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ABSTRACT Single-cell RNA sequencing data can be modeled using Markov chains to yield genome-wide insights into tran-
scriptional physics. However, quantitative inference with such data requires careful assessment of noise sources. We find that
long pre-mRNA transcripts are over-represented in sequencing data. To explain this trend, we propose a length-basedmodel of
capture bias, which may produce false-positive observations. We solve this model and use it to find concordant parameter
trends as well as systematic, mechanistically interpretable technical and biological differences in paired data sets.
WHY ITMATTERS Single-cell RNA sequencing is a method to quantify the amount of individual RNAmolecules in cells.
RNA reflects the extent of gene expression, which ultimately controls cell function. However, the method is imperfect,
and some molecules are lost in the process. To understand the biophysics that control gene expression in the living cell,
we need to produce and fit models that include both biological and technical sources of variability. Here, we show that
unprocessed and mature RNA molecules exhibit counterintuitively different trends in their RNA expression and propose
a mechanism of technical variability to account for these differences. This framework allows us to systematically
explain differences in expression by specific physical mechanisms.
INTRODUCTION

The development of quantitative single-cell RNA
sequencing (scRNA-seq) has made it increasingly
tractable to fit single-molecule data to models of the
RNA life cycle, thus facilitating a mechanistic view of
genome-wide transcriptional regulation. Specifically,
protocols with cell barcodes and unique molecular
identifiers (UMIs) (1) allow for parameterization of
discrete probabilistic models, with contents of cells
conceptualized as draws from distributions over the
nonnegative integers. When these models represent
biophysical phenomena, fitting them provides infor-
mation about the phenomena or about the overall
plausibility of the model.

The standard framework for describing the micro-
scopic biophysics of reactions in living cells is the
chemical master equation (CME), which models
mRNA counts by Markov chains that traverse a
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discrete state space (2–4). To fit biophysical parame-
ters (the “inverse” problem of inference), one
must solve the CME (the “forward” problem of predic-
tion). This workflow requires computationally
facile solutions that can be applied to thousands
of genes. In mammalian and bacterial systems,
the specific form of the CME is based on a random
telegraph model of gene regulation, which describes
a single gene locus that randomly switches between
active and inactive states (2). A common simplifica-
tion, supported by genome-wide fluorescence studies
(5), treats the active state's duration as vanishingly
small: mRNA is produced in geometrically distributed
bursts that arrive according to a Poisson process.
This model can be extended to describe rather
general downstream processes of splicing, degrada-
tion (6), and translation. We focus on newly available
data with spliced and unspliced mRNA, which can be
fit to a tractable bursting model (7), and which
has seen recent use in the inference of biological
dynamics from static snapshots (8,9).

A remaining barrier to the application of this clas-
sical framework for inferring the biophysics underlying
scRNA-seq data is modeling of technical artifact. The
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sequencing process is probabilistic, and some mole-
cules may not always be measured. Some studies
attempt to “regress out” technical artifacts (10), but
these methods are informal and incompatible with a
discrete stochastic picture of transcription. Thus,
treating both biological and technical stochasticity re-
mains a significant lacuna in single-cell transcriptional
models with no satisfactory and rigorous solutions.

We begin by exploring the biophysical interpret-
ability of scRNA-seq data in light of the length bias
seen in pre-mRNA expression. In some data sets,
average spliced mRNA counts do not seem to show
a length dependence (Fig. 1 a, top), which is consistent
with previous studies of UMI-based protocols (11). On
the other hand, unspliced mRNA counts strongly
correlate with gene length (12) (Fig. 1 a, bottom).
This prompted us to investigate whether the discrep-
ancy has biological origins and raised questions about
the consequences of ignoring this bias. We find that
comprehensive, integrated stochastic models of
biology and experiment are mandatory for interpreting
sequencing data sets and appeal to the chemistry of
sequencing to propose a class of plausible models.
MATERIALS AND METHODS

A model with no technical noise

To begin, we performed a naive analysis, fitting joint unspliced and
spliced count data using a conventional (5,7) stochastic transcrip-
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tional model, namely a two-stage birth-death process coupled to a
bursting promoter:

