoproteins. By using this strategy we identified eight out of the 12 HSV-1 envelope glycopro-
teins and a total of 74 unique O-glycosylation sites. Nearly all of these O-glycosites (72 sites)
were identified in total lysates of infected cells, while direct analysis of released virions resulted
in identification of 20 O-glycosites of which only two were not found in the lysate. Comparing
identifications from PNA and VVA LWACs, fewer glycosites (43 sites) were identified from
PNA LWAC than from VVA (58 sites) (Tables 1 and S1). However, at least one third of the
sites identified with PNA LWAC were non-redundant with VVA LWAC identified sites. The

Table 1. Overview of site identification using different enrichment strategies.

PNA and VVA PNA VVA

Totalsites Unambiguoussites Totalsites Unambiguoussites Viral proteins Totalsites Unambiguoussites Viral proteins

Viral 20 4 10 4 gD, gE, gG 10 0 gB, gC, gL

particles

Cell 72 60 41 28 9B, gC, gb, gE, 58 53 gB, gC, gD,

lysate gG, gH, gl, gL gE, gG, gl, gL

Total 74 62 43 30 9B, gC, gb, gE, 58 53 gB, gC, gD,
9G, gH, gl, gL gE, 9G, gl, gL

doi:10.1371/journal.ppat.1004784.t001
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Fig 2. Identified O-linked glycosylation sites on HSV-1 envelope glycoproteins. The cartoon depicts approximate localization of the 74 identified O-
linked glycosylation sites in the context of known structural elements of 8 HSV-1 envelope glycoproteins [38—42, 48]. The remaining 4 HSV-1 envelope
glycoproteins without identified O-glycosylation are not depicted, although some of them are predicted to be N-glycosylated (gJ, gK, gM, gN). O-glycosylation
sites marked with an asterisk can potentially have a slightly different location due to the ambiguity of the site identification within the peptide stretch.
Sequence-predicted N-linked glycosylation sites are indicated.

doi:10.1371/journal.ppat.1004784.9002

direct analysis of virions yielded markedly lower number of O-glycosylation sites (10 sites with
each VVA and PNA LWAC) (Table 1).

Fig 2 presents a graphic depiction of the HSV-1 O-glycoproteome. A total of 34 out of 74
identified O-glycosylation sites were localized on the four HSV-1 membrane proteins, gB, gD,
gH and gL, which are all essential for viral infectivity in vitro [33-36] (Table 2). Twenty-one
glycosylation sites were identified in gB, which is essential for fusion with host cell membrane
[33]. The identified glycosylation sites include two positions, T53 and T480 (S1 Table), which
have previously been proposed to be important for the interaction with the paired immuno-
globulin-like type 2 receptor o based on the finding that Ala substitutions resulted in loss of in-
teraction [37]. In addition, O-linked glycans were found throughout the ectodomain and
localized to both ordered and unstructured regions of the molecule [38] (Fig 2). Interestingly,
several gB O-glycosylation sites were highly conserved between 8 members of the human her-
pesviruses (Figs 3 and S2).

Table 2. Number of sites identified on individual envelope glycoproteins.

Envelope glycoprotein Function Total sites Unambiguous sites Ambiguous sites PNA VVA
gB Attachment/fusion [33, 75] 21 17 4 9 19
gC Attachment, complement receptor [43, 44] 12 11 1 1 12
gD Interaction with entry receptors [71-73] 5 4 1 5 4
gE Spread, F. receptor [46, 47] 16 14 2 14 14
aG Chemokine binding [51] 8 8 0 7 2
gH Entry [35, 76] 4 0 4 4 0

o] Spread, F. receptor [46, 47] 4 4 0 1 3
gL Entry [36, 76] 4 4 0 2 4

doi:10.1371/journal.ppat.1004784.t002
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Fig 3. Conservation of O-linked glycosylation sites within the ectodomain of glycoprotein B between human herpesviruses. ClustalW2 multiple

sequence alignment program was

used to align amino acid sequences of glycoprotein B ectodomain between the reference strains of members of the

Herpesviridae family. Structural depiction of glycoprotein B is shown. HSV-1 gB glycosylation sites at conserved serines/threonines between the aligned
sequences are indicated with red outlined O-linked glycan icons. Dashed boxes show the multiple sequence alignment output for the sequences flanking the
highly conserved glycosylated amino acids (marked with grey) between the Herpesviridae family members. Two ambiguous O-glycosylation sites within
peptide stretch 265-YGTT-268 were allocated to canonical O-GalNAc acceptor amino acids (T267 and T268). HSV-1—human Herpes simplex virus type 1
(strain 17), HSV-2—human Herpes simplex virus type 2 (strain HG52), VZV—Varicella-zoster virus (strain Dumas), HCMV—human cytomegalovirus (strain
Merlin), HHV-6—human herpesvirus 6A (strain Uganda-1102), HHV-7—human herpesvirus 7 (strain JI), HHV-8—Kaposi’s sarcoma-associated herpesvirus
(isolate GK18), EBV—Epstein-Barr virus (strain AG876).

doi:10.1371/journal.ppat.1004784.9003

Glycoprotein D, which is necessary for virus entry into host cells [34], was glycosylated at
five sites (Fig 2). Two of the identified O-glycosites, S93 and S100, were located within the Ig-
like core of the molecule. Interestingly, two more glycans (T255 and Y259/5260) were situated
on the Ig-core-flanking functional alpha-helix important for maintaining the unliganded con-
formation of the molecule as well as interaction with nectin-1 [39-41]. One additional site,

PLOS Pathogens | DOI:10.1371/journal.ppat.1004784  April 1,2015 6/22
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S33, was located within the N-terminal motile region involved in the interaction with the entry
receptor HVEM [39]. In glycoprotein H, which is also required for HSV-1 entry into permis-
sive cells [35], we found four ambiguous O-glycosylation sites at the N-terminus (Fig 2). Three
of the four sites were situated within a disordered region between two structural subdomains
[42]. The peripheral membrane protein gL, that forms a heterodimer with gH, carried four O-
glycans all of which were located within a poorly structured region of the molecule [42] (Fig 2).
No sites were found within the protein-protein interaction regions of the two proteins.

