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Abstract: A shortages of soil nutrients resources and a lack of accessibility to them especially in
calcareous soil are considered some of the main factors that limit plant production. In particular, the
cultivation of the Moringa oleifera trees in this type of soil is of special interest given the increasing
demand for every part of this tree. Several studies have focused on the production of its leaves as an
herbaceous plant and not as a tree, but there has not been extensive research on its pods, seeds, and
fixed oil production. In this sense, in this study, we provide an assessment of the use of fertilizers,
vermicompost and NPK (as traditional minerals and as nanoparticles), in order to improve pods,
seeds, and fixed oil contents, as indicators of the quality of the production of the Moringa oleifera trees
in calcareous soil conditions. In this experiment, it was observed that all parameters and the yield
of pods, seeds, and fixed oil of the Moringa oleifera tree were significantly improved by increasing
the level of vermicompost and using NPK fertilization and combination treatments in both seasons
of the study. The combination treatments of 10 and 20 ton ha−1 vermicompost plus NPK control
produced the highest percentage of oleic acid with insignificant differences between them.

Keywords: Moringa oleifera production; pods, seeds, and fixed oil yield; fatty acids; calcareous soil;
vermicompost; nanofertilizers

1. Introduction

Moringa oleifera is a small or medium-sized tree, about 10 m high. It is commonly
known as a horseradish or drumstick tree and all its parts are useful. It belongs to the
Moringaceae family, which consists of the single genus Moringa, comprised of 10–14 species.
The best-known species is Moringa oleifera, which is indigenous to northwest India and
widely cultivated in the Philippines, Thailand, Malaysia, Pakistan, and other tropical and
subtropical areas in Central Asia, America, and Africa [1,2], and is now cultivated in small
areas and private gardens in Egypt. The Moringa oleifera tree is nutritional and rich in
vitamins and minerals [3]. In addition, recently, its seeds have gained a attention as a source
of plant oil rich in oleic fatty acid. This oil is semi-solid and yellowish-brown with a bitter
almond-like odor [4]. High-oleic oils are gaining importance, especially as a replacement
for polyunsaturated vegetable oils, and have been reported to exhibit good oxidative
stability during frying [5]. This oil is suitable for both human consumption and commercial
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purposes, and therefore the Moringa oleifera tree is very useful in animal feed, alley cropping,
household cleaning agents, biogas, medicine, green manure, ornamental plants, gum and
water purification [6]. Moreover, many diseases, such as high blood pressure, lung diseases,
and skin infections can be treated with different parts of the Moringa oleifera tree such as
the leaves, inflorescences, seeds, and roots [7].

Soil is the main support for plants in agriculture, due to its contribution of nutrients
through the soil solution and its function of providing physical support for plants. It is
preferable to culture the Moringa oleifera tree in slightly acidic to neutral well-drained loam
to clay loam soils [6]. Furthermore, suitable fertilization can aids the rapid growth of
Moringa oleifera tree and enhance its ability to give a healthy plant [8] that will produces an
economic yield of pods, seeds, and fixed oil.

However, agricultural production in calcareous soils faces many difficulties due to
a high level of calcium carbonate; high infiltration rate; low water holding capacity; low
organic matter and clay content, poor structure, low cation-exchange capacity, surface
crusting and cracking; loss of nutrients via leaching or deep percolation; high pH with
a nutritional imbalance between elements such as potassium, magnesium, and calcium;
and low availability of nutrients, in particularly phosphorous, iron, and micronutrients.
These difficulties can result in failure to obtain the desired plant growth and yield [9–12].
Potassium has a clear role in most biochemical and physiological processes related to plant
growth, productivity, and resistance to drought and disease as it is able to regulates osmotic
conditions, enhances photosynthesis, and promotes carbohydrate metabolism. Therefore,
plants require quite large amounts of K to produce economic crops and to promote the
adaptive plant responses of plants to the environment [13].

Nitrogen is the main element to provide plants with the required amino acid and pro-
tein in plant. Under the alkaline conditions of calcareous soil, the rate of N transformation
increases and the efficiency of N use by plants can be influenced. Therefore, minimizing
ammonia volatilization and leaching of N presents the proper N management for fertiliza-
tion in calcareous soil [13,14]. Phosphorus is an essential macronutrient that can improve
metabolism, plant growth, root growth, flowering, maturity of seed and fruit yield, and
the degree of improvement increases when phosphorus is applied in combination with
nitrogen [15,16]; In addition, with alkaline pH conditions, the availability of both native
and added phosphorus decreases as its anions form limited solubility compounds of P, Mg,
and Ca [17]. Under such conditions, finding an approach to improve soil chemical and
physical properties and a successful method to give growing plants the fertilizers they need
without losses is vital for the rapid vegetative growth of the Moringa oleifera trees. Under
these conditions, foliar fertilization is important as a part of fertilization programs for the
Moringa oleifera trees, especially using nanofertilizers in a nanoscale range of 1–100 nm that
allows them to penetrate the plant tissues. In this field, foliar application of nano-NPK
fertilizers reduces soil pollution and obviates the interaction of nutrients with water, mi-
croorganisms, and calcareous soil, and therefore reduces the amount of nutrients used to
below recommended levels [18]. In their studies by Gohari and NoorhosseiniNiyaki [19],
Sheykhbaglou et al. [20], Bozorgi [21], and Hagagg et al. [22], the authors emphasized the
benefits of nano-fertilizers.

Vermicompost is one of the most favorable non-chemical plant nutritional sources.
It can be produced through vermicomposting of organic material by earthworms, which
can consume a wide range of organic residues. It has a positive influence on the physical
and chemical structure of soil as well as plant growth [23] by improving the stability of
soil aggregates, as well as water retention, bulk density and porosity, and soil thermal
dynamics. In addition, it stimulates and increases the absorption of nutrients by plants and
favors a biological control of bacterial and fungal diseases in plants [24]. Vermicompost
can improve plant growth in calcareous soil in four ways:

(i) Vermicompost increases the availability of plant nutrients in soil by adding N, P,
K, as well as other micro- and macro-nutrients during the process of mineralization of
organic matter. Vermicompost contains a larger group of soil-friendly fungi, bacteria and
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actinomycetes [25,26], such as nitrogen-fixing anaerobes [27], microbes that are responsible
for nitrogen mineralization and conversion of ammonium nitrogen into available plant
forms [28], as well as phosphate-dissolving bacteria such as Pseudomonas striata [29], as
plants can uptake phosphate only in a soluble ionic form [30]. Herencia et al. [31] reported
that the use of organic fertilizer enriched s soil with N, available P and K as well as organic
matter. Additionally, decreased availability of soil Mn, Fe, Cu, B and Zn has been associated
with calcareous soils [32], which resulted from interactions with soil carbonates and pH
effects [33].

(ii) Vermicompost stimulates growth-promoting hormones such as auxins, gibberellins,
and cytokinins that are produced by microorganisms in vermicompost [34,35], which
improve plant growth and increases plant tolerance to biotic and abiotic stresses [36]. The
results of a structural analysis by Canellas et al. [37] revealed the presence of exchangeable
auxin groups in the macrostructure of the humic acid fraction of vermicompost, which
were found to aid in the root growth and development of Zea mays.

(iii) Vermicompost provides biological control of plant and soil pathogens.
(iv) Soil health is improved by the organic matter content in vermicompost. Generally,

the addition of vermicompost as an organic source to calcareous soil increases the nutrient
cycling; retains soil water, soil structure, and biological processes [38–41]; and improves
rooting by activating the plasma membrane H+−ATPase, by increasing acidification of
the roots’ external medium [42,43]. Moreover, the low speed of nutrients degradation
and release from vermicompost fertilizer is suitable for perennial plants and trees grown
in calcareous soil, such as the Moringa oleifera trees in this study. Furthermore, organic
fertilizers are suitable for achieving the objectives of sustainable agriculture as noted
by many researchers, such as Arancon et al. [44], Joshi and Vig [45], Salehi et al. [46],
Madahi [47], and Oftadeh [48] who studied the effect of vermicompost on plant growth.
They observed that increasing the amount of vermicompost used significantly increased
seeds germination, the number, length, and fresh weight of leaves; chlorophyll a, b, and
total chlorophyll; growth and flowering; fruit and seed yield; and the yield of some
secondary products of medicinal and aromatic plants. Additionally, Vengadaramana and
Jashothan [49] reported that the addition of organic fertilizer improved soil properties.