B/
k
B � U /

b
S /

g
B; (1)

whereU and S are unspliced and spliced mRNA species; k, b, and g

are the rates of Markovian transcription, splicing, and degradation

processes, respectively; and B is a geometrically distributed burst
size with mean b. We assumed the system had reached its unique
steady state. The generating function solution to this system has
been reported by Singh and Bokes (7).
A technical noise model

In the current section, we motivate, solve, and apply a stochastic
model of sequencing that addresses technical artifacts to scRNA-
seq data. We use the CME framework to derive the model from a
microscopic Markov description of transcription in model definition.
Finally, we report the model solution in model solution and fully
describe the derivation in section S1.1.

In brief, we build a model that explicitly incorporates the stochas-
tic sequencing steps taking place in fixed media (Fig. 2 a). Consis-
tent with previous work on modeling pre-mRNA (8), we assume
that the library construction step in the 10x sequencing workflow
(1) includes molecules that have been captured at off-target binding
sites. We posit that unspliced mRNA are primarily captured at inter-
nal poly(A) tracts, whereas spliced mRNA are captured at the poly(A)
tail. To quantitatively model this effect, we introduce the concept of
UMI “false positives”: if a molecule has sufficiently many poly(A)
sites, it is likely to be captured and reverse transcribed multiple
times. As a first-order approximation, we model this bias as a
length-dependent capture rate. Thus, each molecule in a cell gives
rise to a Poisson distribution of cDNA. The downstream sequencing
and alignment steps are treated as binomial sampling from the
cDNA distribution.
FIGURE 1 Spliced and unspliced single-cell
RNA sequencing data demonstrate counterin-
tuitive trends in data moments and model fits.
(a) Length dependence of average mRNA
counts in three data sets (orange: high-expres-
sion genes; gray: discarded low-expression
genes; top row: spliced RNA; bottom row: un-
spliced RNA). (b) Transcriptional parameter
estimates without a stochastic model of
sequencing demonstrate pervasive length-
dependent trends (pbmc_10k_v3; gold: lower
bounds on 99% confidence intervals; gray:
fits rejected by statistical testing; splicing
and degradation rates are reported in units
of burst frequency).



FIGURE 2 A length-biased technical noise model produces more
physically interpretable results. (a) The integrated stochastic model
of transcription and sequencing, with length dependence of the li-
brary construction step indicated in red. (b) Inferred transcriptional
parameters do not appear to have strong length dependence
(pbmc_10k_v3; gold: lower bounds on 99% confidence intervals;
gray: fits rejected by statistical testing; splicing and degradation
rates are reported in units of burst frequency). (c) The sampling
parameter likelihood landscape shows a single optimum (dark teal:
lower, light teal: higher total Kullback-Leibler divergence between
fit and data from pbmc_10k_v3; highlighted yellow region: 5% quantile
region for the displayed landscape; orange cross: optimal sampling
parameter fit for the displayed landscape; orange points: optimal
sampling parameter fits for other analyzed v3 data sets; Cu: coeffi-
cient for length-dependent unspliced capture rate; ls: spliced cap-
ture rate). (d) The parameter fitting procedure successfully
recapitulates empirical copy-number distributions (dark teal: lower,
light teal: higher log probability mass; black points: raw data UMI
counts).
Model definition

The biological processes are defined in Eq. 1. This live-cell stage
yields the unobservable distribution PðNu ¼ nu;Ns ¼ nsÞ : ¼ Pðnu;
nsÞ, where Nz is the random variable describing true physiological
counts of species z and nz is the molecule count. This distribution
has the probability-generating function (PGF) Gðgu;gsÞ.

After equilibration, cDNA library construction begins, and all phys-
iological processes halt due to cell fixation (1). Due to the possibility
of multiple priming, each molecule of mRNA produces PoissonðDzÞ
molecules of cDNA.Du is presumed to be length dependent and gov-
erned by internal priming, whereas Ds is presumed to be length inde-
pendent and governed by poly(A) tail priming.

