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PATH - Prediction of 
Amyloidogenicity by Threading and 
Machine Learning
Jakub W. Wojciechowski & Małgorzata Kotulska✉

Amyloids are protein aggregates observed in several diseases, for example in Alzheimer’s and 
Parkinson’s diseases. An aggregate has a very regular beta structure with a tightly packed core, which 
spontaneously assumes a steric zipper form. Experimental methods enable studying such peptides, 
however they are tedious and costly, therefore inappropriate for genomewide studies. Several 
bioinformatic methods have been proposed to evaluate protein propensity to form an amyloid. 
However, the knowledge of aggregate structures is usually not taken into account. We propose 
PATH (Prediction of Amyloidogenicity by THreading) - a novel structure-based method for predicting 
amyloidogenicity and show that involving available structures of amyloidogenic fragments enhances 
classification performance. Experimental aggregate structures were used in templatebased modeling to 
recognize the most stable representative structural class of a query peptide. Several machine learning 
methods were then applied on the structural models, using their energy terms. Finally, we identified the 
most important terms in classification of amyloidogenic peptides. The proposed method outperforms 
most of the currently available methods for predicting amyloidogenicity, with its area under ROC curve 
equal to 0.876. Furthermore, the method gave insight into significance of selected structural features 
and the potentially most stable structural class of a peptide fragment if subjected to crystallization.

Amyloids are unbranched, fibrillar protein aggregates, which produce characteristic diffraction pattern in X-ray 
diffraction experiments1. For a long time their occurrence was associated exclusively with severe neurodegenera-
tive diseases, such as Alzheimer’s and Parkinson’s diseases. However, more recent studies showed that these pro-
teins play other roles in a wide variety of organisms, from bacteria and fungi to human2. Plenty of studies showed 
that formation of amyloid fibers depends on the presence of short fragments with an appropriate sequence pat-
terns, called hot-spots3. These fragments are responsible for formation of a steric zipper - tightly packed structure 
which involves two beta sheets that form a core of the amyloid aggregate. High resolution studies, using X-ray 
diffraction, shed light on molecular details of the steric zipper and revealed different forms of packing peptides 
into such structures. Theoretical extrapolation, based on symmetry operations, led to proposing ten putative 
structural classes of the zipper structure, formed by parallel or antiparallel beta sheets4. Currently, using X-ray 
diffraction, seven structural classes of the crystal zipper structure have been identified. Classes 3, 9, and 10 have 
not been proven, yet.

Amyloidogenic hot-spots can be identified experimentally and computationally. Experiments typically use 
Congo Red5 and Thiflavin T6 staining, high resolution techniques such as electron microscopy7 and atomic force 
microscopy8. Recently, infrared spectroscopy has become one of the leading methods, due to its simplicity and 
efficiency9. However, experimental techniques are expensive and time consuming, which hampers their use in 
genome wide studies.

To overcome these limitations several bioinformatic methods for amyloid prediction have been pro-
posed. Some of them, like PASTA 2.010 or ArchCandy11, use structural information. Others like Waltz12 or 
AGGRESCAN13 employ statistical analysis of a sequence. FoldAmyloid14 utilizes density of a protein’s contact 
sites. Along with a growing number of known amyloidogenic sequences, machine learning methods, such as 
FISH Amyloid15, APPNN16, or AmyloGram17 were proposed. Finally, consensus predictors, such as MetAmyl18 
or Amylpred219, are also available. Machine learning methods benefit from statistically significant patterns, which 
can be found in datasets, capable of providing predictions with a good accuracy. Not all of them reveal relations 
between the features representing solutions to the problem. For example, most of the bioinformatic methods do 
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not provide much insight into structure of amyloidogenic fragments, especially when aggregates are formed by 
short sequences. Studying short peptides is relevant, since they represent the phenomenon of amyloidogenicity 
triggering amyloid pathways of longer peptides or proteins. Moreover, most of the currently known amyloido-
genic sequences are hexapeptides20,21. Despite polymorphism in amyloid structures, amyloid crystals represent 
the ground state of the protein folding energy landscape in short peptides, hence including them in modeling 
amyloidogenicity may bring essential knowledge into these methods22.