Despite the enormous potential of the Moringa oleifera trees, several studies, such as
those by Sánchez et al. [50], Isaiah [51], and Dania et al. [52], have treated the Moringa
oleifera tree as an herbaceous plant, not a tree, and therefore they have focused on its leaf
production under normal conditions. However, there has not been exhaustive research on
the mature tree and its pods, seeds, and fixed oil production. Consequently, this study was
carried out to assess the response of the Moringa oleifera tree to different fertilization rates
using vermicompost and NPK (mineral and nanoparticles), in order to determine, under
calcareous soil conditions, the rate that corresponds to optimum pod, seed, and fixed oil
yield, as well as the percentage of oleic fatty acid.

2. Results
2.1. Parameters of Mature Pods

The parameters of mature pods of the Moringa oleifera trees were significantly affected
by different treatments of vermicompost, NPK, and combination treatments (Figure 1 and
Tables 1 and 2). The results indicate that the 60 ton ha−1 vermicompost treatment produced
the highest average number of pods per inflorescence (3.21 and 3.35 in the first and second
seasons, respectively); the weight of mature pods (10.17 and 9.76 g), and the maximum
mean values of number of pods per tree (164.6 and 176.1) in the first and second seasons
respectively, were reduced by adding 50 ton ha−1 vermicompost across all NPK levels. In
addition, when nano-NPK was used the maximum mean values of the number of pods
per inflorescence (2.89 and 3.00), the number of pods per tree (140.6 and 147.6), and the
weight of mature pods (9.27 and 9.03 g) were obtained across all vermicompost levels,
in the first and second seasons, respectively. The interaction between vermicompost and
NPK treatments was highly significant. Moreover, the 60 ton ha−1 vermicompost plus
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2 gL−1 nano-NPK treatment resulted in the maximum highly significant mean values of
the number of pods per inflorescence (3.53 and 3.69) and the weight of mature pods (11.22
and 10.93 g), in the first and second seasons, respectively; the maximum mean values of
the number of pods per tree (243.8 and 263.5, in the first and second seasons, respectively)
were produced with the 50 ton ha−1 vermicompost plus 2 gL−1 nano-NPK combination
treatment (Tables 1 and 2).
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Figure 1. The mean values of the number of pods per inflorescence, the number of pods per tree, and the weight of mature
pods (g) of the Moringa oleifera tree as affected by organic and mineral fertilization treatments in both seasons of the study.
Data are mean values ± SE (n = 3). Bars with same lowercase are not significant at the p ≤ 0.05 level.
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Table 1. The mean values of the number of pods per inflorescence of the Moringa oleifera tree as
affected by combination treatments of organic and mineral fertilization, in both seasons of the study.

Treatments
Number of Pods per Inflorescence

1st Season 2nd Season

T1 0.88 ± 0.06 r 0.92 ± 0.01 u
T2 0.98 ± 0.07 r 1.02 ± 0.01 t
T3 1.77 ± 0.13 n 1.84 ± 0.02 p
T4 1.18 ± 0.08 q 1.23 ± 0.02 s
T5 1.37 ± 0.10 p 1.43 ± 0.02 r
T6 2.26 ± 0.16 kl 2.36 ± 0.03 m
T7 1.57 ± 0.11 o 1.64 ± 0.02 q
T8 2.36 ± 0.17 k 2.46 ± 0.03 l
T9 2.75 ± 0.20 hi 2.87 ± 0.04 i

T10 1.96 ± 0.14 m 2.05 ± 0.03 o
T11 2.55 ± 0.18 j 2.66 ± 0.03 k
T12 3.04 ± 0.22 ef 3.18 ± 0.04 f
T13 2.16 ± 0.16 l 2.25 ± 0.03 n
T14 2.95 ± 0.21 fg 3.07 ± 0.04 g
T15 3.34 ± 0.24 bc 3.48 ± 0.04 c
T16 2.65 ± 0.19 ij 2.77 ± 0.03 j
T17 3.14 ± 0.23 de 3.28 ± 0.04 e
T18 3.44 ± 0.25 ab 3.59 ± 0.05 b
T19 2.85 ± 0.21 gh 2.97 ± 0.04 h
T20 3.24 ± 0.23 cd 3.38 ± 0.04 d
T21 3.53 ± 0.25 a 3.69 ± 0.05 a

Means in columns followed by the same lowercase letters are not statistically different at the 0.05 significance
level. Data are mean values ± SE (n = 3).

Table 2. The mean values of the number of pods per tree and the weight of mature pods (g) of the
Moringa oleifera tree as affected by combination treatments of organic and mineral fertilization, in
both seasons of the study.

Treatments
Number of Pods per Tree Weight of Mature Pods (g)

1st Season 2nd Season 1st Season 2nd Season

T1 5.6 ± 0.9 l 6.0 ± 0.1 s 4.39 ± 0.09 u 4.27 ± 0.35 m
T2 9.2 ± 1.5 kl 9.8 ± 0.2 rs 5.30 ± 0.10 t 5.17 ± 0.42 l
T3 29.3 ± 5.0 ijk 31.4 ± 0.8 o 6.43 ± 0.13 p 6.26 ± 0.51 k
T4 11.6 ± 1.9 kl 12.4 ± 0.3 r 5.51 ± 0.11 s 5.36 ± 0.44 l
T5 19.0 ± 3.2 jkl 20.4 ± 0.5 q 5.71 ± 0.11 r 5.56 ± 0.46 l
T6 54.5 ± 9.3 gh 58.4 ± 1.4 l 7.65 ± 0.15 m 7.45 ± 0.61 i
T7 23.7 ± 4.0 ijkl 25.4 ± 0.6 p 6.22 ± 0.12 q 6.06 ± 0.50 k
T8 63.3 ± 10.9 fg 67.9 ± 1.7 k 8.06 ± 0.16 l 7.85 ± 0.64 hi
T9 95.2 ± 16.4 e 102.0 ± 2.5 h 8.98 ± 0.18 i 8.74 ± 0.72 efj

T10 35.8 ± 6.1 hij 38.4 ± 0.9 n 6.94 ± 0.14 o 6.75 ± 0.55 j
T11 76.6 ± 13.2 ef 82.1 ± 2.0 j 8.36 ± 0.16 k 8.15 ± 0.67 gh
T12 132.8 ± 23.0 d 142.4 ± 3.5 e 9.69 ± 0.19 f 9.44 ± 0.77 d
T13 42.6 ± 7.2 ghi 45.6 ± 1.1 m 7.14 ± 0.14 n 6.95 ± 0.57 j
T14 117.3 ± 20.3 d 125.8 ± 3.1 f 9.49 ± 0.19 g 9.24 ± 0.76 d
T15 207.0 ± 36.0 b 209.1 ± 5.2 c 10.20 ± 0.20 c 9.93 ± 0.81 c
T16 85.3 ± 14.7 e 94.1 ± 3.9 i 8.77± 0.17 j 8.54 ± 0.70 fg
T17 164.7 ± 28.6 c 170.7 ± 4.2 d 9.79 ± 0.19 e 9.92 ± 0.15 c
T18 243.8 ± 41.1 a 263.5 ± 6.6 a 10.71± 0.21 b 10.43 ± 0.86 b
T19 95.4 ± 9.4 e 116.3 ± 4.4 g 9.28 ± 0.18 h 9.04 ± 0.74 de
T20 158.0 ± 27.4 c 167.2 ± 4.1 d 10.00 ± 0.20 d 9.31 ± 0.69 d
T21 202.6 ± 38.6 b 226.6 ± 8.1 b 11.22 ± 0.22 a 10.93 ± 0.90 a

Means in columns followed by the same lowercase letters are not statistically different at the 0.05 significance
level. Data are mean values ± SE (n = 3).
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2.2. Yield of Mature Pods

The results of the highly significant effects of different treatment levels of vermicom-
post, NPK, and their combinations on the yield of mature pods of the Moringa oleifera
trees are shown in Figure 2 and Table 3. On the one hand, the 50 ton ha−1 vermicompost
treatment across all NPK levels produced the highest average yields of mature pods per tree
(1661 and 1749 g tree−1) and per hectare (16,605 and 17,493 kg ha−1) in the first and second
seasons, respectively. On the other hand, by using the 50 or 60 ton ha−1 vermicompost
treatments, insignificant differences were found in the mean values of mature pods per
tree and per hectare, in both seasons. Regarding NPK fertilizer, the 2 gL−1 Nano-NPK
treatment resulted in the maximum mean values of yield of mature pods per tree (1425 and
1454 g tree−1) and per hectare (14,252 and 14,537 kg ha−1) in the first and second seasons,
respectively, across all vermicompost levels. The interaction between vermicompost and
NPK treatments was high significant. Moreover, the 50 ton ha−1 vermicompost plus 2 gL−1

nano-NPK treatment produced the maximum mean values of yields of mature pods per
tree (2616 and 2750 g tree−1) and per hectare (26,158 and 27,496 kg ha−1) in the first and
second seasons, respectively.
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Figure 2. The mean value of yield of mature pods (g tree−1) and yield of mature pods (kg ha−1) of Moringa oleifera tree as
affected by organic and mineral fertilization treatments in both seasons of the study. Data are mean values ± SE (n = 3).
Bars with same lowercase letters are not significant at the p ≤ 0.05 level.
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Table 3. The mean value of yield of mature pods (g tree−1) and yield of mature pods (kg ha−1) of
the Moringa oleifera tree as affected by combination treatments of organic and mineral fertilization in
both seasons of the study.