The remaining 40 O-glycosites were distributed among four HSV-1 glycoproteins (gC, gE,
gl and gG), which are all important for virus-host interaction and modulation of the host im-
mune response (Table 2, Fig 2). Glycoprotein C is involved in initial attachment to heparan sul-
phate proteoglycans as well as immune evasion by acting as a complement receptor [43, 44],
and is known to contain a glycosylated mucin-like tandem repeat region [45]. Accordingly, 9
of the identified sites were localized within the mucin-like region, while 3 sites were found out-
side of the tandem repeat region (Fig 2). Glycoprotein E forms an Fc receptor together with gly-
coprotein I and is known to facilitate cell-to-cell spread [46, 47]. Interestingly, we identified 16
O-glycosylation sites, of which many densely covered the N-terminal domain of the molecule,
whereas the Fc-binding domain did not carry any O-glycans [48] (Fig 2). Four O-glycosylation
sites were identified on glycoprotein I (Fig 2), one of which was situated within the region re-
quired for the Fc receptor function [49]. Unfortunately, we were not able to identify any of the
sites, which are known to be glycosylated within the tandem repeat region of gI [50]. It is
known that glycans within this mucin-like region of gl are much more closely spaced as com-
pared to gC, thus it is very likely that trypsin digestion is inefficient within the very tightly gly-
cosylated region of gI. Finally, we detected eight O-glycosylation sites on the chemokine-
binding [51] glycoprotein G (Fig 2).

HSV-1-induced Golgi fragments retain the micro-organization of intact
Golgi apparatus

HEL fibroblasts normally produce complete O-glycans with fully sialylated core 1 structures
(Fig 1B and 1C), but as shown here, infection with HSV-1 resulted in marked intracellular ex-
pression of truncated O-glycans (Tn), which was confirmed by our two-step O-glycoproteo-
mics strategy where a substantial number of truncated Tn-glycopeptides were identified in
mixture with T-glycopeptides (Fig 1, Tables 1 and S1). This prompted us to further investigate
the effect of HSV-1 infection on O-glycan synthesis in more detail. Immunofluorescent stain-
ing for the truncated Tn O-glycan structure in permeabilized HSV-1-infected cells showed a
Golgi-like staining pattern with numerous dispersed vesicle-like structures throughout the cy-
toplasm. The intracellular Tn expression increased along the course of infection with a com-
plete dispersal of Tn staining throughout the cell after 9 hours (Fig 4A and 4C, HPA). Tn
expression also partially co-localized with gC, implying that envelope glycoproteins are indeed
O-glycosylated in the fragmented Golgi (S3 Fig). Despite the high expression of Tn inside the
infected cells, we only detected small amounts of Tn on the surface as evaluated without per-
meabilization (Fig 4D and 4E). Both HSV-1 and mock-infected cells predominantly expressed
elongated and sialylated O-glycans on the surface (Fig 4D and 4E). Co-localization studies
showed that the intracellular Tn-positive structures in HSV-1-infected cells were highly corre-
lated with the Golgi marker giantin during early stages of infection (Fig 4A: HSV-1 5 hpi),
whereas lower degree of co-localization was observed late in infection (Fig 4A: HSV-1 9 hpi).
There was no correlation between expression of Tn and the ER marker GRP94 in either mock-
or HSV-1-infected cells (Fig 4B). However, partial co-localization was observed with trans-
Golgi network marker TGN46 in heavily infected cells (Fig 4C: HSV-1 9 hpi).

PLOS Pathogens | DOI:10.1371/journal.ppat.1004784  April 1,2015 7/22
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permeabilized at indicated time points (hpi—hours post infection). Mock-infected cells were used as control. Cells were double labeled with antibodies and
lectins and analyzed by confocal microscopy in order to investigate the cellular localization of Tn structures upon HSV-1 infection. (A) Green—HPA (Tn structure
(GalNAca1-O-Ser/Thr)); red—giantin (cis-’/medial-Golgi marker); blue—DAPI. Scale bars: 20 pm for lower magnification images and 5 pm for higher
magnification images. (B) Green—HPA; purple—GRP94 (ER marker); blue—DAPI. Scale bars as in Fig 4A. (C) Green—HPA; red—TGN46 (trans-Golgi
network marker); blue—DAPI. Scale bars as in Fig 4A. (D, E) Cell surface expression of common O-glycoforms. HEL fibroblasts were mock- or HSV-1 Syn17+
infected (MOI of 10) and harvested at indicated time points. (D) Immunofluorescent cell surface staining using a panel of carbohydrate specific antibodies (Tn,
mAb 5F4; STn, mAb 3F1; T, mAb 3C9; ST, mAb 3C9 plus neuraminidase treatment). 4C4 mAb for Golgi-resident glycosyltransferase GalNAc-T2 was used as a
control for cell membrane integrity. Permeabilized cells (Perm) were used as a positive control for GalNAc-T2 staining. Scale bar—20 um. (E) Cell surface
carbohydrate profile of HEL fibroblasts analyzed by flow cytometry (Tn, HPA-FITC; T, mAb 3C9; ST, mAb 3C9 plus neuraminidase treatment). HSV-1 infected
samples were gated (S1 Fig) on HSV-1-positive cells (except for HPA-FITC labeled samples). (F-G) HEL fibroblasts were mock- or HSV-1 Syn17+ infected
(MO of 10) and then fixed and permeabilized at indicated time points (hpi—hours post infection). Cells were double labeled with antibodies and analyzed by
confocal microscopy in order to investigate the Golgi microorganization upon HSV-1 infection. (F) Green—GM?130 (cis-Golgi marker); red—giantin (cis-/medial-
Golgi marker); blue—DAPI. Scale bars as in Fig 4A. (G) Green—p4GalT1 (trans-Golgi marker); red—giantin (cis-/medial-Golgi marker); blue—DAPI. Scale bars
as in Fig 4A. Enlarged micrographs marked with an asterisk do not correspond to the merged images to the left.

