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Abstract

Background: Phase III trials often require large sample sizes, leading to high costs and delays in clinical decision-
making. Group sequential designs can improve trial efficiency by allowing for early stopping for efficacy and/or
futility and thus may decrease the sample size, trial duration and associated costs. Bayesian approaches may offer
additional benefits by incorporating previous information into the analyses and using decision criteria that are more
practically relevant than those used in frequentist approaches. Frequentist group sequential designs have often
been used for phase III studies, but the use of Bayesian group sequential designs is less common. The aim of this
work was to explore how Bayesian group sequential designs could be constructed for phase III trials conducted in
emergency medicine.

Methods: The PARAMEDIC2 trial was a phase III randomised controlled trial that compared the use of adrenaline to
placebo in out-of-hospital cardiac arrest patients on 30-day survival rates. It used a frequentist group sequential
design to allow early stopping for efficacy or harm. We constructed several alternative Bayesian group sequential
designs and studied their operating characteristics via simulation. We then virtually re-executed the trial by applying
the Bayesian designs to the PARAMEDIC2 data to demonstrate what might have happened if these designs had
been used in practice.

Results: We produced three alternative Bayesian group sequential designs, each of which had greater than 90%
power to detect the target treatment effect. A Bayesian design which performed interim analyses every 500
patients recruited produced the lowest average sample size. Using the alternative designs, the PARAMEDIC2 trial
could have declared adrenaline superior for 30-day survival with approximately 1500 fewer patients.

Conclusions: Using the PARAMEDIC2 trial as a case study, we demonstrated how Bayesian group sequential
designs can be constructed for phase III emergency medicine trials. The Bayesian framework enabled us to obtain
efficient designs using decision criteria based on the probability of benefit or harm. It also enabled us to
incorporate information from previous studies on the treatment effect via the prior distributions. We recommend
the wider use of Bayesian approaches in phase III clinical trials.

Trial registration: PARAMEDIC2 Trial registration ISRCTN, ISRCTN73485024. Registered 13 March 2014, http://www.
isrctn.com/ISRCTN73485024
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Introduction
Group sequential designs, a class of adaptive design, can
offer a more efficient approach than traditional fixed
sample size designs for phase III randomised controlled
trials (RCTs), which often use large sample sizes and re-
quire many months or years to recruit patients (e.g. [1]).
These designs incorporate planned interim analyses and
enable the trial to terminate early if sufficient evidence
exists to reach a firm conclusion, indicated by the cross-
ing of stopping boundaries. Trials may be stopped as
soon as efficacy is established, or they may be terminated
for futility. The conditions for stopping the trial must be
pre-specified based on the input of the key stakeholders
(e.g. clinical investigators, trial statisticians, health econ-
omists and patients) to maintain integrity and credibility
of the trial. Since these trials have the opportunity to
stop earlier than fixed designs, their expected sample
size is smaller, leading to the potential for reduced costs.
However, if group sequential designs do not stop early
they may result in an increased achieved/maximum sam-
ple size, cost and trial duration compared to fixed de-
signs for the same level of power and type I error.
Many of the phase III RCTs that have used group se-

quential designs have been constructed using the fre-
quentist approach (e.g. [2, 3]). These methods have
typically involved null hypothesis testing at each interim
analysis and calibrating the stopping boundaries over the
interim analyses to preserve an overall type I error rate
of, say, 5% [1].
Bayesian statistical methods provide an alternative ap-

proach to frequentist methods and are well-suited to
performing interim analyses since they were developed
to combine new data with previous information or be-
liefs to give updated probabilities about the quantity of
interest, such as the treatment effect. In the Bayesian ap-
proach, historical information or clinical opinion driven
by evidence can be translated into a prior distribution
for the treatment effect. The prior is updated with accu-
mulated trial data to become a posterior distribution for
the treatment effect. From the posterior distribution one
can obtain the probability of the treatment effect taking
various values (e.g. probability relative risk (RR) < 1).
The posterior distribution can be used at interim ana-

lyses to drive decisions, such as whether to stop for efficacy
based on the probability of superiority of the intervention
or the probability of a clinically significant difference. Thus,
the Bayesian approach can provide clinically relevant deci-
sion criteria for the interim analyses. See Berry et al. [4] for
additional discussion on the advantages of Bayesian adap-
tive designs for clinical trials.
The United States Food and Drug Administration