Treatments
Yield of Mature Pods (g Tree−1) Yield of Mature Pods (kg ha−1)

1st Season 2nd Season 1st Season 2nd Season

T1 25 ± 4 l 26 ± 2 o 246 ± 43 l 256 ± 24 o
T2 49 ± 9 l 51 ± 5 no 489 ± 88 kl 509 ± 48 no
T3 189 ± 35 jkl 197 ± 19 lmn 1888 ± 349 jkl 1966 ±186 lmn
T4 64 ±12 kl 66 ± 6 no 639 ± 116 kl 665 ± 63 no
T5 109 ± 20 kl 113 ± 11mno 1088 ± 200 kl 1133 ± 107 mno
T6 418 ± 78 hij 436 ± 41 jk 4180 ± 781 hij 4356 ± 412 jk
T7 148 ± 27 kl 154 ± 15 mno 1478 ± 272 jkl 1539 ± 145 mno
T8 511 ± 96 ghi 533 ± 50 ij 5112 ± 958 ghi 5328 ± 503 ij
T9 856 ± 161 f 892 ± 84 g 8560 ± 1611 ef 8922 ± 843 g

T10 249 ± 46 jkl 260 ± 25 lm 2491 ± 462 ijkl 2595 ± 245 lm
T11 642 ± 121 fgh 669 ± 63 hi 6421 ± 1206 fgh 6692 ± 632 hi
T12 1289 ± 243 d 1344 ± 127 e 12894 ± 2434 d 13441 ± 1271 e
T13 305 ± 57 ijk 317 ± 30 kl 3046 ± 566 ijk 3173 ± 300 kl
T14 1115 ± 210 de 1162 ± 110 f 11151 ± 2103 de 11624 ± 1099 f
T15 2116 ± 401 b 2078 ± 197 c 21157 ± 4009 b 20783 ± 1965 c
T16 750 ± 141 fg 806 ± 97 gh 7498 ± 1409 fg 8058 ± 970 gh
T17 1616 ± 306 c 1692 ± 46 d 16160 ± 3057 c 16924 ± 462 d
T18 2616 ± 482 a 2750 ± 260 a 26158 ± 4820 a 27496 ± 2600 a
T19 887 ± 103 ef 1054 ± 123 f 8867 ± 1031 ef 10536 ± 1231 f
T20 1583 ± 299 c 1559 ± 155 d 15826 ± 2992 c 15586 ± 1546 d
T21 2276 ± 473 b 2479 ± 271b 22758 ± 4727 a 24795 ± 2708 b

Means in columns followed by the same lowercase letters are not statistically different at the 0.05 significance
level. Data are mean values ± SE (n = 3).

2.3. Parameters of Mature Seeds

The mean values with the highest significance for the number of seeds per pod (20.5
and 20.7) and mature seeds (0.228 and 0.231 g) in the first and second seasons, respectively,
were produced by the 60 ton ha−1 vermicompost treatment as compared with the other
vermicompost treatments, including the control. The same situation was observed for the
2 gL−1 nano-NPK treatment which recorded the maximum mean values of the number
of seeds per pod (19.3 and 19.5) and weight of mature seed weight (0.208 and 0.210 g) as
compared with the treatments of 2 gL−1 and the NPK control in both seasons. Regarding the
combination treatments, the 60 ton ha−1 vermicompost plus 2 gL−1 Nano-NPK treatment
produced the significant maximum mean values of the number of seeds per pod (22.8 and
23.0) and weight of mature seed weight (0.267 and 0.270 g) in the first and second seasons,
respectively (Figure 3 and Table 4).

2.4. Yield of Mature Seeds

As compared with the control treatment, different levels of vermicompost, NPK,
and their combinations showed significant improvements in the yield of mature Moringa
oleifera seeds per tree and per hectare (Figure 4 and Table 5). In the first season, the mean
values of yield of mature seeds per tree (777 g tree−1) and per hectare (7777 kg ha−1)
was maximum with 50 ton ha−1 vermicompost treatment. In the second season, the
60 ton ha−1 vermicompost treatment produced the highest mean yield of mature seeds per
tree (868 g tree−1) and per hectare (8678 kg ha−1) as compared with the other vermicompost
treatments including the control. For both seasons, the differences between the mean yield
of mature seeds per tree and per hectare with the 50 and 60 ton ha−1 vermicompost
treatments were insignificant. Regarding the use of NPK, it was observed that spraying
2 gL−1 nano-NPK gave the maximum mean values of yields of mature seeds per tree (676
and 737 g tree−1) and per hectare (6759 and 7370 kg ha−1), in the first and second seasons,
respectively, as compared with the 2 gL−1 NPK treatment and NPK control. Regarding the



Plants 2021, 10, 1998 8 of 27

combination treatments, the 50 ton ha−1 vermicompost plus 2 gL−1 nano-NPK treatment
gave the maximum yields of mature seeds yield per tree (1350 and 1482 g tree−1) and per
hectare (13,501 and 14,821 kg ha−1) in the first and second seasons of the study, respectively.
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as affected by organic and mineral fertilization treatments in both seasons of the study. Data are mean values ± SE (n = 3).
Bars with same lowercase letters are not significant at the p ≤ 0.05 level.
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Table 4. The mean values of the number of seeds per pod and weight of mature seed weight (g) of
the Moringa oleifera tree as affected by combination treatments of organic and mineral fertilization in
both seasons of the study.

Treatments
Number of Seeds per Pod Mature Seed Weight(g)

1st Season 2nd Season 1st Season 2nd Season

T1 5.1 ± 0.1 u 5.2 ± 0.1 u 0.031 ± 0.001 u 0.031 ± 0.001 u
T2 9.2 ± 0.2 t 9.3 ± 0.2 t 0.082 ± 0.002 t 0.083 ± 0.002 t
T3 15.7 ± 0.3 p 15.9 ± 0.3 p 0.123 ± 0.003 p 0.125 ± 0.002 p
T4 10.2 ± 0.2 s 10.3 ± 0.2 s 0.093 ± 0.002 s 0.094 ± 0.002 s
T5 13.3 ± 0.2 r 13.4 ± 0.3 r 0.103 ± 0.002 r 0.104 ± 0.002 r
T6 17.2 ± 0.3 m 17.3 ± 0.3 m 0.155 ± 0.003 m 0.157 ± 0.003 m
T7 15.3 ± 0.3 q 15.5 ± 0.3 q 0.113 ± 0.002 q 0.114 ± 0.002 q
T8 17.4 ± 0.3 l 17.5 ± 0.3 l 0.162 ± 0.004 l 0.164 ± 0.003 l
T9 18.4 ± 0.3 i 18.5 ± 0.4 i 0.185 ± 0.004 i 0.187 ± 0.004 i