doi:10.1371/journal.ppat.1004784.9004

To further evaluate how the infection impacted the organization of Golgi apparatus, we
next investigated the relative localization of cis- and trans-Golgi markers during the course of
HSV-1 infection. In HEL fibroblasts the classical Golgi markers GM130, giantin and 4Gal-T1
were redistributed into several distinct punctuate vesicular-like structures most likely repre-
senting remnants of Golgi structures as previously described [52]. Both cis-Golgi-resident
GM130 and cis-/medial-Golgi-specific giantin were detected in close proximity within infec-
tion-induced Golgi fragments (Fig 4F: HSV-1 5 hpi, 9 hpi). Similarly, giantin and trans-Golgi-
resident B4Gal-T1 were highly correlated within discrete Golgi fragments of infected cells
(Fig 4G: HSV-1 5 hpi, 9 hpi). These findings suggest that the individual vesicular-like
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structures in HSV-1-infected HEL fibroblasts mirror the composition of an intact Golgi appa-
ratus and potentially contain all the glycosyltransferases required for O-glycan synthesis
and elongation.

Elongated O-glycans are important for HSV-1 infectivity

Given our findings that most HSV-1 membrane proteins are O-glycosylated, and that O-gly-
cans are speculated to play important roles in viral infectivity [37], we wanted to analyze
whether O-glycan structures were important for virus production and infectivity. In the past,
several studies have used inhibitors of glycosylation that are known to disturb protein traffick-
ing, inhibit growth, and even cause cell death [53-55]. We recently produced an isogenic cell
model based on the non-tumorigenic human epidermal keratinocyte cell line, HaCaT [56].
Wild-type HaCaT cells produce mainly core 1 mature ST O-glycans similar to HEL fibroblasts,
while HaCaT with COSMC knockout, also designated SimpleCells (SC), express glycoproteins
with homogenous truncated Tn and STn O-glycans [56]. The isogenic HaCaT cells therefore
provide a unique well-defined cellular system to study the effect of truncated O-glycosylation
on viral production and infectivity. We infected HaCaT WT and SC in parallel with 10 PFU/
cell of HSV-1 Syn17+ produced in HaCaT WT and evaluated viral titers produced in the
media. Virus produced in HaCaT SC compared to WT exhibited severely reduced titers as eval-
uated by plaque assay (on average 10-fold at 12 h and 24-fold at 20 h after infection) (Fig 5A).
To evaluate whether this effect was due to production of viral particles we analyzed viral DNA
in the media, which showed a substantial reduction in viral DNA (4- to 8-fold at 20 h after in-
fection) detected in the medium from HaCaT SC compared to WT (Fig 5B). These results sug-
gest that truncated O-glycans per se pose problems with viral particle formation or early entry
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Fig 5. Elongation of O-linked glycans affects HSV-1 secretion/infectivity. (A) HaCaT wild-type or HaCaT
mutant keratinocytes, lacking elongation of mucin-type O-liked glycosylation (HaCaT sc D5 and HaCaT sc E5)
were infected with MOI of 10 of HSV-1 Syn17+ produced in HaCaT wt. Medium was harvested at 12 and 20
hours post-infection and number of infectious particles were quantified using plaque titration on Vero culture
monolayer and expressed as plaque forming units per mL of medium (PFU/mL). Bar graphs represent mean
values of 3 biological replicates assayed by 2 technical replicates each + SD. A 2-way ANOVA with Tukey’s
multiple comparison test was used to compare differences between means. NS—p > 0.05, *—p < 0.05,
**—p < 0.01, ¥***—p < 0.001, ****—p < 0.0001. Results are representative of at least two independent
experiments. (B) Numbers of viral DNA copies in the medium were quantified by gPCR and using a standard
curve based on amplification of known copy numbers of HSV-1 DNA fragments cloned in Topo TA plasmids.
Copy numbers of viral DNA are expressed as copies/mL. Bar graphs represent mean values of 3 biological
replicates assayed by 3 technical replicates each + SD. A 2-way ANOVA with Tukey’s multiple comparison test
was used to compare differences between means. NS—p > 0.05, *—p < 0.05, **—p < 0.01, ***—p < 0.001,
****__p < 0.0001. Results are representative of at least two independent experiments.

doi:10.1371/journal.ppat.1004784.9005
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Discussion

Here we provided a strategy for comprehensive characterization of O-glycoproteomes of any
virus produced in infected host cells. We demonstrate with the complex model virus HSV-1
that the envelope proteins are heavily O-glycosylated with at least eight membrane proteins
being O-glycoproteins. Most of the HSV-1 membrane proteins are also predicted to be N-gly-
cosylated (37 predicted NXS/T sites in total on 11 proteins), although actual N-glycosites in the
majority of cases are unknown. In contrast to N-glycosylation, there is a particular need for ex-
perimental identification of O-glycosites arising from a lack of simple predictive consensus se-
quence motifs and the necessity of taking the O-glycosylation capacity of the host cell into
account. The key step for sensitive glycoproteomics is enrichment of glycopeptides [57]. For
N-glycoproteomics the common N-glycan core structure enables efficient capture of most N-
glycopeptides with a mixture of lectins [58, 59], but this is not the case for O-glycans where
there is no mixture of lectins available that can encompass all O-glycan structures. Our O-gly-
coproteomics strategy is therefore versatile for host cells producing core 1 O-glycan structures,
but not yet fully applicable to host cells producing more complex O-glycans. However, we
show that HSV-1 infection causes an accumulation of truncated O-glycans as well as elongated
core 1 structures that can be captured with the available VVA and PNA lectins. The O-glyco-
proteomic strategy is applicable to any virus produced in infected host cells, which should en-
able wide application for even highly infectious viruses such as HIV and Ebola.