Finally, amplification and sequencing take place. Unlike the
library construction, these are strictly depleting processes: we sup-
pose they cannot generate new UMIs, but they can lead to loss of
UMIs. We assume the PCR amplification and product fragmenta-
tion are not substantially biased from gene to gene; further, the
downstream fragments do not retain length information. Neverthe-
less, the overall identifiability of unspliced and mature mRNA may
be different. Therefore, we suppose that each in vitro cDNA UMI
gives rise to BernoulliðpzÞ amplified, sequenced, and corrected
in silico UMIs. The corresponding overall joint PGF takes the
following form:

GXu ;Xsðgu; gsÞ ¼ GðG1;uðG2;uðguÞÞ;G1;sðG2;sðgsÞÞÞ
: ¼ Hðgu; gsÞ; (2)

where Gi;z is the PGF for sampling step i and species z. The param-
eters Dz and pz are not independently identifiable, leading us to

define net sampling rates lz : ¼ Dzpz.

We use a first-order model of length dependence lu ¼ CuL: the
rate of capture of any particular molecule scales directly with its
length, acting as a proxy for the number of poly(A) tracts in the
molecule. Even short poly(A) sequences can be captured by the oli-
go(dT) primers used in sequencing (13), and the number of poly(A)
sequences in a given gene is strongly correlated with length
(Fig. S2). We do not directly consider the number of tracts, as the
determination of appropriate length thresholds or weights is a
distinct thermodynamics challenge. The spliced mRNA parameter
ls is kept constant, modeling capture at the poly(A) tail. For conve-
nience, the model random variables and parameters are summa-
rized in Tables S1 and S2.

Model solution

Following previous work (7), the steady-state PGF for the joint
distribution of unspliced and spliced mRNA is Gðgu; gsÞ ¼ e4ðvu ;vsÞ ,
where

vz: ¼ gz � 1

4ðvu; vsÞ ¼ k
Z N

0

bU
1 � bU

ds

f : ¼ b

b � g

U ¼ vsf e�gs þ ½vu � vsf �e� bs:

(3)

The PGF of a distribution under two steps of independent sam-
pling is given in Eq. 2. Using the model assumptions outlined above,
the overall PGF takes the following form:

Hðgu; gsÞ ¼ G
�
eluðgu �1Þ; elsðgs �1Þ�: (4)

The corresponding joint probability distribution Pðxu; xsÞ is easily
computed by evaluating gu and gs around the complex unit circle
and performing an inverse Fourier transform (7,14).

The moments of the model can be calculated by differentiating
the PGF at gu ¼ gs ¼ 1. We report the lower moments of the
noise-free model and the full model in Table I. The full derivations
are provided in section S1.2. For convenience, the definitions of
the summary statistics are given in Table S3.
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TABLE 1Comparison of models' lower moments

Moment Noise-free model Technical noise model
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Data processing and inference

We downloaded the human and mouse genomes from the Ensembl
(15) database, computed gene lengths, and partitioned each gene's
sequence into a set of contiguous poly(A) sequences. These se-
quences were used to compute cumulative histograms of the num-
ber of poly(A) tracts.

The scRNA-seq processing procedure is summarized in Fig. S1 and
fully described in section S4.2.We downloaded scRNA-seq reads and
processed them with the kallisto|bustools workflow (16), thereby ob-
taining spliced and unspliced count matrices. The analyzed data
sets are motivated in section S4.1 and summarized in Table S4;
nine were generated by 10x Genomics, and seven were generated
by the Allen Institute for Brain Science (17,18). Genes without length
annotations were discarded. As shown in section S7.3, all data sets
demonstrated the previously encountered (Fig. 1 a) expression
bias. For each inference batch, we selected the top genes according
to the number of data sets in which they passed an expression filter.
We used 2,500 genes for whole-data set analyses, 3,500 for cell-type
difference analysis in blood cells, and 5,000 for cell-type difference
analysis in neurons.