Accordingly, we combined a structural approach to modeling amyloidogenicity with machine learning meth-
ods, and developed PATH (Prediction of Amyloidogenicity by THreading). While classifying amyloidogenic pro-
pensity of peptides, PATH should provide structural insight into steric zipper structures formed by their crystals. 
Furthermore, we aimed to identify the most important energy terms characterizing these structures, which split 
them between potential amyloids and non-amyloids.

Methods
Data set.  The data that we used in our study included four data sets of hexapeptides. Peptide fragments of this 
length are regarded as very good representatives of amyloid hot-spots, which are believed to include between 4 
and 10 amino acids. Moreover, they constitute the majority of instances in databases of amyloidogenic sequences.

The first data set, Templates, consisted of structural templates that were applied to modeling potential struc-
tures of amyloid aggregates formed by other hexapeptides. Based on the structural classification of amyloid hexa-
peptides, proposed in 4, seven crystallographic structures of steric zippers were selected from the Protein Data 
Bank. Their crystallographic structures of steric zippers were selected from the Protein Data Bank. Each of them 
represented one of the experimentally confirmed structural class of amyloid hexapeptides (see Table 1). For the 
purpose of this study, the available structures were processed. All non-protein fragments, such as small organic 
molecules assisting crystallization, ions, or water molecules were removed from the structures. Since the original 
structures differed in numbers of chains forming the zipper, our final templates were built with six peptide chains 
in each beta sheet. In this procedure, copying existing chains and translating them by an appropriate vector was 
performed, based on the crystallographic data of the original structures.

In the first stage of our study, we modeled structural classes of amyloidogenic peptides. For this purpose we 
collected a set of validating structures from the Protein Data Bank. The obtained set, Amyloid Structures, con-
sisted of 24 amyloid fibers with experimentally determined structures, which were available in the Protein Data 
Bank and already assigned to a structural class4.

The data used in the final classification between two classes (amyloids and non-amyloids) constituted the 
Classification set, which was extracted from the Waltz database23. It consisted of 1080 unique hexapeptides, exper-
imentally assigned either to amyloidogenic (244 peptides) or non-amyloidogenic (836 peptides) class. These data 
were used for design, training, and testing the final effectiveness of our method. Before training the method, the 
classification set was divided into two separate sets - the training and testing data. During development of the 
classification methods, k-folds cross validation was performed with k = 5, on the training data set only. The final 
testing set consisted of 326 randomly selected peptides (30% of the total classification set), in which 85 were amy-
loidogenic and 241 non-amyloidogenic. It was used to evaluate the complete method.

Our approach was additionally tested with with the use of hexapeptides included in another benchmark set, 
pep424, applied by the authors of Pasta 2.0 for evaluation of their method10. The benchmark set consisted of 164 
hexapeptides from pep424, in which 67 were amyloidogenic and 97 non-amyloidogenic. The advantage of this 
data is such that it is much better balanced with regard to representation of both classes. Similarly to our previ-
ously described classification test, it was used to train and then test the potential of our algorithm. In both cases 
the sets were randomly divided into training and test sets containing 70% and 30% of samples, respectively.

Modeling.  Each query sequence, from the set of amyloid structures and from training part of the classifica-
tion set, was threaded into seven previously described templates. The structural modeling was performed with 
Modeller 9.21, which is designed for homology or comparative modeling, and its automodel class with default 
parameters and the model-multichain.py procedure24. Ten models were obtained for each structural class (70 
models in total), for each of the query sequences. All of the models were scored using DOPE statistical potential 
implemented in Modeller. The model with the lowest value of this score, representing each of the sequences, was 
then chosen for further analysis.