We chose HSV-1 as a model system because of its complex envelope proteome. Whereas
most enveloped viruses in general encode only one or two membrane glycoproteins, the
human herpes viruses, including HSV-1, express more than ten glycoproteins located in the
viral envelope and various membranes of the infected cells. Human herpes viruses are widely
spread pathogens known to establish latency in various cell types enabling recurrent disease by
reactivation [60]. HSV-1 is a large DNA virus of high complexity and one of the most prevalent
herpes viruses infecting up to 80% of the world’s population [61, 62]. Mature viral particles
consist of an icosahedral capsid containing the viral genome, a second less structured protein
layer called the tegument, and the surface envelope with at least 12 viral proteins [63]. A num-
ber of previous studies have addressed the structure and function of N-linked glycans on HSV-
1 glycoproteins [3, 64-66], and there have been attempts to identify and characterize O-glyco-
sylation of proteins as well [45, 67-70]. Although several HSV-1 proteins were previously
found to be O-glycosylated, studies of actual O-glycosites are generally missing. We identified
multiple O-linked glycosylation sites on HSV-1 proteins important for attachment and entry
into target cells (gB, gC, gD, gH, gL) by interactions with host cell receptors such as herpes
virus entry mediator (HVEM) [71], nectin-1 [72], 3-O-sulfated heparan sulfate [73], 4-O-sul-
fated chondroitin sulfate [74], as well as the paired immunoglobulin-like type 2 receptor o.
(PILRa) [75] and owBe/ 0y Pg integrins [76]. Other of the identified O-glycans were localized to
HSV-1 envelope glycoproteins involved in virus spread or immune modulation (gE, gI, gG)
[46, 47, 51]. Of particular interest, we provided confirmation of the glycosylation of the previ-
ously identified T53 and T480 sites on gB essential for virus entry in host cells [4, 37, 77].
Based on mutational studies, O-linked glycans at these sites have been specifically implied in
gB binding to PILRa. [37]. Furthermore, studies in mice indicate that glycosylation at these
sites promotes development of keratitis and neuroinvasion [37]. Three of the newly identified
sites on gB, T169 and two sites within the peptide stretch 265-YGTT-268, are situated in close
proximity to hydrophobic loop regions that are predicted to be involved in fusion with the host
membrane, suggesting that the O-glycans could influence the interaction with the host cell
[38]. Interestingly, these three sites in gB are found within highly conserved gB regions between
the Herpesviridae family members of at least seven out of the eight human herpesviruses.
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Furthermore, a recent study reported that mutational insertion of a fluorescent protein at posi-
tion 241, which we found to be O-glycosylated, resulted in loss of fusogenic gB function [78].
Another indication that specific O-glycans could be important for interaction between HSV
and the host cell was the identification of O-glycosylation sites on glycoprotein D, both within
the flexible N-terminus of the molecule that is forming a hairpin upon binding to HVEM (S33)
[39, 79], and within the o helix that is part of the interaction surface with the adhesive protein
nectin-1 [41] (T255 and Y259/5260). We also identified a cluster of O-glycosites in the HSV-1
glycoprotein C mucin-like domain, which contributes to interaction with glycosaminoglycans
on host cells [80, 81]. We did not, however, identify all expected sites in the mucin-like se-
quences that are notoriously difficult regions to analyze by MS sequencing strategies. Similarly,
we did not detect O-glycans in the mucin-like tandem repeat region of gI, which has been
shown in vitro to accommodate a high level of glycosylation [50].

The glycoproteomic strategy used is based on direct protease digests of virus-infected cells
followed by lectin enrichment of O-glycopeptides and ETD-based 'bottom-up' tandem mass
spectrometry. With this approach it is possible to address O-glycosylation of viral proteins in a
global proteome manner as glycosylated by infected host cells. Since capacity for O-glycosyla-
tion varies among cell types, the O-glycoproteome determined in representative infected host
cells may guide selection of host cells for recombinant expression of vaccines based on viral
membrane proteins. This should be especially important for viruses with high number of O-
glycosylation sites such as Ebola virus, Marburg virus, and Crimean-congo hemorrhagic fever
virus [25, 82, 83]. It should be noted that the current MS sequencing strategy has some limita-
tions with particularly dense O-glycopeptides with abundant Pro residues. The problem is
partly due to difficulties in protease digestion and partly due to insufficient glycopeptide frag-
mentation in MSn. While this clearly is a limitation, such clustered regions with mucin-like se-
quence containing high density of PST residues may be reliably predicted to be O-glycosylated
in many cell types.

In the intact Golgi apparatus the topology of glycosyltransferases is well organized in differ-
ent Golgi stacks and TGN in an ordered fashion somewhat reflecting the step-wise biosynthetic
pathways of glycosylation [20]. Viral infection is known to induce changes in organization of
the Golgi in agreement with the findings of accumulation of truncated O-glycoforms through-
out the cytoplasm in the present study [52]. We thus characterized the micro-organization of
HSV-1-induced Golgi fragments with respect to different Golgi-compartment resident pro-
teins. Surprisingly, confocal microscopy suggested that the individual Golgi fragments con-
tained the structural components of cis, medial, and trans-Golgi, as demonstrated by highly
correlated localization of GM130/giantin and giantin/B4Gal-T1 upon Golgi fragmentation.
The existence of cis, medial, and trans-Golgi enzymes within the same fragments would allow
sequential O-glycan processing despite Golgi fragmentation, and could explain why we found
that infected cells retain the ability to sialylate most of the surface O-linked glycans, regardless
of massive amounts of newly synthesized proteins trafficked through a fragmented Golgi
apparatus.