(FDA) has provided guidance on the use of Bayesian de-
signs for RCTs [5, 6]. Whilst Bayesian adaptive designs
are increasingly being used in early phase trials, they

have not been widely adopted in practice for phase III
trials. Only a few published, completed phase III trials
have used Bayesian adaptive methods from the design
phase (e.g. [7–9]). A recent example of a phase III Bayes-
ian group sequential design is the UK-REBOA trial [10],
which is being conducted in trauma patients and cur-
rently is recruiting. Some of the reasons for the lack of
uptake of Bayesian adaptive designs include the math-
ematical complexity introduced by some Bayesian de-
signs and the potentially high computational cost to
simulate designs and perform analysis; a lack of know-
ledge and skills in Bayesian adaptive trial methodology
compared to traditional methods; nervousness from re-
searchers regarding unfamiliar methods; and the require-
ment of having to specify a prior distribution [10].
Difficulties may also exist in obtaining funding as grant-
awarders often prefer more conservative methods.
The aim of this paper is to explore in detail how a

Bayesian group sequential approach could be used to de-
sign a phase III emergency medicine trial. We will use a
large, recently published RCT [11, 12] that was conducted
on out-of-hospital cardiac arrest (OHCA) patients to dem-
onstrate how Bayesian group sequential designs could be
constructed in this context. We will propose several
Bayesian designs and compare different design features to
illustrate the process by which a design might be selected.
We will also perform virtual re-executions by applying
these designs to the trial data and determine whether any
of these designs might have led to earlier stopping in this
trial. Through this work, we hope to publicise Bayesian
adaptive design methods and demonstrate that they can
be applied relatively easily.

Methods
Case study – PARAMEDIC2
The Prehospital Assessment of the Role of Adrenaline:
Measuring the Effectiveness of Drug administration In
Cardiac arrest study (PARAMEDIC2) was a randomised,
placebo-controlled trial which investigated the effective-
ness of standard of care adrenaline (epinephrine) admin-
istered by paramedics to patients who had an OHCA in
the United Kingdom [11, 12]. The primary outcome was
status of survival at 30 days. The aim of the PARA-
MEDIC2 trial was to investigate whether use of placebo
improved long-term survival rates as it was thought that
adrenaline may be harmful.
The planned sample size was 8000 patients, and the trial

was designed using frequentist group sequential methods.
The original study had 93% power to detect a difference cor-
responding to 8% 30-day survival in the adrenaline group
relative to 6% in the placebo group, that is, a RR of 1.33,
using a two-sided significance level of 0.05. An assumption
of very little missing data was made for the primary
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outcome, and therefore, the sample size was not adjusted to
account for missing data.
PARAMEDIC2 had pre-specified up to ten 3-monthly

interim analyses that were performed on the 30-day sur-
vival rate. These interim analyses enabled early efficacy
stopping to declare adrenaline superior, or stopping for
adrenaline being harmful (placebo superior). A higher
level of evidence was required in the earlier interim ana-
lyses to stop for concluding that adrenaline was harmful
(placebo superior) since this would involve recommend-
ing the withdrawal of standard treatment based on data
from a small number of patients. The investigating clini-
cians felt that the clinical community would be more
accepting of a trial that stopped early to declare adren-
aline superior, based on the existing evidence. Therefore,
asymmetric stopping boundaries were implemented,
where Pocock’s alpha-spending function was used to
construct the boundaries for stopping for adrenaline be-
ing superior, and the O’Brien and Fleming alpha-
spending function, which gives more stringent boundar-
ies at early interim analyses, was used to construct the
boundaries for stopping for adrenaline being worse than
placebo (adrenaline harmful) (see [13]). These stopping
boundaries ensured that the total type I error was 2.5%
for declaring adrenaline superior, and 2.5% for declaring
adrenaline worse than placebo. The spending functions
were specified at the design stage.
Interim monitoring was based on the chi-squared

test statistic, and nominal p-values were calculated
and compared with the boundary values. The p-values
associated with the chi-squared stopping boundaries
for the predicted information that was originally as-
sumed for each interim analysis are presented in
Additional file 1: Table A1.1.
The PARAMEDIC2 study had slower recruitment and

lower survival rates than originally anticipated, which led
to the interim analyses being conducted with fewer pa-
tients than intended. The stopping boundaries were ad-
justed during the trial for each interim analysis to reflect
the fact that less information was available than origin-
ally planned; the function to calculate the stopping
boundaries was pre-specified, but the specific stopping
boundary values for each interim analysis were calcu-
lated from the amount of information available at that
time.
This adjustment had some undesirable consequences,

in terms of stopping early for efficacy. First, because the
timing of the interim analyses was specified by time ra-
ther than number of patients recruited [11, 12], most of
the interim analyses were conducted early in the trial
(see Additional file 1) with relatively small amounts of
information. Whilst early looks were useful on safety
grounds, the restriction to 10 interim analyses meant
that because of the intensive monitoring in the early part

of recruitment, the trial missed opportunities to stop for
efficacy later on. In addition, the low information con-
tent of the interim analyses led to stopping boundaries
that were very stringent, particularly for stopping for the
placebo being superior. The p-values associated with the
adjusted stopping boundaries are given in Additional file
1: Table A1.2. These meant that the trial would only
have stopped early, especially for superiority of placebo,
if a massive difference was observed between the arms.
PARAMEDIC2 randomised 8014 patients: 4015 to