T10 16.3 ± 0.3 o 16.5 ± 0.3 o 0.144 ± 0.003 o 0.146 ± 0.003 o
T11 17.6 ± 0.3 k 17.7 ± 0.3 k 0.166 ± 0.004 k 0.167 ± 0.003 k
T12 19.4 ± 0.3 f 19.6 ± 0.4 f 0.221 ± 0.005 f 0.224 ± 0.004 f
T13 16.7 ± 0.3 n 16.8 ± 0.3 n 0.151 ± 0.003 n 0.153 ± 0.003 n
T14 19.0 ± 0.3 g 19.2 ± 0.4 g 0.195 ± 0.004 g 0.198 ± 0.004 g
T15 20.3 ± 0.3 c 20.5 ± 0.4 c 0.247 ± 0.005 c 0.250 ± 0.005 c
T16 18.1 ± 0.3 j 18.2 ± 0.4 i 0.180 ± 0.004 i 0.182 ± 0.004 i
T17 19.7 ± 0.3 e 19.9 ± 0.4 e 0.216 ± 0.005 e 0.218 ± 0.004 e
T18 21.5 ± 0.4 b 21.6 ± 0.4 b 0.257 ± 0.006 b 0.260 ± 0.005 b
T19 18.7 ± 0.3 h 18.8 ± 0.4 h 0.190 ± 0.004 h 0.192 ± 0.004 h
T20 20.0 ± 0.3 d 20.2 ± 0.4 d 0.226 ± 0.005 d 0.229 ± 0.004 d
T21 22.8 ± 0.4 a 23.0 ± 0.4 a 0.267 ± 0.006 a 0.270 ± 0.005 a

Means in columns followed by the same lowercase letters are not statistically different at the 0.05 significance
level. Data are mean values ± SE (n = 3).
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Figure 4. The mean values of mature seeds yield (g tree−1) and yield of mature seeds yield (kg ha−1) of the Moringa oleifera
tree as affected by organic and mineral fertilization treatments in both seasons of the study. Data are mean values ± SE
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Table 5. The mean values of mature seeds yield (g tree−1) and mature seeds yield (kg ha−1) of the
Moringa oleifera tree as affected by combination treatments of organic and mineral fertilization in both
seasons of the study.

Treatments
Yield of Mature Seeds (g Tree−1) Yield of Mature Seeds (kg ha−1)

1st Season 2nd Season 1st Season 2nd Season

T1 1 ± 0 l 1 ± 0 p 9 ± 2 l 10 ± 0 p
T2 7 ± 1 l 8 ± 0 op 70 ± 13 l 76 ± 4 op
T3 57 ± 11 jkl 62 ± 3 mn 572 ± 113 jkl 622 ± 30 mn
T4 11 ± 2 kl 12 ± 1 op 110 ± 21 kl 119 ± 6 op
T5 26 ± 5 kl 28 ± 1 nop 261 ± 51 kl 284 ± 14 nop
T6 146 ± 29 hijk 159 ± 8 jk 1460 ± 290 hijk 1588 ± 77 jk
T7 41 ± 8 kl 45 ± 2 no 413 ± 81 kl 449 ± 22 no
T8 179 ± 36 hij 195 ± 9 j 1794 ± 358 hijk 1953 ± 95 j
T9 325 ± 65 fg 354 ± 17 h 3253 ± 651 fg 3541 ± 172 h

T10 85 ± 17 jkl 92 ± 4 lm 847 ± 167 jkl 922 ± 45 lm
T11 224 ± 45 ghi 244 ± 12 i 2238 ± 447 ghi 2436 ± 118 i
T12 572 ± 115 de 623 ± 30 e 5723 ± 1149 de 6231 ± 302 e
T13 108 ± 21 ijkl 117 ± 6 kl 1076 ± 213 ijkl 1171 ± 57 kl
T14 437 ± 88 ef 476 ± 23 f 4374 ± 877 ef 4763 ± 231 f
T15 1043 ± 210 b 1070 ± 55 c 10431 ± 2100 b 10701 ± 551 c
T16 279 ± 56 gh 313 ± 15 h 2788 ± 557 gh 3127 ± 147 h
T17 704 ± 127 cd 741 ± 33 d 7043 ± 1273 cd 7413 ± 335 d
T18 1350 ± 265 a 1482 ± 70 a 13501 ± 2654 a 14821 ± 696 a
T19 340 ± 76 fg 423 ± 20 g 3403 ± 757 fg 4226 ± 200 g
T20 719 ± 160 c 772 ± 42 d 7189 ± 1597 c 7723 ± 419 d
T21 1237 ± 323 a 1408 ± 85 b 12372 ± 3232 a 14083 ±8 47 b

Means in columns followed by the same lowercase letters are not statistically different at the 0.05 significance
level. Data are mean values ± SE (n = 3).

2.5. Fixed Oil Percentage

The fixed oil percentage of Moringa oleifera seeds was significantly affected by most
levels of applied vermicompost, NPK, and their combinations treatments in both seasons
(Figure 5 and Table 6). Contrary to the previously mentioned parameters, the fixed oil
percentage of Moringa oleifera seeds in this study was decreased by increasing the vermi-
compost level. The vermicompost control had the maximum fixed oil percentage (35.89 and
36.50%). Insignificant differences were detected between the control and the 10 ton ha−1

vermicompost treatment, in both seasons. The same situation was found for the effect of
NPK on fixed oil percentage as the NPK control gave the maximum highly significant per-
centage of fixed oil (34.53 and 33.83%) as compared with 2 gL−1 NPK or nano-NPK in both
seasons. For the combination treatments, the second treatment of vermicompost control
plus 2 gL−1 NPK gave the maximum Fixed oil percentage of Moringa oleifera seeds (38.69
and 37.48%) with insignificant differences between this result and that of vermicompost
control plus NPK control in the first and second seasons, respectively.
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Table 6. The mean values of fixed oil percentage (%) and fixed oil content (mL plant−1) of Moringa
oleifera seeds as affected by combination treatments of organic and mineral fertilization in both
seasons of the study.

Treatments
Fixed Oil Percentage (%) Fixed Oil Content (mL Plant−1)

1st Season 2nd Season 1st Season 2nd Season

T1 36.57 ± 3.07 a 36.49 ± 2.40 ab 0.3 ± 0.1 h 0.4 ± 0.0 r
T2 38.69 ± 1.22 a 37.48 ± 2.12 a 4.2 ± 0.7 gh 4.5 ± 0.3 r
T3 32.41 ± 6.29 b 35.52 ± 1.84 bc 17.8 ± 0.9 fgh 22.6 ± 1.1 o
T4 37.49 ± 2.82 a 36.78 ± 2.09 ab 2.6 ± 0.4 h 2.8 ± 0.1 r
T5 36.55 ± 0.71 a 37.83 ± 1.50 a 9.5 ± 2.0 gh 10.7 ± 0.2 q
T6 29.17± 0.91 cd 33.78 ± 1.10 c 42.5 ± 8.1 ef 53.6 ± 1.1 l
T7 37.22 ± 1.16 a 36.54 ± 1.19 ab 15.3 ± 2.9 fgh 16.4 ± 0.3 p
T8 36.72 ± 1.15 a 36.05 ± 1.18 ab 65.7 ± 12.5 de 70.3 ± 1.4 k
T9 28.17 ± 0.88 cd 28.64 ± 0.93 ef 91.4 ± 17.5 cd 101.3 ± 2.0 h

T10 36.89 ± 1.71 a 35.14 ± 1.14 bc 32.2 ± 6.1 fg 32.4 ± 1.0 n
T11 32.19 ± 1.01 b 31.61 ± 1.03 d 71.9 ± 13.7 d 76.9 ± 1.5 J
T12 26.98 ± 0.40 de 27.65 ± 0.90 fg 154.4 ± 31.1 b 172.2 ± 3.4 e
T13 36.22 ± 1.13 a 35.56 ± 1.16 bc 38.9 ± 7.4 ef 41.6 ± 0.8 m
T14 23.14 ± 0.72 fg 22.72 ± 0.74 ij 101.0 ± 19.3 c 108.1 ± 2.2 g
T15 25.15 ± 0.79 ef 24.69 ± 0.80 h 261.8 ± 50.4 a 264.0 ± 5.3 c
T16 30.18 ± 0.94 bc 29.63 ± 0.97 e 83.9 ± 16.0 cd 92.5 ± 4.4 i
T17 24.79 ± 0.69 ef 24.07 ± 1.24 hi 174.8 ± 37.4 b 178.2 ± 2.0 d
T18 20.06 ± 0.31 h 20.21 ± 0.89 k 270.5 ± 52.2 a 299.1 ± 2.3 a
T19 27.16 ± 0.85 de 26.67 ± 0.87 g 92.3 ± 10.8 cd 112.5 ± 5.0 g
T20 21.44 ± 0.95 gh 21.11 ± 0.73 jk 153.3 ± 26.1 b 163.0 ± 7.9 f
T21 20.01 ± 0.17 h 20.09 ± 0.84 k 247.4 ± 27.8 a 282.4 ± 7.2 b

Means in columns followed by the same lowercase letters are not statistically different at the 0.05
significance level. Data are mean values ± SE (n = 3).