A major function of glycosylation of viral envelope glycoproteins appears to be shielding
from host immunity [5-7]. The shielding function is well documented for N-glycans [5, 6] but
presumably O-glycans serve similar functions [7]. However, the expression of immature trun-
cated O-glycans in the context of virus glycoproteins may have immunostimulatory effects. In
contrast to N-glycans with their common large core structure that is highly conserved through-
out evolution, the most immature truncated O-glycans are highly immunogenic and may be
accommodated together with a short peptide backbone in the binding pocket of an antibody
[84]. We and others have previously shown how truncated O-glycopeptides may serve as
immunodominant antibody epitopes, which are useful for development of cancer-specific
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immunotherapeutic intervention and as biomarkers for cancer [85]. In this context, we recently
screened a library of short Tn O-glycopeptides covering gG of HSV-2 for the presence of
immunodominant O-glycopeptide IgG antibody epitopes in HSV-1 and -2 infected individu-
als. Interestingly, we did identify one O-glycopeptide epitope to which IgG antibodies were
present in HSV-2, but not HSV-1 infected individuals providing a potential diagnostic bio-
marker [86]. Moreover, the serum IgG antibodies reacted with several glycan structures on the
same peptide including truncated (Tn) or elongated (ST) O-glycan, suggesting that these anti-
bodies participate in immunity to viral glycoproteins [86]. The existence of antibodies recog-
nizing O-glycopeptide epitopes suggests that O-glycosylation both with respect to sites and
structures should be considered for vaccine design and production. This is especially appealing
in relation to targeting patches of O-glycans in mucin domains contained in herpes viruses as
well as several human pathogenic virus species, including the deadly Ebola and Marburg virus-
es. Currently, there are no effective HSV vaccines despite extensive efforts and a better under-
standing of the O-glycans of the viral glycoproteins may lead to novel approaches for vaccine
development.

The widespread nature of O-glycosylation of the HSV-1 envelope proteins prompted us to
address the question whether elongated O-glycans are important. We exploited our recently
produced isogenic cell model based on the human epidermal keratinocyte cell line HaCaT [56].
Wild-type HaCaT cells express mature core 1 O-glycans while HaCaT SimpleCells (SC) ex-
press homogenous truncated Tn and STn O-glycans due to knockout of the private chaperone
of the core 1 synthase, C1Gal-T. We used this isogenic cell system to demonstrate that viral
propagation and titers in HaCaT SC with truncated O-glycans were severely hampered. Thus,
elongated O-glycans are functionally relevant and it is likely that these functions are directed
by O-glycans at specific sites in the HSV-1 O-glycoproteome. It should be noted, however, that
loss of O-linked glycan elongation has multiple cellular consequences, and further experimen-
tation is required to define the molecular mechanisms behind the observed effect. For this pur-
pose, the HaCaT cell model can now be further explored with glycosyltransferase gene targeted
isogenic cell pairs to dissect requirements for particular GalNAc-T repertoire and/or O-glycan
structures for HSV-1 viral propagation. It is also conceivable that the dependence on intact O-
linked glycosylation for virus generation is not unique to HSV-1, but we anticipate that the de-
scribed strategy can be used to test the importance of O-glycosylation for other enveloped vi-
ruses. A similar genetic deconstruction approach has previously been used with great success
for mapping Lassa virus binding to o-dystroglycan and cellular entry [87], and this should
greatly advance our understanding of the role of glycosylation in virology.

In summary, we have mapped the O-glycosylation sites on HSV-1 and shown that elonga-
tion of O-linked glycosylation is important for HSV-1 biology. Further studies are now possible
to decipher the exact mechanism responsible for the observed effects. The glycoproteomics
workflow developed should be widely applicable to enveloped viruses with the potential to con-
sider the natural O-glycan coat in the design of antiviral vaccines and drugs.

Materials and Methods

Cells and viruses

The wild-type HSV-1 virus Syn17+ [88] was used throughout the study, and the virus titers
were determined by plaque titration on Green monkey kidney (GMK, obtained from the Swed-
ish Institute for Infectious Disease Control, Stockholm) cells as previously described [89].
HSV-1 Syn17+ virus was cultivated in HaCaT wild type keratinocytes or GMK cells depending
on downstream application and the titers were determined as mentioned above. Diploid
human embryonic lung fibroblasts [70] (HEL, obtained from the cell culture collection at the
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Sahlgrenska University Hospital, department of Clinical Microbiology, Gothenburg) at a low
passage level were cultivated in Eagle’s MEM (Gibco, Life Technologies) with 10% FCS
(Sigma), 100 IU/mL penicillin, 100 pg/mL streptomycin (Gibco, Life Technologies) and 2 mM
L-glutamine. HaCaT wild type [90] and HaCaT COSMC-/- [56] keratinocytes were grown in
DMEM (Gibco, Life Technologies), supplemented with 10% FCS (HyClone), 100 IU/mL peni-
cillin and 100 pug/mL streptomycin (Gibco, Life Technologies). HaCaT COSMC-/- clone D5
harbors a 10 bp deletion at the zink finger nuclease target site of COSMC gene, whereas clone
E5 harbors a combined 12 bp deletion and a 2 bp insertion. Both genetic alerations result in in-
troduction of STOP codons due to frameshift mutations [56].