Structural class PDB code Sequence Origin

1 1YJO NNQQNY yeast prion Sup35

2 2Y3J AIIGLM amyloid-beta

4 2ONV GGVVIA amyloid-beta

5 3LOZ LSFSKD beta 2 microglobulin

6 3PZZ GAIIGL amyloid-beta

7 3OW9 KLVFFA amyloid-beta

8 3NHC GYMLGS human prion PrP

Table 1.  Hexapeptide structures representing different classes, used as templates for modeling (class numbering 
in accordance with4).
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First, based on the best model structures obtained from Modeller, we attempted to predict structural classes of 
peptide fragments. In this study, only 24 peptides included in the set of amyloid structures were modeled.

The next study was applied to the sequences from the training part of the classification set. For these sequences, 
Rosetta Energy Function (REF15)25 and some of its components were calculated for each of their optimal model 
structures selected in the first stage. The statistical potentials corresponded to the following energy terms: van 
der Waals interactions (fa_atr, fa_rep, fa_intra_rep), electrostatic interactions (fa_elec), inter-
actions with a solvent (fa_sol, lk_ball_wtd, fa_intra_sol_xover4), and statistical parameters 
describing amino acid conformation (omega, fa_dun, p_aa_pp, ref, rama_prepro). All of them 
were calculated using PyRosetta26. These terms, as well as previously computed DOPE and other scores provided 
by Modeller, were normalized and further used as an input for machine learning classifiers (see Fig. 1). Logistic 
regression, support vector machines (SVM) with three different kernel functions, and random forest methods 
were tested.

All classifiers were built using scikit-learn Python library27. The logistic regression model with L1 regulariza-
tion was built using LogisticRegression function with default parameters. SVM with linear, polynomial and RBF 
kernels were built using sklearn.svm.SVC method with default parameters. The random forest consisted of 100 
decision trees with the maximum depth of 4, and it was built with RandomForestClassifier using cross-entropy as 
the loss function. Other parameters of models were default. To make sure that the methods do not overfit to the 
data, k-folds cross validation was performed on the training data set, with k = 5.

Methods were trained and tested on both classification and benchmark sets. In both cases the sets were 
randomly divided into training and test sets containing 70% and 30% of samples, respectively. To assess the 
performance of the method, accuracy, which is defined as a fraction of correctly classified samples, sensitivity, 
specificity, Area Under ROC Curve (AUC) and Matthew Correlation Coefficient (MCC) were calculated.

Feature selection.  In order to identify the most important features that distinguish models of amyloids from 
non-amyloids, feature selection was performed, using three approaches. In the first step, we analyzed coefficients 
of logistic regression. In general, input parameters with the largest absolute values of coefficients contribute more 
to the classification than parameters with coefficients close to zero. Furthermore, the proposed model used L1 
regularization, which penalized the contribution of less significant inputs. Feature selection was performed using 

Figure 1.  Prediction procedure. Using comparative modeling, query sequence was threaded into seven 
templates representing different structural classes (class numbering in accordance with4). For each of them 
ten models were proposed and the model with the lowest DOPE score was selected. For this model REF15 and 
selected PyRosetta energy terms were calculated and used as an input for machine learning classifiers.
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previously described random forest classifier and feature_importances_ method. Finally feature selection 
was performed using the algorithm Boruta28.

Results and Discusion
Hexapeptides were modeled using seven templates representing all different structural classes of the steric zipper 
form. For each sequence the model with the lowest DOPE score was chosen. Figure 2 shows the obtained DOPE 
values for the best models of amyloidogenic and non-amyloidogenic fragments from the benchmark set. As 
expected, amyloids obtained lower scores when threaded onto steric zippers, which indicate that they formed 
more energetically favourable, and thus more stable, structures. However, this method alone does not allow 
unambiguously distinguishing between amyloids and non-amyloids since both classes partially overlap (Fig. 2). 
Nevertheless, this initial study showed that DOPE may give some clue to the nature of a query hexapeptide.