2.6. Fixed Oil Yield

The variability of seeds fixed oil yield per tree and per hectare of field grown the
Moringa oleifera tree in response to treatment with vermicompost and NPK and their
combination is presented in Figure 5 and Tables 6 and 7. The application of 50 ton ha−1

vermicompost recorded the maximum mean values of fixed oil yield per tree (176.4 and
189.9 mL plant−1) and per hectare (1764 and 1899 L ha−1) in the first and second seasons,
respectively, as compared with the other vermicompost levels and control. In the first
season, there were insignificant differences between the applications of 50 and 60 ton ha−1

vermicompost in terms of fixed oil yield per tree and per hectare in the first season. NPK
fertilization was able to increase fixed oil yield per tree and per hectare successfully in
the first and second seasons as compared with the control treatment. Moreover, the foliar
application of Nano-NPK produced the maximum mean values of fixed oil yield per
tree (155.1 and 170.7 mL plant−1) and per hectare (1551 and 1707 L ha−1) in the first and
second seasons, respectively. For the combination treatments, the application of 50 ton ha−1

vermicompost plus 2 gL−1 nano-NPK by spraying gave the maximum mean values of
fixed oil yield per tree (270.5 and 299.1 mL plant−1) and per hectare (2705 and 2991 L ha−1)
in the first and second seasons, respectively. Insignificant differences were detected among
T15, T18, and T21 treatments in fixed oil yield per tree and per hectare in the first season of
the study.
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Table 7. The mean values of yield of fixed oil (L ha−1) of Moringa oleifera seeds as affected by
combination treatments of organic and mineral fertilization in both seasons of the study.

Treatments
Yield of Fixed Oil (L ha−1)

1st Season 2nd Season

T1 3 ± 1 h 4 ± 0 r
T2 42 ± 7 gh 45 ± 3 r
T3 178 ± 9 fgh 226 ± 11 o
T4 26 ± 4 h 28 ± 1 r
T5 95 ± 20 gh 107 ± 2 q
T6 425 ± 81 ef 536 ± 11 l
T7 153 ± 29 fgh 164 ± 3 p
T8 657 ± 125 de 703 ± 14 k
T9 914 ± 175 cd 1013 ± 20 h

T10 322 ± 61 fg 324 ± 10 n
T11 719 ± 137 d 769 ± 15 j
T12 1544 ± 311 b 1722 ± 34 e
T13 389 ± 74 ef 416 ± 8 m
T14 1010 ± 193 c 1081 ± 22 g
T15 2618 ± 504 a 2640 ± 53 c
T16 839 ± 160 cd 925 ± 44 i
T17 1748 ± 374 b 1782 ± 20 d
T18 2705 ± 522 a 2991 ± 23 a
T19 923 ± 108 cd 1125 ± 50 g
T20 1533 ± 261 b 1630 ± 79 f
T21 2474 ± 278 a 2824 ± 72 b

Means in columns followed by the same lowercase letters are not statistically different at the 0.05 significance
level. Data are mean values ± SE (n = 3).

2.7. Fixed Oil Analysis
2.7.1. Saturated Fatty Acids

The major of detected saturated fatty acids of Moringa oleifera fixed oil are stearic acid,
palmitic acid, eicosenoic acid, behenic acid and lignoceric acids (Figure 6 and Table 8). In
this study, all saturated fatty acids of Moringa oleifera fixed oil increased by increasing the
vermicompost level. The 10 ton ha−1 vermicompost treatment produced the minimum
percentage of stearic acid (3.71%), palmitic acid (4.47%); eicosenoic acid (2.07%), behenic
acid (4.40%), and lignoceric acid (0.64%). With NPK treatments, the control treatment had
the minimum mean percentages of stearic acid (4.02%), palmitic acid (4.51%), eicosenoic
acid (2.25%), behenic acid (4.63%) and lignoceric acid (0.68%). With the combination
treatment, the minimum percentage of stearic acid (3.00%), palmitic acid (4.20%), eicosenoic
acid (1.91%), behenic acid (3.81%) and lignoceric acid (0.14%) were recorded with the
application of the 20 ton ha−1 vermicompost plus NPK control treatment.
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Table 8. The mean percent of saturated fatty acids (%) of fixed oil of Moringa oleifera seeds as affected
by combination treatments of organic and mineral fertilization.

Treatments Stearic Acid Palmitic
Acid

Eicosenoic
Acid

Behenic
Acid Lignoceric Acid

T1 3.12 ± 0.10 i 4.31 ± 0.15 j 2.01 ± 0.06 n 4.26 ± 0.14 n 0.84 ± 0.02 g
T2 4.61 ± 0.16 f 4.56 ± 0.15 h 2.16 ± 0.07 j 4.64 ± 0.16 j 0.92 ± 0.02 def
T3 4.96 ± 0.17 c 4.64 ± 0.16 f 2.72 ± 0.09 e 5.35 ± 0.18 e 1.00 ± 0.03 c
T4 3.03 ± 0.10 j 4.32 ± 0.15 j 1.97 ± 0.06 o 4.02 ± 0.13 o 0.15 ± 0.10 h
T5 3.16 ± 0.10 i 4.51 ± 0.15 i 2.04 ± 0.06 m 4.36 ± 0.15 m 0.88 ± 0.02 fg
T6 4.9 ± 0.17 cd 4.57 ± 0.16 h 2.20 ± 0.07 i 4.83 ± 0.16 i 0.94± 0.02 de
T7 3.00 ± 0.10 j 4.20 ± 0.14 k 1.91 ± 0.06 p 3.81 ± 0.13 p 0.14 ± 0.10 h
T8 3.51 ± 0.12 h 4.59 ± 0.16 g 2.10 ± 0.07 l 4.41 ± 0.15 l 0.86 ± 0.02 g
T9 4.67 ± 0.16 e 4.63 ± 0.16 f 2.61 ± 0.08 g 4.9 ± 0.17 gh 0.9 ± 0.02 cd
T10 4.01 ± 0.13 g 4.60 ± 0.16 g 2.14 ± 0.07 k 4.53 ± 0.15 k 0.85 ± 0.02 g
T11 4.94± 0.17 cd 4.64 ± 0.16 f 2.63 ± 0.08 fg 4.87 ± 0.17 hi 1.00 ± 0.03 c
T12 5.18± 0.18 ab 4.85 ± 0.17 d 2.88 ± 0.09 d 5.63 ± 0.19 d 1.05 ± 0.03 b
T13 4.90 ± 0.17 d 4.59 ± 0.16 g 2.23 ± 0.07 h 4.92 ± 0.17 g 0.91 ± 0.02 ef
T14 4.95± 0.17 cd 4.64 ± 0.16 f 2.65 ± 0.09 f 5.20 ± 0.18 f 0.88 ± 0.02 fg
T15 5.19± 0.18 ab 4.88 ± 0.17 c 2.90 ± 0.09 d 5.94 ± 0.20 c 1.07± 0.03 ab
T16 4.9 ± 0.17 cd 4.66 ± 0.16 e 2.64 ± 0.08 f 5.23 ± 0.18 f 0.86 ± 0.02 g
T17 5.20± 0.18 ab 4.88 ± 0.17 c 2.95 ± 0.10 c 5.91 ± 0.20 c 1.05 ± 0.03 b
T18 5.20± 0.18 ab 5.20 ± 0.18 b 2.97 ± 0.10 c 6.04 ± 0.21 b 1.08± 0.03 ab
T19 5.17 ± 0.18 b 4.87 ±0.17 c 2.89 ± 0.09 d 5.62 ± 0.19 d 1.06 ± 0.03 b
T20 5.22± 0.18 ab 5.21 ± 0.18 b 3.13 ± 0.10 b 6.06 ± 0.21 b 1.08± 0.03 ab
T21 5.23 ± 0.18 a 5.52 ± 0.19 a 3.23 ± 0.11 a 6.15 ± 0.21 a 1.11 ± 0.03 a

Means in columns followed by the same letter are not statistically different at the 0.05 significance level. Data are
mean values ± SE (n = 3).
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2.7.2. Unsaturated Fatty Acids

The main unsaturated fatty acids of Moringa oleifera fixed oil are oleic acid, linoleic acid,
α-linolenic acid, palmitoleic acid and paullinic acids (Figure 7 and Table 9). By comparing
the between different levels of vermicompost, the highest mean percentages of oleic acid
(71.63%) and linoleic acid (3.89%) were recorded with the 10 ton ha−1 vermicompost treat-
ment, while the maximum percentage of α-linolenic acid (0.65%), palmitoleic acid (2.55%),
and paullinic acid (2.61%) were recorded with the 20 ton ha−1 vermicompost treatment.
Using NPK, the control gave the maximum mean percentage of oleic acid (70.09%), linoleic
acid (3.56%), α-linolenic acid (0.58%), palmitoleic acid (2.20%) and paullinic acid (2.45%).
Regarding the combination treatments, the maximum highly significant mean percentages
of oleic acid (72.46 and 72.56%) were found with the fourth and seventh combination
treatments, respectively. In addition, the maximum mean percentages of linoleic acid
(4.18%), α-linolenic acid (0.83%), palmitoleic acid (3.13%), and paullinic acid (2.78%) were
recorded with the seventh combination treatment.
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Table 9. The mean percent of unsaturated fatty acids (%) of fixed oil of Moringa oleifera seeds as
affected by combination treatments of organic and mineral fertilization.