Antibodies and lectins

Monoclonal mouse to Tn (5F4, IgM), mouse to T (3C9, IgM), mouse to STn (3F1, IgG), mouse
to GalNAc-T2 (4C4, IgG) mouse to B4Gal-T1 (2F5, IgG) and polyclonal rabbit to gC-1
(KF922, 1:700) antibodies were produced as previously described [24, 91]. Rabbit anti-giantin
(1:500) and rat anti-GRP94 (1:50) were purchased from Abcam. FITC-conjugated HPA (Helix
pomatia agglutinin, 1:2000) was from Invitrogen. FITC-conjugated polyclonal rabbit anti-
HSV-1 antibody was purchased from DAKO (1:40). Alexa Fluor 488 F(ab'), fragment of Goat
anti-Mouse IgG (H+L) (1:500), Alexa Fluor 546 Goat anti-Mouse IgM (u chain) (1:500) were
from Life Technologies. FITC-conjugated polyclonal Goat anti-Mouse antibody (1:100) and
TRITC-conjugated Swine anti-Rabbit antibody (1:200) were from DAKO. Alexa Fluor 647
Goat anti-Mouse IgM (u chain) was purchased from Life Technologies.

HSV-1 infection in cell culture

For glycoproteomic analysis, GMK-produced HSV-1 at a multiplicity of infection (MOI) of 3
plaque-forming units (PFU) per cell was added to HEL fibroblasts in roller bottles (34 x 10°
cells/bottle). The viral particles were allowed to attach to the cells for 1 h at 37°C and 5% CO,
before the inoculum was removed and new growth medium was added. The cells and medium
were harvested after most of the cells exhibited cytopathic effects of infection (~20 h). The cells
from 3 roller bottles were harvested by scraping with a rubber policeman in ice-cold PBS. The
viral particles from the medium were harvested by ultracentrifugation at 100,000 x g for 1 hour
at 4°C using 25 x 89 mm ultracentrifuge tubes (Beckman Coulter, Brea, CA) and a Ti70.1-rotor
(Beckman Coulter). For glycoprofiling by reductive B-elimination (see S1 Text), confluent HEL
fibroblast monolayers (~6 x 10° cells) were infected with MOI of 3 PFU/cell of GMK-produced
HSV-1 and harvested at ~23 h post-infection as described above. Medium without serum was
used throughout the infection to avoid serum glycan contamination. For immunofluorescence
staining, HEL cells were grown either on teflon-coated glass slides or on glass cover slips. Con-
fluent monolayers were infected with GMK-produced HSV-1 at a MOI of 10 PFU/cell as de-
scribed above. The cells were harvested at either 4 and 8 or 5 and 9 hours post-infection. For
infection of keratinocytes, confluent HaCaT wild type or COSMC-/- cell monolayers in 6-wells
were infected with HaCaT wild type-produced HSV-1 Syn17+ at a MOI of 10 PFU/cell as de-
scribed above. The growth medium was harvested at 12 and 20 hours after infection.

LWAC enrichment of Tn and T O-glycopeptides

Infected HEL cell pellet and ultracentrifuged HSV-1 pellet from the growth medium were pro-
cessed in parallel. The lysates were prepared as previously described [31] with several modifica-
tions. Briefly, cell or virus pellet was resuspended in 0.05% RapiGest (Waters) in 50 mM
ammonium bicarbonate and lysed using a sonic probe. Cleared cell and virus lysates were re-
duced and alkylated as described [31] and then treated with 5 U and 1 U, respectively, of
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PNGase F (Roche) over night at 37°C, followed by digestion with 30 ug/7 ug of trypsin (Roche)
for 12 h at 37°C. The PNGase F treatment was then repeated followed by 2 h incubation with
10 ug/3 g of trypsin. The samples were then treated with concentrated trifluoracetic acid

(8 uL/sample, 20 min at 37°C) and cleared by centrifugation (10,000 x g 10 min). The cleared
digests were purified on C18 Sep-Pak (Waters) and treated with 100 U of neuraminidase
(P0720, New England Biolabs) in 50 mM sodium citrate pH 6.0 at 37°C for 2 h. T and Tn gly-
copeptides were sequentially enriched using PNA and VVA LWAC as previously described
[32] and as described in detail in S1 Text.

Mass spectrometry

LWAC fractions from total cell lysate digests were screened by preliminary LC-MS for glyco-
peptide content, and those most enriched in glycopeptides were pooled together and further
fractionated by isoelectric focusing as previously described [92]. Mass spectrometry analysis
was performed on an EASY-nLC 1000 UHPLC (Thermo Scientific) interfaced via nanoSpray
Flex ion source to an LTQ-Orbitrap Velos Pro spectrometer (Thermo Scientific) as previously
described [56] with minor changes and as described in detail in S1 Text.

Data analysis

Data processing was performed using Proteome Discoverer 1.4 software (Thermo Scientific) as
previously described with small changes [31]. Due to the high speed of data processing Sequest
HT node was used instead of Sequest. All spectra were initially searched with the full cleavage
specificity, filtered according to the confidence level (medium, low and unassigned) and further
searched with the semi-specific enzymatic cleavage. In all cases the precursor mass tolerance
was set to 6 ppm and fragment ion mass tolerance to 50 mmu. Carbamidomethylation on cys-
teine residues was used as a fixed modification. Methionine oxidation and HexNAc and Hex-
HexNAc attachment to serine, threonine and tyrosine were used as variable modifications for
ETD MS2. All HCD MS2 were pre-processed as described [31] and searched under the same
conditions mentioned above using only methionine oxidation as variable modification. All
spectra were searched against a concatenated forward/reverse human-specific database (Uni-
Prot, January 2013, containing 20,232 canonical entries. In addition, another 251 common
contaminants and 3187 entries of viruses known to infect humans were included in the search)
using a target false discovery rate (FDR) of 1%. FDR was calculated using target decoy PSM
validator node, a part of the Proteome Discoverer workflow. The resulting list was filtered to
include only peptides with glycosylation as a modification. This resulted in a final glycoprotein
list identified by at least one unique glycopeptide. ETD MS2 data were used for unambiguous
site assignment. HCD MS2 data were used for unambiguous site assignment only if the number
of GalNAc residues was equal to the number of potential sites on the peptide.