adrenaline and 3999 to placebo. None of the interim
analyses recommended early stopping (see Additional file
1: Table A1.2). At 30 days post-randomisation 130/4012
(3.2%) adrenaline patients and 94/3995 (2.4%) placebo
patients were alive at the final analysis. This gave an un-
adjusted odds ratio of 1.39 (95% CI: 1.06, 1.82) and p =
0.02. A Bayesian analysis performed on these data found
a posterior probability of 0.99 that adrenaline was super-
ior to placebo. The authors concluded that the use of
adrenaline resulted in a significantly higher rate of 30-
day survival compared to placebo [12].

Alternative Bayesian designs
We are interested in investigating how a Bayesian ap-
proach could have been used to construct alternative de-
signs for the PARAMEDIC2 trial and determine whether
this trial could have stopped earlier if a different design
had been used. The Bayesian approach will use different
decision criteria and different stopping boundaries and
will incorporate prior distributions. We will also explore
Bayesian designs that used interim analysis schedules
that differ from the original design.
To make the design process as realistic as possible, the

Bayesian designs were developed by a statistician (EGR)
who was independent of the PARAMEDIC2 trial, using
the PARAMEDIC2 trial protocol and Statistical Analysis
Plan, but without use of the observed data, to obtain
trial design parameters. Discussions were held with the
PARAMEDIC2 investigators and the original PARA-
MEDIC2 statisticians (CJ, RL, NS and SG) to determine
which adaptive features would be practically feasible to
incorporate into the Bayesian designs and how the stop-
ping criteria should be constructed. The statistician
remained blind to the trial results until the Bayesian de-
signs’ operating characteristics had been obtained.

Interim analysis schedule
The interim analysis schedules explored for the Bayesian
designs (B1, B2, B3) are given in Table 1. The maximum
sample size was chosen to be the same as the original
planned sample size for PARAMEDIC2 (N = 8000).
Initially we used the same interim analysis schedule as the

original trial design, in terms of the frequency of analyses.
That is, a maximum of 10 interim analyses performed 3-
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monthly, beginning at 50 patients recruited (Design B1,
Table 1). When simulating the designs’ operating character-
istics, a Poisson process was used to simulate patient recruit-
ment (see below for more details) and so the number of
patients at each interim analysis will differ slightly between
simulated trial runs.
We then explored the operating characteristics and

preference of clinicians of a number of different interim
analysis schedules before settling on two designs (B2 and
B3) that had their interim analyses based on the number
of patients recruited, rather than on a time basis (Design
B1). For Design B2, we used the predicted number of pa-
tients from the original design (Additional file 1: Table
A1.1) for interim analyses 1–10 and then added two
additional interim analyses at 7000 and 7500 patients.
Design B3 had interim analyses every 500 patients. Both
Designs B2 and B3 had an increased number of interim
analyses compared to Design B1.
The interim analyses performed in the Bayesian de-

signs involved estimating the posterior distribution for
the 30-day survival rates for each arm. Similar to the ori-
ginal design, our Bayesian group sequential designs as-
sumed that stopping early was driven by the primary
outcome alone, and other safety outcomes were not con-
sidered here. The stopping decisions were based on the
posterior probability of superiority (adrenaline better)
and harm (placebo better). Further explanation on the
stopping rules is provided below.

Simulation settings
Simulations of the Bayesian designs were performed in
FACTS (version 6.2 [14];) so that their operating charac-
teristics could be studied. Uncertainty at the design stage
existed regarding the effect size and survival rates, so we
simulated a range of different effect size scenarios for
each design. Based on published data available at the
time of the design of PARAMEDIC2 (see Add-
itional file 2), we assumed survival rates of 2%, 3% and
6%, and simulated scenarios with no improvement
(“null”), a 1% improvement and a 2% improvement from
each of these 30-day survival rates. Superiority of each
arm from each survival rate was simulated separately.
The scenarios simulated are summarised in Table 2.
We assumed a mean recruitment rate of 53 patients/

week, which was the predicted average from the trial
protocol. We assumed reaching the maximum recruit-
ment rate would take 6 months. Similar to the original
design, we assumed no dropouts. Recruitment was simu-
lated stochastically in FACTS using a Poisson process
that incorporates the above-mentioned recruitment pa-
rameters. We also explored the effect of faster (average
80 patients/week; 1.5 times faster) and slower (average
25 patients/week; half as fast) recruitment rates on the
operating characteristics for Bayesian Design B1 since its
interim analyses occurred on a time basis (see
Additional file 3). A benefit of our approach is that we
have allowed for uncertainty in the recruitment rate.