We estimated the parameters by scanning over a grid of sampling
parameters, computing the conditional maximum likelihood esti-
mates (MLEs) of all gene-specific parameters by gradient descent,
and identifying the fCu; lsg MLE. In some cases, the fits were unreli-
able due to the sparsity of the data, suboptimal gradient descent
fits, or model misspecification. To control for these sources of error,
we discarded fits that were too close to the search domain bounds.
Further, we performed a chi-squared test and discarded all genes
with p<0.01 andHellinger distance>0.05 as ameasure of goodness
of fit with an effect size component. We estimated a lower bound on
99%confidence intervals forMLEs through theFisher informationma-
trix; as we omit uncertainty in fCu;lsg, these intervals necessarily un-
derestimate the error. We detail the procedure in section S4.3. The
analysiswasperformedusing theMonod0.2.5.0Pythonpackage (19).
RESULTS

A model with no length bias produces implausible
parameter estimates

At first glance, the rates we obtained by fitting the
noise-free model to bivariate copy-number distribu-
tions seemed reasonable (Fig. 1 b; section S7.4).
Two other noise models without a sequencing length
bias produced qualitatively identical results (section
S2). However, comparison with previous transcrip-
tome-wide analyses suggested that the results were
biophysically implausible.
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We found that the inferred burst size increased with
transcript length, in stark contrast with the previously
observed modest inverse relationship (20). The degra-
dation rate, normalized to burst frequency, displayed a
similar positive trend. Previous studies found little to
no gene length effect on burst frequency (20) and no ef-
fect on the rate of mRNA degradation (21). The latter is
primarily controlled by open reading frame features
rather than the length of the source gene. The
decreasing splicing rates are more challenging to
analyze: the splicing timescales given in the literature
vary over several orders of magnitude depending on
system and technology (22). However, length-based ef-
fects should beminimal, as cotranscriptional splicing is
ubiquitous in mammalian cells (23,24) and widely vary-
ing intron sizes have little impact on splicing time (25).

Aside from empirical data, there are theoretical rea-
sons to question these results: for example, the
splicing rate is likely governed by spliceosome ki-
netics at individual introns, which is a local, rather
than gene-wide, effect. Similarly, the cytoplasmic cod-
ing isoform is degraded, and its length is only weakly
related to that of the parent transcript. In summary,
the observed UMI counts of spliced transcripts cannot
be plausibly treated the same way as those of un-
spliced transcripts. Such a simplification is incompat-
ible with empirical evidence and currently accepted
models.
The technical noise model produces consistent and
physically interpretable results

Fitting the length-dependent Poisson technical noise
model yielded transcriptional parameters (Fig. 2 b; sec-
tion S7.5.2) without systematic length dependence.
Therefore, we suggest that this integrated description
of transcription and sequencing provides a more real-
istic and physically interpretable picture than available
by considering the two sources of stochasticity
separately.

All optimadiscovered by the coordinate scan proced-
ure for the 10x v3 data sets lie within the square
log10Cu ¼ � 5:8750:40 and log10ls ¼ � 0:5650:32.
The Kullback-Leibler divergence (KLD) landscapes sug-
gest that the data sets have unique optima and that the
model is appropriate (Fig. 2 c; section S7.6). Further-
more, empirical joint mRNA count histograms were
consistent with the fits (Fig. 2 d).

The inferred parameter distributions were consis-
tently well fit (26) to a log normal-inverse Gaussian
law (Fig. 3 a; section S7.7), although the mechanistic
import of this finding is unclear. We performed a set
of technical replicates, fitting distinct libraries gener-
ated from the same organism, and biological repli-
cates, fitting libraries from multiple organisms. The