Treatments Oleic Acid Linoleic
Acid

α-Linolenic
Acid

Palmitoleic
Acid

Paullinic
Acid

T1 71.87 ± 1.80 b 4.03 ± 0.09 c 0.72 ± 0.01 c 2.34 ± 0.05 f 2.43 ± 0.05 h
T2 70.97 ± 1.78 d 3.83 ± 0.09 g 0.56 ± 0.01 g 3.04 ± 0.07 b 2.27 ± 0.05 j
T3 67.48 ± 1.69 j 2.66 ± 0.06 n 0.31 ± 0.01 l 1.31 ± 0.02 k 2.76 ± 0.06 b
T4 72.46 ± 1.82 a 4.11 ± 0.09 b 0.79 ± 0.01 b 2.56 ± 0.05 d 2.72 ± 0.06 c
T5 71.77 ± 1.80 b 4.01 ± 0.09 d 0.66 ± 0.01 d 2.12 ± 0.04 g 2.49 ± 0.05 g
T6 70.67 ± 1.77 e 3.53 ± 0.08 h 0.05 ± 0.05 q 3.03 ± 0.07 b 2.38 ± 0.05 i
T7 72.56 ± 1.82 a 4.18 ± 0.09 a 0.83 ± 0.01 a 3.13 ± 0.07 a 2.78 ± 0.06 a
T8 71.47 ± 1.79 c 3.98 ± 0.09 e 0.64 ± 0.01 e 2.42 ± 0.05 e 2.38 ± 0.05 i
T9 70.27 ± 1.76 f 3.23 ± 0.07 j 0.48 ± 0.00 i 2.12 ± 0.04 g 2.68 ± 0.06 d
T10 71.37 ± 1.79 c 3.93 ± 0.09 f 0.61 ± 0.01 f 2.63 ± 0.06 c 2.18 ± 0.04 k
T11 69.97 ± 1.76 g 3.03 ± 0.07 k 0.41 ± 0.00 j 1.35 ± 0.02 j 2.58 ± 0.05 f
T12 65.49 ± 1.64 k 2.63 ± 0.06 o 0.29 ± 0.01 m 1.21 ± 0.02 l 2.64 ± 0.06 e
T13 70.47 ± 1.77ef 3.43 ± 0.08 i 0.50 ± 0.00 h 2.04 ± 0.04 h 2.49 ± 0.05 g
T14 69.47 ± 1.74 h 2.83 ± 0.06 l 0.34 ± 0.01 k 1.22 ± 0.02 l 2.09 ± 0.04 m
T15 62.40± 1.56 m 2.42 ± 0.05 q 0.02 ± 0.00 r 1.14 ± 0.02 m 2.68 ± 0.06 d
T16 68.48 ± 1.72 i 2.73 ± 0.06 m 0.32 ± 0.01 l 1.52 ± 0.03 i 2.07 ± 0.04 n
T17 60.40 ± 1.51 n 2.38 ± 0.05 r 0.20 ± 0.01 o 1.06 ± 0.02 n 2.16 ± 0.04 l
T18 58.41 ± 1.46 o 2.32 ± 0.05 s 0.19 ± 0.01 o 0.92 ± 0.01 o 2.06 ± 0.04 n
T19 63.39 ± 1.59 l 2.53 ± 0.05 p 0.27 ± 0.01 n 1.20 ± 0.02 l 2.49 ± 0.05 g
T20 57.41 ± 1.44 p 2.22 ± 0.05 t 0.14 ± 0.01 p 0.88 ± 0.01 p 2.01 ± 0.04 o
T21 57.02 ± 1.43 q 2.12 ± 0.04 u 0.02 ± 0.00 r 0.07 ± 0.05 q 1.98 ± 0.04 p

Means in columns followed by the same lowercase letters are not statistically different at the 0.05 significance
level. Data are mean values ± SE (n = 3).

3. Discussion
3.1. Effects of Calcareous Soil

In this experiment, the seeds of the Moringa oleifera tree were able to germinate under
the conditions of calcareous soil without any organic or inorganic fertilization treatment
(control treatment, T1); however, after that the seedlings grew but very slowly. Finally,
they produced small trees looking like thin branches with a few leaves with very small
inflorescences. This gave the minimum mean values of pod and seed parameters, and yield
of mature pods, seeds, and fixed oil per tree and per hectare in both seasons. This may have
been due to the lack of accessibility of soil nutrients resources in the calcareous soil where
nitrogen had been lost via leaching, deep percolation, or N transformations. Moreover, there
was low availability of phosphorous and micronutrients have low availability and there
was an imbalance among potassium, magnesium, calcium, and other elements [10,11,53], as
well as inappropriate soil properties for plant growth [9]. These results were in agreement
with Bavaresco and Poni [54], who found that the conditions of calcareous soil decreased P
and K in different plant organs, which leads to a decrease in whole canopy photosynthesis,
which would be reflected in the dry matter of plants and, finally, give low pods and seeds
yields. Moreover, the decrease increased with increased levels of carbonate in the soil.
Khan and Qasimwheat [55] reported that yields and most of the yield components of wheat
crop, in pots and in the field experiment, also decreased because of the effect of calcareous
soil. Semida et al. [56] found that untreated plants grown in saline calcareous soil had the
lowest growth parameters, concentrations of total soluble sugars, free proline, as well as
anthocyanin and photosynthetic efficiency. Aboukila et al. [12] found that the germination
parameters of squash 15 days after sowing in calcareous soil, recorded the minimum values
as compared with amendment with compost and spent grain. On the contrary, in this study,
the control treatment was among the treatments that gave the maximum significant mean
values of fixed oil percentage after the second treatment of 0 ton ha−1 vermicompost plus
2 gL−1 NPK, with insignificant differences between them, since the control treatment gave
very small semi-atrophied seeds. As mentioned before, in calcareous soil, the amount of



Plants 2021, 10, 1998 17 of 27

nitrogen and its availability are limited [10,11,54]. Under such conditions, the metabolism
of grown plants changes more toward production of secondary metabolites with non-
N-containing factors such as phenolics, fatty acids, and terpenoids [57], and decreased
production of compounds with high N content such as proteins for growth according to
the C/N balance hypothesis.

3.2. Effects of Vermicompost

It was obvious from the obtained results that the improvements of all the studied
parameters of pods and seeds and the yield of pods, seeds, and fixed oil per tree and
per hectare increased when the amount of vermicompost used was increased in the two
seasons of the study. These improvements may have been due to the role of vermicompost
in regulating growth by its natural auxins, gibberellins, and cytokinins contents, and
increasing the availability of plant nutrients such as nitrogen, phosphorus, potassium and
micro-elements in the soil through the mineralization of organic matter; increasing soluble
forms of nutrients by improving the soil pH; as well as increasing the uptake of elements
by roots [30,58,59]. In addition, using vermicompost improves physical and chemical
properties of the calcareous soil. Vermicompost fertilizer is suitable for the long growth
season of the Moringa oleifera tree, with its low rate of nutrients degradation speed [44,60].
The results of the present study agree with those of other studies that have shown that
increased vermicompost consumption improved vegetative features, while it also improved
dry matter content and flowering [47,48,61–67] along with fruiting, seeds, and oil yield.
These findings agree with those of Arancon et al. [68], Arancon et al. [44], Atiyeh et al. [69],
Liuc and Pank [70] and Muscolo et al. [71] who found that using vermicompost improved
growth and flowering parameters as well as quantitative and qualitative parameters of
strawberry, petunia, marigold and roman chamomile, and wild carrot.