Structural class prediction.  Based on the comparative modeling and available class templates, we tested 
whether it is possible to predict the potentially most probably structural class which a query peptide sequence 
could assume. This hypothesis assumed that the model structure with the lowest energy, represented by DOPE 
value, should be the most stable and closest to the native structure. Our results showed that the model with the 
lowest DOPE score did not always correspond to the experimentally observed class. A predicted structural class 
matched the one experimentally derived in only 11 out of 24 peptides from the set of structures. Table 2 shows the 
accuracy of the classification in the form one vs all.

Although the results turned out below the expectations, it should be noted that the testing set was very small. 
Unfortunately, there are very few X-ray structures of amyloid hexapeptides that have been annotated to represent-
ative classes4, therefore many structural classes were strongly underrepresented. There are also other reasons why 
such methods might struggle to identify the correct class. For example, most statistical potentials including DOPE 
are parametrized using a set of globular proteins. Thus, they might describe protein aggregates, such as amyloids, 
with a certain level of inaccuracy. Another reason may be structural polymorphism of amyloid structures. To 
certain extent, the final structure of a fiber depends on the experimental conditions, and even in the same envi-
ronment a population containing different structures can be observed29. However, there are studies showing that 
crystal structures of short amyloid fragments assume a very stable and well defined structure, in contrast to pol-
ymorphic fibrils22. In the case of our studies, energy differences between amyloids and non-amyloids were much 
greater than between different structural classes. Therefore, a certain inaccuracy in the class prediction should not 
affect prediction of amyloidogenicity. Energy differences between amyloids and non-amyloids were much greater 
than between different structural classes.

Predicting amyloidogenicity.  Using calculated structural scores and several energy terms of the assum-
ably most stable structural models, which were obtained in the first stage, we trained several machine learning 
methods to classify amyloidogenicity of hexapeptides. Figure 3 shows the receiver operating curves (ROC) of 
all methods. Table 3 shows metrics of the best classifiers, such as area under ROC curve (AUC), sensitivity and 
specificity, obtained on the testing subsets of the data used to build our method. These results are very close to 
the results obtained from the k-fold cross-validation. The performance of selected methods was within the same 

Figure 2.  DOPE score of amyloidogenic and non-amyloidogenic sequences threaded onto steric zipper 
structures for the benchmark set.

class 1 2 4 5 6 7 8

number of 
peptides 5 4 3 2 1 4 5

accuracy 0.40 0.75 0.67 0.50 0.00 0.25 0.40

Table 2.  Accuracy of class prediction for different classes from the study on the set of Structures.
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range. Finally, for PATH we chose logistic regression, which was the simplest and one of the best performing clas-
sifiers. An additional benefit of using this method is that it is highly interpretable because it fits several coefficients 
of the linear function during the training. All methods were trained and tested on the training subsets of two data 
sets: classification database and hexapeptides from pep424 data set (see Methods).

The performance of PATH (on its test set) was compared to selected three other top predictors of amyloido-
genicity (Table 4). The performance metrics of other methods are based on the data reported by their authors, 

Figure 3.  ROC curves for compared machine learning methods, for two test sets.

Method

AUC [95% CI] Sensitivity [95% CI] Specificity [95% CI]

Waltz db benchmark Waltz db benchmark Waltz db benchmark

Logistic regression 0.8762 [0.8351–0.9161] 0.9379 [0.9091–0.9609] 0.4235 [0.3082–0.5404] 0.8569 [0.7945–0.9077] 0.9414 [0.9095–0.9712] 0.9069 [0.8528–0.9528]

SVM linear kernel 0.8681 [0.8208–0.9115] 0.9232 [0.8899–0.9500] 0.3540 [0.2597–0.4578] 0.7828 [0.7109–0.8403] 0.9551 [0.9271–0.9811] 0.8655 [0.8024–0.9170]

SVM polynomial kernel 0.8165 [0.7577–0.8732] 0.9418 [0.9153–0.9645] 0.2132 [0.1219–0.3084] 0.6792 [0.6095–0.7449] 0.9792 [0.9577–0.9955] 0.9089 [0.8565–0.9540]