FIGURE 3 The technical noise model fits can
be interpreted to analyze experimental effects.
(a) Inferred transcriptional parameter distribu-
tions (pbmc_10k_v3; gray: histogram of biolog-
ical parameters retained after statistical
testing; teal dashed line: best fit to normal-in-
verse Gaussian distribution; splicing and degra-
dation rates are reported in units of burst
frequency). (b) Parameter estimates from
biological replicates show largely concordant
inferred parameter values (conventions as in
Fig. 2 b). (c) 10x v2 and v3 single-cell RNA
sequencing (scRNA-seq) replicates generated
from a single sample demonstrate discordant
RNA count distributions: the v2 data sets
have lower mean values (orange dashed line:
identity; black: genes). (d) The v2 data sets
have higher CV2 values (orange dashed line:
identity; black: genes). (e) The v2 data sets'
distributional differences can be tentatively ex-
plained by a combination of identical biological
parameters and lower technical noise parame-
ters (Cu: coefficient for length-dependent un-
spliced capture rate; ls: spliced capture rate;
colors: data set categories; intersections of
grid lines indicate the sampling parameter
sets evaluated in the inference process).
results (Fig. 3 b; section S7.8) were consistent, with
higher correlations among the technical replicates.
The technical noise model provides a framework for
studying experimental effects

The obtained estimates for the technical noise param-
eters demonstrated limited identifiability. The data
sets appeared to possess information sufficient to
localize the technical noise to a coarse one-order-of-
magnitude domain, but no further. When comparing
multiple data sets de novo, it is challenging to attri-
bute biases in parameter values: for example, under
the current model, an apparent decrease in total RNA
content may be caused by transcriptome-wide down-
regulation of transcription, upregulation of turnover,
or decline in the sampling rates.

We can investigate the technical effects more sys-
tematically by treating replicates generated by
different sequencing technologies and adopting stron-
ger priors. We found that count data generated by the
higher-efficiency v3 chemistry consistently yielded
higher mean and lower noise ðCV2Þ levels than those
generated by the older v2 chemistry (Figs. 3, c and d,
and S32). We hypothesized that these differences
should be appropriately attributed to technical effects,
as the source tissues were similar or identical. A naive
noise-free fit produced pronounced and nonphysical
biases in parameter values (Fig. S33).

Imposing the belief that the underlying biological
parameters should be the identical between all tech-
nical replicates and treating the results for large v3
samples as a putative ground truth, we identified the
set of sampling parameters for the v2 data sets that
produced the best agreement to these biological
parameter values (Fig. S34; section S4.4). The result-
ing inferred sampling parameter optima are shown in
Fig. 3 e: as expected, v2 data sets have lower sampling
Biophysical Reports 3, 100097, March 8, 2023 5



parameter values. These values are somewhat chal-
lenging to identify without enforcing the consistency
criterion between transcriptional parameters: as
shown in section S7.6, the v2 KLD landscapes are
more susceptible to noise than the v3 KLD landscapes,
preventing de novo inference. Although the current
comparison is mostly relative, the framework provides
a quantitative explanatory mechanism for the tech-
nical effect of sequencing chemistry.
Inferred biophysical parameters provide insights into
the mechanistic basis of differential expression

Just as technical noise parameters provide a mecha-
nistic route to analyzing the effect of sequencing
chemistry, the biological parameters provide a princi-
pled mechanistic route to identifying genes that are
differentially regulated under varying conditions.
Instead of the standard descriptive approach that
tests differences in average expression (10), our
model can test differences in parameter values. This
conceptualization provides multiple advantages.
Firstly, it increases statistical power due to reliance
on model-specific results rather than nonparametric
limiting theorems. For example, a gene may be ex-
pressed at nearly identical average levels in two cell
types but have very different distributions (12); such
an effect is easier to detect using full parametric distri-
bution fits. Secondly, our approach yields greater inter-
pretability, as all parameters explicitly model
biophysical processes. For example, a difference in
average expression may be directly attributed to the
modulation of specific reaction rates, as discussed
in previous work using fluorescence-based measure-
ments (5,27) and very recently applied to scRNA-seq
data (19,28).

Thus far, we have tacitly assumed that cells can be
described as independent and identically distributed
draws from a single stationary probability distribution.
This approach is consistent with previous work
(29,30), as well as a foundational premise of transcrip-
tomic analyses: cell-type differences and transient
phenomena are driven by a small set of marker genes
(10,18,31–33), whereas the rest of the transcriptome
is roughly static. Therefore, we have consciously
omitted intrasample heterogeneity by discarding
genes that do not match the model or have particularly
high or low expression.