Table 1 Bayesian group sequential designs explored for the PARAMEDIC2 study

Interim
analysis (i)

Stopping boundaries Number of patients recruited

adrenaline better placebo better B1 interim analysis schedulea B2 interim analysis schedule B3 interim analysis schedule

1 0.9999 0.99999 50 50 500

2 0.9998 0.99999 400 300 1000

3 0.9997 0.99998 1100 600 1500

4 0.9996 0.9998 1800 1000 2000

5 0.9995 0.9997 2400 1450 2500

6 0.9994 0.9996 3100 1900 3000

7 0.9993 0.9995 3800 2650 3500

8 0.9992 0.9994 4500 3650 4000

9 0.9991 0.9993 5200 5000 4500

10 0.999 0.9992 5900 6500 5000

11 0.998 0.999 NA 7000 5500

12 0.996 0.998 NA 7500 6000

13 0.994 0.997 NA NA 6500

14 0.992 0.996 NA NA 7000

15 0.99 0.994 NA NA 7500

Final analysisb 0.977 0.977 Max 8000 Max 8000 Max 8000
aApproximately where the interim analyses occurred since these were on a time basis (3-monthly) and the recruitment was simulated using a Poisson process
bIf the trial did not stop early, then the final analysis was performed once 8000 patients had been recruited and followed up; if the trial stopped early, then the
final analysis was performed once the recruited patients had been followed up
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Patients who had not completed the 30-day follow-up
at each interim analysis had their responses imputed
from the posterior distribution. We allowed for primary
outcome follow-up to be completed if the trial stopped
recruitment early and a final analysis was performed
once recruited patients had been followed up for the 30-
day post-randomisation period (overrunning).
The type I error was estimated using the proportion of

simulations that incorrectly declared a difference be-
tween the arms when no difference was present in the
true primary outcome rates. We simulated 10,000 trials
for the scenarios of no effect to accurately estimate the
type I error, and 1000 trials for the other effect sizes to
reduce computational burden. The power/probability of
declaring a difference was calculated as the proportion
of simulations that declared the correct arm to be super-
ior, when one treatment was superior in the true pri-
mary outcome rate.
An important operating characteristic is the probability

of a "flip-flop". This occurs when the trial stops early due
to crossing a stopping boundary at an interim analysis
with some of the recruited patients having incomplete pri-
mary outcome data, but once the enrolled patients are
followed up to 30 days post-randomisation and the final
analysis is performed, the critical value specified for de-
claring a difference at the final analysis is not met. This
critical value at the final analysis may be a different value
to the stopping boundary that was used at the final in-
terim analysis. Since we were allowing for follow up of pa-
tients who had not completed the primary outcome
follow-up period at the interim analysis that crossed the
stopping boundary (“overrunning analysis”), we wanted to

ensure that the probability of having a “flip-flop” was small
(< 0.5%) in the Bayesian designs. This was achieved via the
choice of stopping boundaries.

Prior distributions
One of the features of a Bayesian approach is the ability
to formally incorporate information from previous stud-
ies and/or the opinions of clinicians. A number of
sources were available from which we could construct
informative priors and compare the influence of these
priors on the designs’ operating characteristics.
In FACTS, normal distributions were used for the priors

for the log-odds of the 30-day survival rate for each arm.
Initially we used a prior that had a mean 30-day survival
rate of 7% and a variance which produced a 95% credible
interval of 2–15% on the 30-day survival rate. Identical in-
dependent priors were used for both arms, and so we did
not assume either arm was superior in the prior distribu-
tions. This prior was equivalent to approximately 65 pa-
tients’ worth of information in each arm. The decision
boundaries described above were chosen on the basis of
their operating characteristics using this prior distribution;
different decision boundaries would have been chosen
under more informative priors.
We then explored the effect of incorporating informa-

tion from previous studies that was available at the time of
the original design for PARAMEDIC2, as well as the opin-
ions of the PARAMEDIC2 clinicians, into the analysis via
the prior distributions. The full details and results are
given in Additional file 2. Some differences exist in the
type I errors, probability of declaring a difference between
arms and the expected sample sizes across the priors, and
therefore, care should be taken when choosing the stop-
ping boundaries and prior distributions to be used for the
design. Freedman and Spiegelhalter [15] demonstrated the
influence that the choice of prior (in conjunction with the
planned sample size) had on Bayesian stopping boundaries
to demonstrate control of type I error.