Even though increased vermicompost improved the yield of fixed oil as a result of
improving plant growth, it decreased the percentage of fixed oil of seeds, which may be be-
cause under high N conditions, the metabolism of grown plants shifts towards production
of N-compounds, with reduced production of secondary non-N-containing metabolites
such as phenolics, fatty acids, and terpenoids [72,73]. Whereas Law-Ogbomo [74] found
that applying poultry manure to Okra plants increased growth, fruit yield, as well as P, K,
Na, and Mn contents, Ngo and Rumple [75] and Aryal and Tamrakar [76] reported that
in most cases vermicompost was more favorable than manure and plant compost, as the
application of vermicompost resulted in increased growth and yield as compared with
farmyard manure.

3.3. Effects of NPK Fertilizer

An inadequate supply of nitrogen, phosphorus and potassium during crop growth
is known to have a negative impact on the reproductive capability, growth, and yield of
plants [77–79]. These elements are responsible for many enzymatic and metabolic activities
as well as effective growth of seeds, pods, inflorescences shoots and roots. N has been
shown to increase the number and size of fruits and overall yield [80]. Phosphorus is the
main element in ATP, which is the energy unit of cells and it gives phosphorus bonds
in DNA and RNA. P has an important role in improving rooting, flowering and seed
development [81,82] as well as fruit set. K plays a main role in the CO2 assimilation rate in
plants through its role in opening and closing stomata. Thus, it enhances photosynthesis
and controls in the amount of glucose produced in plants and its translocation to seeds by
controlling the enzymes of carbohydrate metabolism [83–85]. The results of this study show
that, foliar application of nano-NPK surpassed ground application of NPK in achieving
the best mean values of the studied growth characteristics, yield and chemical compounds
of the Moringa oleifera tree as compared with the other ground application treatments and
the control in both seasons under alkaline calcareous soil conditions. On the one hand,
foliar fertilization has better potential to correct nutritional deficiencies in plants caused
by the improper supply of nutrients to roots, and this practice is usually more econom-
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ical and effective under alkaline calcareous soil conditions [86–88]. On the other hand,
normal fertilizers are lost to the environment and cannot be absorbed by plants, causing
not only substantial economic and resource losses, as well as very serious environmental
pollution [89]. Nanofertilizers have shown promising results in optimum concentrations,
as their size is in the nano-scale at a range of 1-100 nm, which allows them to penetrate into
plant leaves, the basic units for photosynthesis, gas exchange and transpiration [90,91], and
therefore they can reduces the needed amount of nutrients needed while increasing plant
productivity [92]. Spraying nano-fertilizers can obviate the interaction of nutrients with wa-
ter, microorganisms, and calcareous soil, and increase plant parameters and yield [18,93,94].
These results are in accordance with those of many researchers. Silberstein and Wittwer [95]
and Dixon [96] suggested that foliar application improved nutrient efficiency and was the
most effective way for growers to supply nutrients. Fuglier [7] found that the application of
nitrogen and phosphorus to Moringa trees encouraged root development and leaf canopy
growth. Liu and Lal [97] reported that synthesized nano-fertilizer improved biomass
and production of Glycine max. Fagbenro [98], Ainika and Amans [99], Ghafariyan [100],
Mahmoodzadeh [101], and Delfani [102] reported that crop growth, chemical composition,
and yield parameters were found to respond significantly to compound NPK fertilizer
application. Abdel-Aziz [91] reported that direct exposure of wheat plants to a specific
type of nano-particles caused significant increases in all growth parameters and yield
determined with optimum concentrations of nanosolution. Elshamy et al. [92], Farnia and
Ghorbani [103], Oyedeji [104], Bărăscu [105], and Mokrani [106] compared growth, biomass,
grain yield, photosynthetic pigments, chemical constituents, protein content, and fruits and
lipid yield of plants with foliar application of nanofertilizers and normal NPK fertilizer,
and they reported that all those were better with nanofertilizers application. Khalid and
Shedeed [107] recorded that the highest values of vegetative growth characteristics of plant
height, leaf number, branch number, capsule number, herb dry weight, and seed yield,
and the highest values of chemical contents including fixed oil, total carbohydrate, soluble
sugars, protein, potassium, and phosphorus contents with foliar application of NPK as com-
pared with a control treatment and ground applications. Hasaneen and Abdel-aziz [108]
found that the growth parameters of French bean plants increased with foliar application
of either NPK nanoparticles or nano-engineered CNTs-NPK. Mokrani et al. [106] reported
that the importance of NPK fertilizers was their role of supplying the necessary nutri-
ents for plant growth. Soylu et al. [109], Soleimani [110], Arif et al. [111], and Hamayun
et al. [112] reported rapid vegetative growth, and significant increases in the number of
leaves, plant height, thousand-grain weight, and wheat yield as a result of foliar application
of nitrogen, phosphorus, and potassium, together or individually. Jubeir and Ahmed [113]
found that using nanofertilizer improved fruit weight, yield percentage at maturity, the
appearance of amino acids in fruits, dry matter in leaves, and chlorophyll content, The
treatment improved the vegetative growth and increased the yield of date palm. Alzreejawi
and Al-Juthery [114] recorded the significant superiority of Nano-NPK (12-12-36) spray in
achieving the highest means values for chlorophyll content in leaves, plant height, stem
diameter, biological yield, grain yield, and harvest index. Rafiullah et al. [115] reported
that fixation of phosphate fertilizers in alkaline calcareous soil was a major obstacle that
could decrease the yield of maize and wheat. Foliar P on maize significantly enhanced
grain yield and phosphorus use efficiency.

3.4. Effects of Combination Treatments of Vermicompost and NPK

Despite the important role of foliar NPK application in terms of rapid assimilation
and translocation and the positive influence on growth and yield, foliar fertilization cannot
replace nutrition through the roots;. however, it can be used to reduce the use of fertilizers
on the soil [116]. To overcome this problem, the use of organic amendments such as adding
vermicompost plus applying foliar nano-NPK in the calcareous soil conditions is a good
practices that can improve the growth; pod, seed, and fixed oil yield; and fatty acid content
of the Moringa oleifera trees.
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In this study, combination treatments of vermicompost plus NPK and nano-NPK
improved pod and seed parameters and yield per tree and per hectare, and these im-
provements increased with an increased vermicompost level and with spraying nano-NPK,
while treatment of vermicompost control plus 2 gL−1 NPK gave the maximum fixed oil
percentage. In addition, the minimum mean percentages of stearic acid, palmitic acid,
eicosenoic acid, behenic acid and lignoceric saturated fatty acids and the maximum mean
percentages of oleic acid, linoleic acid, α-linolenic acid, palmitoleic acid, and paullinic
unsaturated fatty acids were recorded with the application of the combination treatment of
20 ton ha−1 vermicompost plus the NPK control. The combination of organic and inorganic
fertilizers, generally, has vital effects on plant growth as well as soil chemical and biological
properties [117,118] generally, and in this study foliar application of Nano-NPK combined
with ground application of vermicompost mean availability of NPK and other required
nutrients for seed quality and production. Therefore, using vermicompost alone or using
vermicompost integrated with mineral fertilizers promoted plant growth and yield [119].

Our results were in agreement with those of Bajracharya et al. [120], Bhattarai and
Tomar [121], Thakur [122], Zhao et al. [123], and Prativa and Bhattarai [124], who reported
that the use of vermicompost in combination with NPK gave the best results in terms of
plant growth and fruit yield. Despite the decreased fixed oil percentage of seeds with
an increased fertilization level, the yield increased due to the ability of fertilization to
increase seed yield. This was in agreement with Valiki et al. [119], Morshedi [125], Rogério
et al. [126] and Xie et al. [127], who studied fennel, canola, crambe, and flax, respectively.
Anwar et al. [128] noted that fixed oil of Moringa oleifera seeds was up to 40% with a high-
quality fatty acid composition, as the percentage of unsaturated oleic fatty acid reached 70%
or more. In this study, the percentage of oleic acid decreased with increased fertilization
level. These results were in agreement with those of Xie et al. [129] on flax and Darakeh
et al. [130] on black cumin.