SVM RBF kernel 0.8375 [0.7828–0.8867] 0.9479 [0.9237–0.9670] 0.4843 [0.3681–0.5951] 0.7865 [0.7222–0.8418] 0.9409 [0.9087–0.9710] 0.8627 [0.8000–0.9134]

Random forest 0.8668 [0.8193–0.9090] 0.9544 [0.9289–0.9780] 0.4273 [0.3188–0.5409] 0.8915 [0.8403–0.9387] 0.9259 [0.8929–0.9585] 0.9086 [0.8542–0.9526]

Table 3.  Performance of machine learning classifiers trained and tested on subsets of classification (Waltz 
database) and benchmark sets. 95% confidence intervals (CI) were calculated using bootstrap.
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calculated using their test sets. The observed differences between the three best performing predictors were neg-
ligible. PATH performed very well compared to the methods used here for a comparison.

Additionally, as suggested by one of the reviewers, we tested the approach from PATH on FVFLM pentapep-
tide, which was shown to inhibit aggregation of Abeta amyloid involved in the Alzheimer’s disease, although it 
is strongly amyloidogenic itself30. This peptide was too short for many predictors of amyloidogenicity. Moreover 
only four out of more than ten predictors that could analyze it, identified it correctly as amyloidogenic. PATH 
was able to classify it correctly as an amyloid, even though our method was not trained on any pentapeptides or 
hexapeptides that included this sequence.

Feature selection.  In the next step, we identified the most important features for our model. This was done 
by studying the logistic regression coefficients (see Fig. 4). Three most important features turned out to be DOPE 
score, REF15 score and the repulsive component of Lennard-Jones term (fa_rep). The first two terms represent 
complex energy functions that are not trivial to interpret. In general, both of them should approximate the free 
energy of a protein, thus low values of these functions indicate highly stable conformations. As expected, amyloi-
dogenic fragments obtained lower scores when threaded into a steric zipper structure. The last identified term, 
fa_rep, has a physical interpretation - it describes repulsion between atoms, arising from Pauli repulsion. This 
indicates that structures with high values of this function are too tightly packed.

A similar analysis was performed using a random forest classifier and the algorithm Boruta. Figure 5 shows 
the most important features. DOPE and fa_rep terms showed a large impact on the classification. Since this 
classifier is more sophisticated and capable of capturing nonlinear relationships in data, more features were iden-
tified in this case. The term fa_atr, describing the attractive part of the Lennard-Jones potential between two 
atoms on different residues separated by a certain distance, approximates van der Waals interactions, which are 
known to be important for fiber stabilization. A similar interpretation has fa_intra_rep, but it is calculated 
for atoms within the same residue. Finally, ref is a reference energy for a given amino acid type in an unfolded 
state and it was introduced in Rosetta as a tool for protein design. It reflects the importance of the amino acid 
composition of amyloidogenic fragments. Since logistic regression and random forest used slightly different 
features, we tested if both methods produced consistent results. Comparing the results from both classifiers, it 
turned out that less than 7% of sequences were classified differently.

Conclusions
Recognizing amyloidogenic propensity of short peptides provides more knowledge on their potentially adverse 
behavior, especially if they appear inside longer functional proteins. Bioinformatical methods offering their fast 
and faultless identification are indispensable tools to advance the prediction of amyloids.

Method AUC Sensitivity Specificity MCC

PATH 0.8762 0.4235 0.9414 0.4444

Pasta 2.0 0.8550 0.3826 0.9519 0.4291

AmyloGram 0.8856 0.6779 0.9037 0.6057

FoldAmyloid 0.7531 0.7517 0.7185 0.4526

Table 4.  Comparison of PATH with several state of the art predictors of amyloidogenicity. PATH showed one of 
the best performances among tested methods.