Immunocytochemistry

Teflon-coated glass slides were washed 3 times in PBS followed by 5 min fixation in ice-cold ac-
etone and allowed to air-dry. For cell surface staining, HEL cells grown on cover slips were
washed with Hank’s balanced salt solution and fixed with warm 4% paraformaldehyde in PBS
for 10 min. Control cells were permeabilized with 0.3% Triton-X100 for 1.5 min. For neur-
aminidase treatment, teflon-coated slides/cover slips were incubated with 0.1 U/mL Clostridi-
um perfringens neuraminidase (Sigma-Aldrich) in 0.05 M sodium acetate pH 5.5 at 37°C for

1 h. Teflon-coated slides/cover slips were incubated with primary antibodies at 4°C over night,
washed 3 times with PBS and incubated with secondary antibodies (diluted in 2.5% bovine
serum albumin (BSA) in PBS, 0.03% azide) for 45 min in RT. After 3 washes with PBS, the
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specimens were mounted using ProLong®™ Gold antifade mounting reagent with 4’,6-diami-
dino-2-phenylindole (DAPI) (Life Technologies). Immunofluorescent staining was inspected
using a Zeiss Axioskop 2 microscope equipped with AxioCam MR3 digital camera. For the co-
localization staining using three fluorophores, the teflon-coated glass slides were blocked in 3%
BSA in PBS for 30 minutes followed by incubation with primary antibodies and lectins at 4°C
over night. Slides were washed 3 times in PBS and once in distilled water followed by incuba-
tion with secondary antibodies at 37°C for 45 minutes. Finally the glass slides were washed as
described above, air dried and mounted with Prolong Gold Anti-fade reagent containing DAPI
(Life Technologies). Triple immunofluorescence staining was analyzed using a Zeiss LSM 510
Meta confocal microscope (Carl Zeiss AG, Oberkochen, Germany) equipped with a Plan-
Apochromat 63x objective in oil immersion. Images were edited in Adobe Photoshop CS6.

Flow cytometry

Confluent HEL cells grown in 6-well plates were infected with HSV-1 at a MOI of 10 or mock
infected as described above for indicated time points. The cells were harvested by trypsinization
(TrypLE, Life Technologies), washed in 10 mL ice-cold PBS and fixed in 0.1% paraformaldehyde
for 24 h at 4°C. After fixation the cells were washed in ice-cold PBS as described above and divid-
ed into 100 pL samples with 5 x 10° cells per sample. Half of the samples were permeabilized
after fixation by addition of 1x Perm/Wash solution (BD Biosciences) according to the manufac-
turer’s instructions. After permeabilization, a portion of the HEL cells samples were washed in
PBS and treated with 100 pL Clostridium perfringens neuraminidase (0.1 U/mL) (Sigma-Al-
drich) in 0.05 M sodium acetate pH 5.5 for 40 minutes at 37°C. Thereafter the samples were
washed two times in 1x Perm/Wash solution or PBS and incubated with primary antibodies

or lectins for 30 min at 4°C. Subsequently the cells were washed as described above and then
incubated with secondary antibodies for 30 min at 4°C in the dark followed by washing as de-
scribed. The cells were analyzed using a Cube8 instrument (Partec Nordic AB) and FlowJo
software.

Plaque assay

Titers of virus produced in HaCaT wild type or COSMC-/- keratinocytes were determined on
Green monkey kidney (GMK) cells. Cell monolayers were infected with serial dilutions of virus
and allowed to attach. After 1 h the inoculum was removed and the cells overlaid with medium
containing 1.5% methylcellulose (Sigma-Aldrich), 2.5% FCS, 100 IU/mL penicillin and 100 pug/mL
streptomycin (in HBSS (Sigma-Aldrich) + DMEM (Gibco, Life Technologies) at a ratio of 1:1).
After 48 h incubation, the overlay medium was removed, the cells fixed with 1% crystal violet

(in 70% EtOH:37% formaldehyde:acetic acid 20:2:1), washed three times with water and allowed
to dry. The resulting plaques were inspected and counted using a light microscope (Olympus
IMT-2).

Total DNA extraction

The samples were diluted 1:1000 in ice cold PBS and the total DNA content of each diluted
fraction was extracted in a MagNa Pure LC robot (Roche Diagnostics, Mannheim, Germany)
using a MagNa Pure DNA isolation kit (Roche Diagnostics Scandinavia AB, Stockholm, Swe-
den), according to the manufacturer’s instructions. The input and the output volumes were ad-
justed to 200 pL and 100 pL respectively.
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qgPCR

For assessing the DNA copy number of HSV-1, a 118-nucleotide segment of the gB-1 region
was amplified with primers described in [93]. The PCR reaction volume was set to 50 pL and
contained 25 uL TagMan™ 2x PCR Master Mix (Roche Diagnostics, Branchburg, NJ), 15 uL
primer/probe mix (forward primer at 0.9 UM, reverse primer at 0.9 uM and probe at 0.2 uM
concentrations), and 10 ul of total DNA sample. Amplification of the target sequence was per-
formed using the ABI Prism 7900 system (Applied Biosystems, Foster City, CA). The reaction
conditions were set to 2 min at 50°C followed by incubation for 10 min at 95°C and finally 45
PCR cycles of two-step amplification (15 sec at 95°C and 60 sec at 58°C). HSV-1 Forward 5’
GCAGTTTACGTACAACCACATACAGC-3’; HSV-1 Reverse 5-AGCTTGCGGGCCTCGT
T-3’; HSV-1 Probe FAM-5-CGGCCCAACATATCGTTGACATGGC-3-TAMRA. The effi-
ciency of each round of PCR was determined using 10-fold dilutions of Topo TA plasmids
(Invitrogen AB, Stockholm, Sweden) with insert of respective amplicon created according to
the manufacturer’s instructions.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 6 software.