Decision criteria
At each interim analysis, the trial could stop on grounds
of efficacy if the posterior probability that the adrenaline
arm was superior was greater than its efficacy stopping
boundary. The trial could also stop for adrenaline being
harmful if the posterior probability that the placebo arm
was superior was greater than its stopping boundary. If
neither stopping boundary was met, then the trial con-
tinued recruiting. The stopping boundaries are given in
Table 1. The same boundaries were used at each interim
analysis number, but these analyses occurred at a differ-
ent number of patients recruited across the designs, and
Designs B1 and B2 did not use all 15 of the stopping
boundary values given in Table 1. For example, interim
analysis 3 was performed at approximately 1100, 600,

Table 2 Scenarios explored for designs when simulating
operating characteristics

Placebo survival rate Adrenaline survival rate

30-day survival rate 6% 6% 6%

7% 6%

6% 7%

8% 6%

6% 8%

30-day survival rate 3% 3% 3%

4% 3%

3% 4%

5% 3%

3% 5%

30-day survival rate 2% 2% 2%

3% 2%

2% 3%

4% 2%

2% 4%
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and 1500 patients recruited in Designs B1, B2 and B3,
respectively. One could instead choose the stopping
boundaries so that similar values are used across the de-
signs based on the number of patients recruited for that
analysis. We chose to alter the stopping boundaries
based on the interim analysis number, rather than the
number of patients recruited, so that we could compare
the interim analysis schedules across the designs for the
same thresholds. At the final analysis, once follow-up of
all recruited patients was complete, a difference be-
tween the two arms was declared if the posterior prob-
ability that either arm was superior was above 0.977
(see Table 1).
Similar to the original trial, we used asymmetric stop-

ping boundaries with stricter values for stopping early
for adrenaline being harmful (placebo superior). We
began by using stopping boundary values that were
equal to 1 minus the nominal p-values that were origin-
ally proposed for the frequentist PARAMEDIC2 design
(Additional file 1: Table A1.1) in our trial simulations.
We then explored the effect that increasing and decreas-
ing these stopping boundaries had on the proportion of
simulations that stopped early for efficacy or harm, and
the type I error and power.
The values in Table 1 were chosen based on the re-

sults of simulated trials to produce a two-sided type I
error of approximately 5% for each design under a range
of assumed 30-day survival rates and > 90% power for
the target treatment effect (6% vs 8% 30-day survival
rates). Different stopping boundaries could potentially
be used to give similar operating characteristics.
One of the main operating characteristics for consider-

ation in our Bayesian designs was the potential for “flip-
flops” to occur (defined above). The Bayesian designs
were constructed to ensure that there was a low prob-
ability of this occurring via the choice of stopping
boundaries used.

Virtual re-execution of PARAMEDIC2
The PARAMEDIC2 trial was virtually re-executed by
reading the trial data into FACTS and applying the
Bayesian group sequential designs. At each interim ana-
lysis, accumulated trial data were analysed to determine
whether the trial should be stopped early.
In the execution of Bayesian design B1, we used the

same data that was used in the actual trial interim ana-
lyses, since these were performed at the same (calendar)
times. In the virtual executions of Designs B2 and B3,
we assumed that it took 14 days to collect the data for
the primary outcome and have it available for analysis.
For interim analyses conducted less than 44 (30 + 14)
days after a patient’s recruitment date, it was assumed
that the patient’s primary outcome was unknown at that
analysis.

Results
Operating characteristics of Bayesian designs
Expected sample sizes and operating characteristics for
designs B1, B2 and B3, using the prior introduced above
in each arm, are given in Table 3 and Fig. 1. Bayesian
design B3 (interim analyses every 500 patients) had the
lowest expected sample size for each effect size. Bayesian
designs B1 and B2 had similar expected sample sizes (see
Fig. 1 and Table 3). The type I error increased with the
assumed 30-day survival rate, and therefore, these de-
signs may not be controlled at the 5% level if, say, both
arms had 8% (or higher) survival rates. Further simula-
tions of the designs would be required if one wished to
control type I error over a wider range of assumed sur-
vival rates, and different stopping boundaries or sample
sizes may be required to give control of the type I error
rate and power.
Each of the Bayesian designs had greater than 90% prob-

ability to declare the correct arm to be superior when
there was a treatment effect of a 2% difference (when ei-
ther arm was superior). They had a low probability (42–
44%) to detect an improvement from 6% to 7% (RR 1.17)
30-day survival, and a slightly higher probability (66–68%)
to detect an improvement from 3% to 4% 30-day survival
(RR 1.33). The Bayesian designs had approximately 80%
probability to detect an improvement from 2% to 3% 30-
day survival (RR 1.5) and declare the correct arm to be
superior.
Initially, when we used 1 – nominal p-values that were

originally proposed for the frequentist design (given in
Additional file 1: Table A1.1) for the stopping boundaries
for the Bayesian designs, we found there to be a high pro-
portion of flip-flops (up to 9%; see Additional file 4). We
therefore used strict stopping boundaries (Table 1), which
reduced the chance of early stopping and the proportion
of flip-flops. This led to higher average sample sizes but
also gave higher power. In a frequentist trial design the
critical value for the final analysis would be updated for
trials that stopped early to account for the unspent alpha
and observed information, and so for this trial, the propor-
tion of flip-flops for a frequentist design might not be as
high as the Bayesian version of the frequentist design
would suggest. Example single trial simulations for each
design are provided in Additional file 5.