Figure 4.  Coefficients of logistic regression model for energy terms.
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We proposed a new method predicting amyloidogenic propensity of hexapeptides. PATH is based on thread-
ing potentially amyloidogenic sequences on zipper-like amyloid structures, corresponding to all representative 
and experimentally confirmed structural classes of short amyloids. An affinity of a sequence to each structural 
class was first evaluated with regard to the total energy of its structure. The structures were obtained using com-
parative modeling with regard to structures of class representatives. A model with the minimal DOPE statistical 
potential, representing total energy of the structure, was assumed as the most stable and the most accurate for 
each tested sequence. Although this energy could hint on potential amyloidogenicity of a sequence, since the 
median energy of amyloids was lower than that of non-amyloids, it did not allow for unambiguous split into two 
classes. Some of the non-amyloidogenic sequences, forced to assume an amyloid structure, received energies 
lower than amyloidogenic sequences.

In the other study, only amyloidogenic sequences were considered. The objective was prediction of the most 
suitable structural class of a query sequence, based on the total energy of its model structure. The correct struc-
tural class was accurately predicted for 46% of sequences. The class corresponding to the model with the lowest 
energy was selected out of 7 possible classes. This analysis, however, could not be regarded as conclusive - the 
set of available instances is very scarce, containing only 24 sequences. There might be also other reasons which 
additionally hamper this kind of modeling, such as the choice of the statistical potential, representing energy of 
the structures, or tendency of amyloid structures to polymorphism.

Since the general structural features are not sufficient for differentiating between amyloids and non-amyloids, 
in the next stage of the classification we applied more specific and descriptive energy terms from PyRosetta. The 
extended set of statistical potentials, corresponding to the best model structure from the first stage of mode-
ling, was used to build computational machine learning models. Out of several available algorithms, we finally 
selected logistic regression, as the one which gave the best accuracy. Additionally, this method is not so much of 
a black-box type, allowing for interpretation of the results. Our method was verified on two data sets, using also 
cross-validation. PATH showed a very good potential for classification of amyloidogenicity, with AUC ROC at 
0.88, sensitivity Sn = 0.42, specificity Sp = 0.94, and MCC equal to 0.44. The relatively low value of sensitivity is 
a problem for many other amyloid predictors and is related to the low ratio of amyloids to non-amyloids in the 
available experimental data. This was the case in our method. Applying the other benchmark data set, consisting 
of hexapeptides from the pep424 set, the sensitivity was much higher (Sn = 0.8569), without deterioration of the 
specificity (Sp = 0.9069). This was due to much better balanced number of instances representing both classes in 
this data set.

Confronting our method with other available predictors, we note that its effectiveness is very high and it could 
effectively support modeling amyloidogenicity. One of its assets, compared to other methods, is the combination 
of the structural approach with machine learning on numerous instances. It appears that a somehow similar 
approach of modeling amyloidogenicity was very recently applied in the version 2.0 of Waltz database class pre-
diction21, in which experimental data of the instances are accompanied with their structural models and their 
energy values. The authors, however, do not reveal all details regarding their method and its performance.

Due to the high interpretability of our method, it was possible to identify the most important features that 
distinguished amyloids from non-amyloids in the classification. Apart from differences in total energies, such as 
DOPE from Modeler and REF15 from PyRosetta, some other energy terms appeared to play a role. All applied 
methods for feature selection showed the importance of the fa_rep energy term, representing repulsive van 
der Waals interactions, which approximate Pauli repulsion, whose high values may indicate clashes in structures 
and imply that non-amyloidogenic fragments may not be fitted well into a steric zipper structure. It could explain 
relatively low accuracy of the first stage of modeling, in which non-amyloids threaded on amyloid structures, are 
indeed faulty. Also, a relatively high importance of the energy term describing repulsion of atoms within the same 

Figure 5.  Mean z-scores for energy terms obtained from Boruta feature selection method.
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residue (fa_intra_rep) was observed. A relatively low importance of statistical terms describing conforma-
tion of the backbone and side chains were observed. It should be noted, however, that statistical potentials were 
mostly fitted to describe structures of globular proteins and their use with other proteins may not be optimal11, 
therefore using better suited descriptors might improve the results and give more insight into the most influential 
features of the structures.

Code availability
All the scripts are available on https://github.com/KubaWojciechowski/PATH.
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