Supporting Information

S1 Text. Detailed method information.
(DOCX)

S1 Fig. Gating strategy for the glycoprofiling of HEL cells by flow cytometry. HEL fibro-
blasts were either mock- or HSV-1-infected (MOI 10) and harvested at indicated time points.
Permeabilized or intact cells were double labeled with carbohydrate specific antibodies/lectins
and FITC-conjugated HSV-1 antibody (except for HPA-FITC labeled samples) and analyzed
by flow cytometry. HPA-FITC—FITC-conjugated Helix pomatia lectin (Tn structure (GalNA-
cal-O-Ser/Thr)); 3C9 mAb—T structure (Galpl-3GalNAcla-O-Ser/Thr); Neu—neuramini-
dase treatment; hpi—hours post-infection. For the HPA-FITC gating of the permeabilized
cells, the majority of the cell population was selected according to side scatter (SSC) and for-
ward scatter (FSC) properties and then the population positive for HPA-FITC stain was select-
ed in the FSC:FL1 plot for visualization as histograms in Fig 1C. HPA-negative cells were de-
selected in order to exclude cells not affected by permeabilization, whereas entire populations
were selected in the FSC:FL1 plots for visualization in Fig 4E. The gating for the 3C9, 3C9

+ Neu, and HSV-1 FITC samples was done by selecting the majority of the population in the
SSC:FSC plot and then selecting either the mock- or HSV-1-infected populations in the FSC:
FL1 plot, based on the HSV-FITC stain intensity. The resulting populations were depicted in
respective histograms in Figs 1C and4E.

(TIF)

$2 Fig. Multiple sequence alignment of glycoprotein B between human herpesviruses. Clus-
talW2 multiple sequence alignment program was used to align amino acid sequences of glyco-
protein B ectodomain between the reference strains of members of the Herpesviridae family.
Output of the multiple sequence alignment is shown. Yellow squares depict identified O-linked
glycosylation sites on HSV-1 gB, with red-outlined O-linked glycan icons indicating highly-
conserved amino acids between the Herpesviridae family members. Ambiguous sites within
peptide stretches T109-T123 and T480-5491 are not depicted. Two ambiguous O-glycosylation
sites within peptide stretch 265-YGTT-268 were allocated to canonical O-GalNAc acceptor
amino acids (T267 and T268). Grey boxes indicate conservation of glycosylated amino acids
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between the members of Herpesviridae family. Black forks indicate protein sequence-predicted
N-linked glycosylation sites. HSV-1—human Herpes simplex virus type 1 (strain 17), HSV-2—
human Herpes simplex virus type 2 (strain HG52), VZV—Varicella-zoster virus (strain
Dumas), HCMV—human cytomegalovirus (strain Merlin), HHV-6—human herpesvirus 6A
(strain Uganda-1102), HHV-7—human herpesvirus 7 (strain JI), HHV-8—Kaposi’s sarcoma-
associated herpesvirus (isolate GK18), EBV—Epstein-Barr virus (strain AG876).

(TIF)

$3 Fig. Co-localization of HSV-1 gC and Tn glycoform. HEL fibroblasts grown on glass slides
were infected with HSV-1 Syn17+ at a MOI of 10 and fixed/permeabilized at indicated time
points. Mock infected cells were used as control. Cells were double labeled with gC-1 antibody
and HPA lectin and analyzed by confocal microscopy in order to investigate O-glycosylation of
gC-1 upon HSV-1 infection. Green—HPA (Tn structure (GalNAcol-O-Ser/Thr)); red—gC-1;
blue—DAPI; hpi—hours post infection. Scale bars: 20 um for lower magnification images and
5 um for higher magnification images.

(TIF)

S4 Fig. Glycoprofiling of HEL fibroblasts by reductive B-elimination. Chemically released
glycans from mock- (A, B) or HSV-1 (C, D) infected HEL fibroblasts were analyzed by nano-
ESI/MS via direct infusion both at negative (A, C) and positive (B, D) polarities. Peaks repre-
senting assigned glycan structures (at least 5% relative abundance) in the spectra are marked.
Monoisotopic m/z values, charge state and adduct information are provided. The glycan struc-
tures are annotated using the Consortium for Functional Glycomics (CFG) symbol nomencla-
ture (http://www.functionalglycomics.org/static/consortium/Nomenclature.shtml).

(TIF)

S1 Table. A list of HSV-1 envelope glycoprotein-derived glycopeptides identified in the
MS/MS analysis. The table lists all unique envelope glycoprotein-derived glycopeptides and
provides information regarding MS/MS activation type and carbohydrate modifications for in-
dividual peptides as well as the cross-correlation score (Xcorr) for each identification. Highest
available score is provided. ETD-derived MS/MS spectra were manually inspected for assign-
ment of PTMs. Only correctly assigned O-glycosylation sites are reported as unambiguous in
the respective column.

(PDEF)

S1 Dataset. Indexed reference spectra for infected total cell lysate (PNA). HSV-1 envelope
glycoprotein-derived spectra are provided.
(Z1P)

$2 Dataset. Indexed reference spectra for infected total cell lysate (PNA flow through
VVA). HSV-1 envelope glycoprotein-derived spectra are provided.
(Z1P)

S3 Dataset. Indexed reference spectra for HSV-1 particle lysate (PNA). HSV-1 envelope gly-
coprotein-derived spectra are provided.
(Z1P)

$4 Dataset. Indexed reference spectra for HSV-1 particle lysate (PNA flow through VVA).
HSV-1 envelope glycoprotein-derived spectra are provided.
(ZIP)
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