Re-executing PARAMEDIC2 with Bayesian group
sequential designs
The results of the interim analyses from the virtual exe-
cutions for each design are presented in Fig. 2 and Add-
itional file 6: Tables A6.1–6.3. The virtual executions
used the same prior that was used to generate the oper-
ating characteristics in Table 3. A prior sensitivity ana-
lysis was conducted during the virtual executions of the
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Table 3 Operating characteristics for Bayesian group sequential designs for PARAMEDIC2

Design and
scenariosa

Average
duration
(weeks)

Average
sample size
(sd)

Proportion
stopped
earlyb

Overall proportion
declaring a
differencec

Proportion that did
not declare a
difference

Proportion
flip-flop d

Average probability
adrenaline superior

Bayesian Design 1 (B1)

Null: Placebo 6%
vs Adrenaline
6%

168 7968 (390) 0.0074 0.0493 0.9506 0.0001 0.5004

Placebo 8% vs
Adrenaline 6%

133 6100 (2075) 0.502 0.935 0.064 0.001 0.0072

Placebo 6% vs
Adrenaline 8%

131 6019 (2107) 0.525 0.928 0.072 0 0.9932

Placebo 7% vs
Adrenaline 6%

163 7676 (1149) 0.084 0.431 0.569 0 0.0995

Placebo 6% vs
Adrenaline 7%

162 7654 (1174) 0.09 0.433 0.567 0 0.8961

Null: Placebo 3%
vs Adrenaline
3%

168 7980 (293) 0.0053 0.044 0.956 0 0.5039

Placebo 5% vs
Adrenaline 3%

109 4842 (1985) 0.779 0.994 0.006 0 0.0009

Placebo 3% vs
Adrenaline 5%

103 4546 (1960) 0.828 0.995 0.004 0.001 0.9991

Placebo 4% vs
Adrenaline 3%

158 7410 (1396) 0.17 0.659 0.341 0 0.0435

Placebo 3% vs
Adrenaline 4%

155 7285 (1524) 0.202 0.663 0.337 0 0.9571

Null: Placebo 2%
vs Adrenaline
2%

168 7987 (227) 0.004 0.0371 0.9629 0 0.5028

Placebo 4% vs
Adrenaline 2%

96 4140 (1641) 0.908 0.999 0.001 0 0.0004

Placebo 2% vs
Adrenaline 4%

91 3883 (1589) 0.934 1 0 0 0.9995

Placebo 3% vs
Adrenaline 2%

153 7172 (1587) 0.234 0.792 0.208 0 0.0238

Placebo 2% vs
Adrenaline 3%

150 6991 (1709) 0.288 0.814 0.186 0 0.9785

Bayesian Design 2 (B2)

Null: Placebo 6%
vs Adrenaline
6%

168 7961 (440) 0.0121 0.0484 0.9516 0 0.5001

Placebo 8% vs
Adrenaline 6%

134 6137 (1911) 0.706 0.92 0.08 0 0.0085

Placebo 6% vs
Adrenaline 8%

128 5836 (1984) 0.79 0.943 0.057 0 0.9936

Placebo 7% vs
Adrenaline 6%

163 7695 (978) 0.144 0.419 0.581 0 0.1132

Placebo 6% vs
Adrenaline 7%

161 7584 (1217) 0.158 0.436 0.564 0 0.9039

Null: Placebo 3%
vs Adrenaline
3%

168 7980 (296) 0.0075 0.0467 0.9533 0 0.5006

Placebo 5% vs
Adrenaline 3%

110 4882 (1932) 0.901 0.991 0.008 0.001 0.0011

Placebo 3% vs
Adrenaline 5%

106 4689 (1903) 0.938 0.996 0.004 0 0.9991
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Table 3 Operating characteristics for Bayesian group sequential designs for PARAMEDIC2 (Continued)

Design and
scenariosa

Average
duration
(weeks)

Average
sample size
(sd)

Proportion
stopped
earlyb

Overall proportion
declaring a
differencec

Proportion that did
not declare a
difference

Proportion
flip-flop d

Average probability
adrenaline superior

Placebo 4% vs
Adrenaline 3%

156 7343 (1375) 0.282 0.658 0.341 0.001 0.0524

Placebo 3% vs
Adrenaline 4%

155 7260 (1430) 0.313 0.665 0.335 0 0.9587

Null: Placebo 2%
vs Adrenaline
2%

168 7984 (242) 0.0079 0.0411 0.9589 0 0.5014

Placebo 4% vs
Adrenaline 2%

98 4248 (1706) 0.974 1 0 0 0.0004

Placebo 2% vs
Adrenaline 4%

94 4019 (1674) 0.983 1 0 0 0.9996

Placebo 3% vs
Adrenaline 2%

152 7106 (1460) 0.406 0.779 0.221 0 0.0257

Placebo 2% vs
Adrenaline 3%

148 6928 (1621) 0.443 0.789 0.211 0 0.978

Bayesian Design 3 (B3)