To demonstrate the potential applications of the
mechanistic approach to discovery, we separately fit
the cell types present in human blood andmouse brain
data sets, based on previous clustering results. Disag-
gregated cell-type grid fits produced technical noise
parameter estimates consistent with the full data
sets (Fig. S35). For simplicity, we assumed that the
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technical noise parameters in each cell type were iden-
tical to those of the full data set. We found that the
marker gene axiom appeared to be satisfied: the
matched data sets parameter values were located
near the identity line, with a small number of conspic-
uously off-diagonal genes that included known marker
genes (Fig. 4 a; section S7.10.2).

The parameters demonstrated patterns of comodu-
lation. In particular, the striking high correlation be-
tween differences in b=k and in g=k suggests that
this modulation pattern should be properly interpreted
as reflecting modulation of the burst frequency k
(Fig. 4 b; section S7.10.3). Using the change in b=k
as a coarse proxy for the change in k, we can attribute
marker gene modulation to a specific transcriptional
mechanism: for example, the differences between T
and B cells are typically associated with modulation
of the burst frequency (Fig. 4 c), as previously pro-
posed as a primary driver for cell-type differences
(20,28). However, this mechanism is far from universal
in our data sets, and we generally see a combination of
burst size and burst frequency modulation in cell-type
differences (section S7.10.4).

We used multiple biologically independent repli-
cates, combined with a standard t-test, to identify pat-
terns of parameter modulation between glutamatergic
and GABAergic cell types (section S4.5.2). The results
are shown in Fig. 4 d. Most interestingly, we observed
several genes that consistently exhibited transcrip-
tional parameter modulation but exhibited approxi-
mately constant mean spliced expression between
cell types (average log2 fold change < 1) and would
not be identifiable by standard statistical procedures.
We identified burst size modulation for the genes
Rnf152, Fam174a, Nin, Rgmb, Dpysl3, Bach2, Igf1r,
Stx4a, and Scg3. We identified burst frequency modula-
tion (putatively assigned due to changes in either
splicing or degradation rate) for the genes Fam174a,
A330023F24Rik, Socs2, Ankrd40, Slc39a11, Mblac2,
Itga4, Cxxc4, Ankrd6, Ccdc136, Crtc3, Egln1, Il34, and
Mid2. We visualize their distributions in a single
neuronal data set in section S7.10.5: the distribution
shapes demonstrate visually distinguishable differ-
ences and do not appear to suffer from significant fail-
ure to fit the data.

The identified genes largely, but not exclusively,
relate to neuronal structure and development.
Socs2, Igf1r, Itga4, and Dpysl3 are involved in differenti-
ation and neurite outgrowth (34–37). Bach2 and Cxxc4
induce feedback in neuronal development, apparently
to maintain differentiated status in neurons (38,39).
Mid2 and Nin are associated with neural development
regulation through microtubule organization (40,41).
Egln1 is linked to neuronal apoptosis (42). Fam174a
is involved in lipid metabolism and membrane



FIGURE 4 The inferred biological parameters provide insight into the biophysical basis of gene expression modulation. (a) Cell types in the
pbmc_10k_v3 blood cell data set show largely concordant inferred parameter values, with the conspicuous exception of marker genes (orange
dashed line: identity; black: genes retained after statistical testing; orange: T cell marker genes; violet: B cell marker genes; splicing and degra-
dation rates are reported in units of burst frequency). (b) Cell types show strong covariation in splicing and degradation rate differences, sug-
gesting potential burst frequency modulation (conventions as in a). (c) Cell-type differences can be attributed to combination of mechanisms;
marker gene differences between B and T cells appear to be most readily explained by burst frequency modulation (red line: parameter com-
binations that yield identical average expression levels; black: genes retained after statistical testing; orange: T cell marker genes; violet: B cell
marker genes; burst frequency modulation is estimated by splicing rate modulation). (d) Differential expression analysis identifies genes that
exhibit consistent intercell-type parameter modulation in Allen neuron populations (gray: parameters for genes not identified as differentially
expressed by the t-test and a fold change criterion; light red: parameters identified as higher in the glutamatergic cell type; light teal: parameters
identified as higher in the GABAergic cell type).
structure (43). Rnf152 and Rgmb are broadly impli-
cated in neural development (44–46). Scg3 appears
to have a functional role in secretory granule biogen-
esis (47).