4. Materials and Methods

The present investigation was carried out during two successive seasons in 2018/2019
and 2019/2020 in an open field of a private farm in El-Amiriya, Alexandria Governorate,
Egypt. The aim wasto study the effects of organic and inorganic fertilization on pod, seed
and fixed oil yield as well as composition, especially the percentage of oleic fatty acid of
the Moringa oleifera trees.

4.1. Plant Material

Seeds were collected from one selected mature Moringa oleifera tree grown alone in
an isolated place in the study location. Its seed was previously brought from the national
research center. The seeds were cultivated in February 2018 and 2019. A drip irrigation
system was applied. Soil drainage conditions at the site were adequate to guarantee good
oxygenation of the crop.

4.2. Treatment

The experiments were conducted in a split plot arranged in a Randomized Complete
Block Design (RCBD) with three replications during February and March 2018/2019 and
2019/2020. The main plots of the Moringa oleifera plants were assigned to organic fertiliza-
tion in the form of a ground dose of vermicompost and sub-plots were assigned to mineral
fertilization in the forms of mineral and nano-NPK (19:19:19). All possible combinations
of the two studied factors were made (Table 10). The experiments included 21 treatments,
which were combinations of vermicompost added to the ground (0 (control), 10, 20, 30, 40,
50 or 60 ton ha−1 vermicompost, applied to the ground) and NPK fertilization (0 (control)
and 2 gL−1 NPK or 2 gL−1 Nano-NPK). Every studied amount of vermicompost was added
before planting over ten days, while the 2 gL−1 NPK treatment was applied as a ground
dose and 2 gL−1 Nano-NPK was applied as foliar application. All NPK treatments were
applied once per week after two weeks and until six weeks from planting; after that, they
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were applied twice a week until the end of the experiment. Tween 80 (0.01%) was used as
the wetting agent. Untreated plants (NPK control) and plants treated with 2 gL−1 NPK
were sprayed with distilled water and Tween 80 (0.01%). The data are presented as mean
values ± SE (n = 3).

Table 10. All the different used combinations treatments of vermicompost and NPK fertilization with
the following.

Treatments

T1 Vermicompost control plus NPK control (Control)
T2 Vermicompost control plus 2 gL−1 NPK
T3 Vermicompost control plus 2 gL−1 Nano-NPK
T4 10 ton ha−1 vermicompost plus NPK control
T5 10 ton ha−1 vermicompost plus 2 gL−1 NPK
T6 10 ton ha−1 vermicompost plus 2 gL−1 Nano-NPK
T7 20 ton ha−1 vermicompost plus NPK control
T8 20 ton ha−1 vermicompost plus 2 gL−1 NPK
T9 20 ton ha−1 vermicompost plus 2 gL−1 Nano-NPK

T10 30 ton ha−1 vermicompost plus NPK control
T11 30 ton ha−1 vermicompost plus 2 gL−1 NPK
T12 30 ton ha−1 vermicompost plus 2 gL−1 Nano-NPK
T13 40 ton ha−1 vermicompost plus NPK control
T14 40 ton ha−1 vermicompost plus 2 gL−1 NPK
T15 40 ton ha−1 vermicompost plus 2 gL−1 Nano-NPK
T16 50 ton ha−1 vermicompost plus NPK control
T17 50 ton ha−1 vermicompost plus 2 gL−1 NPK
T18 50 ton ha−1 vermicompost plus 2 gL−1 Nano-NPK
T19 60 ton ha−1 vermicompost plus NPK control
T20 60 ton ha−1 vermicompost plus 2 gL−1 NPK
T21 60 ton ha−1 vermicompost plus 2 gL−1 Nano-NPK

4.3. Nano-NPK Preparation

Around 400 g of 19:19:19 NPK mineral fertilizer was weighed in a 2 L glass beaker,
then 550 mL of distilled water was added, and it was stirred until completely dissolved.
The clear solution was heated to 50 ◦C, and with vigorous stirring, 50 g of citric acid was
added and stirring was continued for 15 min. Potassium hydroxide was added slowly
until the desired pH was reached. During the addition of potassium hydroxide, the clear
solution changed to a milky appearance, indicating the conversion to nanoparticle size.
The concentration used was prepared according to the amount of mineral NPK used in the
preparation of nano-NPK. Seeds were sown on 1st February in both seasons.

4.4. Culture of Seeds

Seeds (three seeds per hill−1) were sown on one side of the row. After 30 days, the
seedlings were thinned to one plant per hill. The plots were weeded every two weeks
when possible. The climate of the culture location is desert, with a mean annual tempera-
ture of 20.8 ◦C and annual precipitation of 181 mm, mainly falling in November through
February [131]. A composite soil sample was collected at a depth of 0–30 cm from 15
different sites in the study, air-dried, and sieved through a 2-mm sieve prior to analysis.
Sub-samples of the air-dried soil were used for chemical and physical parameters determi-
nation (Three sub-samples for every parameter). The physical and chemical properties of
the vermicompost and soil samples were determined according to [132,133] as shown in
Tables 11 and 12 for every soil parameter (n = 3).
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Table 11. The physical and chemical properties of the used vermicompost.

Vermicompost Property

Organic matter % 44.57
C % 17.02
N % 1.82

Mn % 0.03
B mg g−1 0.054

Cu mg g−1 0.25
Fe mg g−1 1.27
Mg mg g−1 6.01
Na mg g−1 1.48

P2O5 mg g−1 4.61
K mg g−1 1.93

EC ds m−1 1.78
pH 7.2

Table 12. The physical and chemical properties of the experimental soil.

Soil Property

Organic matter 0.75
CaCO3 % 28.62
Sand % 65.3
Silt % 15.8

Clay % 18.9
Texture class Sandy clay loam

pH 8.51
EC ds m−1 1.72
N % 0.032

HCO3
- mg g−1 0.099

P2O4 mg g−1 0.004
K+ mg g−1 0.287
Fe mg g−1 0.0038
Zn mg g−1 0.0014
Mn mg g−1 0.0035
Cu mg g−1 0.00059
B mg g−1 0.0003

4.5. Parameters and Measurements
4.5.1. Pods and Seeds Parameters and Yield

A sample of five plants was taken at random from each replication and fifteen plants
from every treatment to measure the following parameters: number of pods per inflores-
cence, number of pods per tree, weight of mature pods (g), yield of mature pods (g tree−1

and kg ha−1), number of seeds per pod, weight of mature seed weight, and yield of mature
seeds (g tree−1 and kg ha−1). The data are presented as mean values ± SE (n = 3).

4.5.2. Chemical Constituents of Seeds
Fixed Oil Content of Seeds

To determine the fixed oil content, seeds of each treatment were randomly selected,
weighed, and dried at 50 ◦C. The drying process was continued until the difference between
the two successive weights was less than 1 mg. Three replications were used for this
process. The oil was extracted over 16 h with hexane using a Soxhlet apparatus [134]. The
percentage of fixed oil was estimated, then, the fixed oil contents per plant and per hectare
were calculated. The data are presented as mean values ± SE (n = 3).
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Fixed Oil Analysis (GC/MS Analysis)

Fatty acid methyl esters were prepared with methanolic sulfuric acid and characterized
by gas chromatography mass spectrometry. The analyses of the fixed oil were conducted
using a gas chromatography–mass spectrometry (GC-MS) instrument at the Department of
Medicinal and Aromatic Plants Research, National Research Center as mentioned in Atteya
and Amer [135]

4.6. Statistical Analysis

The experiments were a split plot arranged in a Randomized Complete Block Design
(RCBD) with three replicates. Analysis of variance with SAS software [136] was carried out
on all tested treatments data. means of treatments were compared using the LSD test at 5%
level of probability. The experiment was repeated in the second year using the same steps
and techniques of the first year to compare the results in the two successive seasons.

5. Conclusions

As Compared with the soil-application of NPK, in this study, the foliar application of
nano-NPK provided a good resolution for a low availability of NPK. Moreover, increasing
the amount of vermicompost improved the parameters and yield of Moringa oleifera pods
and seeds. Finally, in this study, the recommended treatment for reaching the maximum
values for the yield of mature pods, seeds, and fixed oil per tree and per hectare is the
50 ton ha−1 vermicompost plus 2 g L−1 Nano-NPK treatment. The 20 ton ha−1 vermi-
compost plus NPK control treatment is recommended for producing fixed oil with the
minimum percentage of saturated fatty acids and the maximum percentage of oleic acid.
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