Null: Placebo 6%
vs Adrenaline
6%

167 7936 (492) 0.027 0.0515 0.9481 0.0004 0.5003

Placebo 8% vs
Adrenaline 6%

123 5562 (1879) 0.827 0.935 0.065 0 0.0066

Placebo 6% vs
Adrenaline 8%

118 5333 (1829) 0.87 0.945 0.055 0 0.9924

Placebo 7% vs
Adrenaline 6%

159 7497 (1183) 0.235 0.424 0.574 0.002 0.0959

Placebo 6% vs
Adrenaline 7%

157 7382 (1216) 0.303 0.435 0.562 0.003 0.9017

Null: Placebo 3%
vs Adrenaline
3%

168 7957 (293) 0.0223 0.0492 0.9505 0.0003 0.5002

Placebo 5% vs
Adrenaline 3%

101 4416 (1587) 0.976 0.995 0.005 0 0.011

Placebo 3% vs
Adrenaline 5%

97 4186 (1535) 0.982 0.993 0.006 0.001 0.9985

Placebo 4% vs
Adrenaline 3%

151 7052 (1475) 0.431 0.66 0.338 0.002 0.043

Placebo 3% vs
Adrenaline 4%

146 6821 (1512) 0.53 0.678 0.32 0.002 0.9552

Null: Placebo 2%
vs Adrenaline
2%

168 7970 (282) 0.0173 0.0415 0.9576 0.0009 0.4979

Placebo 4% vs
Adrenaline 2%

90 3854 (1364) 0.996 0.999 0.001 0 0.0006

Placebo 2% vs
Adrenaline 4%

87 3643 (1327) 0.996 0.999 0.001 0 0.9993

Placebo 3% vs
Adrenaline 2%

144 6691 (1594) 0.564 0.788 0.21 0.002 0.0217

Placebo 2% vs
Adrenaline 3%

139 6436 (1592) 0.66 0.80 0.198 0.002 0.9776

aDifferent effect size scenarios that were simulated for each design are given as placebo 30-day survival rate vs adrenaline 30-day survival rate
bProportion of simulations that stopped early and were declared to have a difference (in the correct direction) at the final analysis
cThe simulated type I errors are italicised
dThese simulations were stopped early for efficacy or harm, but they did not meet the critical values to declare a difference between the treatments at the final
analysis once all patients were followed up (insufficient evidence of a difference)
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Bayesian designs, and the results are presented in
Additional file 6: Tables A6.4-S6.6.
When implementing Bayesian design B1, none of the

interim analyses recommended stopping the trial early
(when the above-mentioned prior was used). Very few
survival events occurred in the earlier interim analyses,
and these did not provide much information; the poster-
ior estimates were closer to the prior mean at these
interim analyses. The posterior probabilities that adren-
aline was superior came close to the stopping boundaries
in the later interim analyses for Bayesian design B1, and
at the final analysis, the trial crossed the decision thresh-
old with a posterior probability of 0.9878 that adrenaline
was superior.
Design B2 recommended stopping early for declaring

adrenaline superior at interim analysis 11 at 7000 pa-
tients, and Design B3 recommended stopping early for
declaring adrenaline superior at interim analysis 13 at
6500 patients. The inferences resulting from the designs

that resulted in decreased sample sizes are similar to
those of the original trial. For Bayesian designs B2 and
B3, there were posterior probabilities of 0.9974 and
0.996, respectively, that adrenaline was superior at the
final analysis.

Discussion
Through choice of the stopping boundaries, the Bayesian
group sequential designs we proposed had greater than
90% power for the target treatment effect, a low probability
of having “flip-flops,” and approximately 5% type I error.
The Bayesian design that had fixed sample size increments
of 500 patients (Design B3) tended to produce the lowest
average sample size of the three Bayesian designs investi-
gated. This design presents a trade-off in the potential for a
lower average sample size at the cost of increased oper-
ational complexity due to a higher number of interim ana-
lyses. A disadvantage of this design is that it has the latest
first interim analysis, which would be problematic if one of

Fig. 1 Key operating characteristics for Bayesian designs across several treatment effects and survival rates. The mean sample size is shown in the
left column and the probability of declaring a difference between the trial arms is shown in the right column. The treatment effect is the raw
difference between adrenaline and placebo survival rates. A positive treatment effect corresponds to adrenaline being superior; a negative
treatment effect corresponds to adrenaline being harmful. The horizontal line in the right column figures represents a type I error of 5%
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Fig. 2 (See legend on next page.)
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the arms was causing harm. Each of the Bayesian designs
had similar probabilities of declaring a difference between
the arms for each of the effect sizes studied.
When virtually re-executing PARAMEDIC2 using the