Some identified genes have less clear mechanistic
connections to brain structure and function. Ankrd40
is uncharacterized and is not known to have neural
functions (48), but the similar gene product Ankrd6
has an obscure neurodevelopmental role (49). Stx4a is
localized on synaptic membranes (50). Slc39a11 is a
zinc transporter involved in brain function (51).Mblac2
codes for an obscure protein that may have enzymatic
activity (52). Ccdc136 appears to have a DNA-regulatory
role (53), but may be involved in neural speech pathol-
ogy (54). The role of Crtc3 in the rodent brain appears
to be restricted to stress response (55). Il34 is a micro-
glial marker; microglia have immune and regulatory
functions in the brain (56). A330023F24Rik is
uncharacterized.
Although these distinctions are statistically identifi-
able, the import and basis of cell-type differences in dis-
tribution rather than average expression is, as of yet,
obscure. The mechanism may involve expression
compensation previously explored using theoretical
tools (4) and recently observed under DNA repair stress
(57).
DISCUSSION

We have introduced and implemented a stochastic
model of intrinsic transcriptional noise that accounts
for sequencing artifacts or technical noise. This model
addresses an apparent overrepresentation of long un-
spliced mRNA in a variety of scRNA-seq data sets, and
we posit that this bias is unlikely to arise biologically:
fitting a simple model of mRNA production, splicing,
and degradation produces parameter trends that
render the fits suspect. Instead, we propose a model
Biophysical Reports 3, 100097, March 8, 2023 7



motivated by the chemistry of the sequencing pro-
cess: each mRNA can be captured and reverse tran-
scribed multiple times, with the possibility of such
false positives growing with the length of molecule
and the number of poly(A) capture sites (Fig. S2).
Although Poisson models for capture have been pro-
posed before (as outlined in section S5.1), their deriva-
tion is largely ad hoc, and their implications for the
reliability of sequencing data have not been examined
in detail.

We fit the proposed model to a variety of data sets
and discovered that the parameter values, and thus
entire mRNA distributions, are consistent for sets of
technical and biological replicates. Furthermore, the
parameter values themselves (Fig. S29) were concor-
dant with previous reports. Average burst sizes in the
technical noise model were in the range ð100:5; 101:5Þ
(58, 59) rather than ð10� 0:5; 100:5Þ in the noise-free
model (section S7.4). Degradation rates g=k were in
the range ð100; 101Þ, roughly consistent with fluores-
cence-based genome-wide results (5). Finally, the
splicing rates b=k were relatively slow and largely fell
within the range ð10� 0:5; 100:5Þ, i.e., on the order of
100 min. This result suggests that b is best interpreted
as the rate of an abstracted, multiintron process, as a
single intron takesminutes to tens ofminutes to splice
(22,23,25). We discuss potential refinements of this
model in section S5.2.

By fitting the model to closely matched data sets,
we investigated technical and biological differences
between conditions. We considered the differences
between 10x v2 and v3 scRNA-seq data sets and
found that the lower-quality v2 data sets can be
described in a biophysically consistent way by propos-
ing lower values for the parameters describing the
sequencing process. Further, we applied the model
to characterize cell-type differences at the level of
transcriptional parameters. Although this procedure
relies on preexisting annotations and inherits their lim-
itations, it provides a principled way to interrogate the
biophysical basis of cell-type differences. With this
approach, we have demonstrated the possibility for
interesting discovery. For example, it is possible to
identify distributional differences that are not accom-
panied by substantial expression changes. These dif-
ferences appear to be associated with compensatory
mechanisms and motivate further study of the role
of noise in biophysical systems.
DATA AND CODE AVAILABILITY

https://github.com/pachterlab/GP_2021_3 contains a Python note-
book that can be used to reproduce all figures. The same repository
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