Bayesian designs and the trial data, we found that if
more interim analyses were taken later during recruit-
ment, the PARAMEDIC2 trial could have stopped early,
declaring adrenaline superior with approximately 1500
fewer patients. It appears that the PARAMEDIC2 trial
would have benefitted with more interim analyses later
on in the trial, once more survival events had been ob-
served. However, the trial recruited approximately 300–
500 patients per month after 3000 patients had been re-
cruited, and so data cleaning, analysis and planning the
Data Monitoring Committee (DMC) meetings may have
been practically difficult for Designs B2 and B3, which
had more interim analyses later on in recruitment.
The simulation approach implemented in this paper is

very flexible because it enables one to explore the operat-
ing characteristics of different design options (interim ana-
lysis schedules, stopping boundary values, decision criteria)
under various possible scenarios (true effect size, variability
of the primary outcome, control arm rate, recruitment
rate). The design to be implemented can then be chosen
based on the operating characteristics it produces under a
range of scenarios. Simulation of trial designs is important
in both the Bayesian and frequentist frameworks, but since
more “off the shelf” frequentist group sequential designs
are available, simulation is not as routinely performed as
when constructing Bayesian designs. Approaches such as
sample size re-estimation could also be used as an alterna-
tive to information-based group sequential designs in sce-
narios where there is uncertainty in event rates.
The Bayesian approach allowed us to incorporate the

opinions of clinicians and information from previous
studies on the effect size via the prior distributions. It
also enabled us to use decision criteria that were based
on the probability of benefit or harm, which are more
clinically relevant than p-values. Additional benefits may
be gained by using a Bayesian approach for more com-
plex designs, such as multi-arm trials that use response
adaptive randomisation or those with longitudinal or
multi-level modelling since they can incorporate mul-
tiple complex decisions [16]. A recent example is the
REMAP-CAP trial [17] which is a Bayesian adaptive
platform trial for patients with community-acquired
pneumonia that is currently recruiting.

The designs presented in this paper are situation-
specific, as all adaptive designs are, and if different clini-
cians had been consulted, different designs would have
been investigated. We do not recommend simply taking
the stopping boundaries from Table 1 and using them in
other trials without first studying the operating characteris-
tics of the designs in different trial contexts. We chose
stopping boundary values to produce a simulated type I
error of approximately 5% and a low proportion of flip-
flops. However, not all Bayesians are concerned with the
control of type I error as this is a frequentist property. Also,
not all designs may allow for overrunning analyses (i.e. do
not collect follow-up data on incomplete patients once the
trial has stopped early). If less stringent values had been
used for the stopping boundaries, smaller expected sample
sizes would have been obtained in the trial simulations and
different decisions are likely to have been made at the in-
terim analyses when virtually executing the trials.
Our Bayesian designs assumed that stopping early for

the superiority of adrenaline or for adrenaline being
harmful was driven by the primary outcome. We had
considered also using a secondary outcome from the
trial, the modified Rankin Scale (mRS), which measures
neurological and cognitive outcomes, in the decision-
making process. Given the low survival rate for PARA-
MEDIC2 the mRS did not provide much more informa-
tion at the interim analyses than the survival outcome.
Quantification of a desirable effect size was also difficult
since there was little known about the distribution of the
mRS for OHCA patients. Similar to the original trial, the
DMC could examine additional safety data and make de-
viations to ensure patient safety if required.
The software that was used to simulate the designs’

operating characteristics and perform the virtual execu-
tions of the trial (FACTs) is a commercial software that
is only one of a number of possible options. Grayling
and Wheeler [18] provide a review of available software
for adaptive clinical trial designs.

Conclusions
We have demonstrated how a Bayesian group sequential
approach could be used to design a phase III emergency
medicine trial. We also demonstrated that for this case
study, later interim analyses would most likely have led
to early stopping to declare adrenaline superior for 30-
day survival with a high probability, thus reducing the
sample size of the PARAMEDIC2 study.

(See figure on previous page.)
Fig. 2 Virtual execution of Bayesian designs B1-B3 using the PARAMEDIC2 data. a) Bayesian design B1, b) Bayesian design B2; c) Bayesian design
B3. The posterior probability of having adrenaline superior at each analysis is displayed as an open circle. The posterior probability of having
placebo superior is 1 – the probability adrenaline is superior. The stopping boundaries for adrenaline superior are given as the black solid line
with open squares; the stopping boundaries for placebo superior/adrenaline harmful are given as the green dotted line with closed triangles. The
x-axis displays the analysis number and so the number of patients at each analysis generally differs between the designs
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