
Data in Brief 30 (2020) 105506

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Performance data of multiple-precision scalar

and vector BLAS operations on CPU and GPU

Konstantin Isupov

Department of Electronic Computing Machines, Vyatka State University, Russian Federation

a r t i c l e i n f o

Article history:

Received 22 February 2020

Revised 14 March 2020

Accepted 23 March 2020

Available online 21 April 2020

Keywords:

Multiple-precision arithmetic

Floating-point computations

Graphics processing units

CUDA

BLAS

a b s t r a c t

Many optimized linear algebra packages support the single-

and double-precision floating-point data types. However,

there are a number of important applications that require

a higher level of precision, up to hundreds or even thou-

sands of digits. This article presents performance data of four

dense basic linear algebra subprograms – ASUM, DOT, SCAL,

and AXPY – implemented using existing extended-/multiple-

precision software for conventional central processing units

and CUDA compatible graphics processing units. The follow-

ing open source packages are considered: MPFR, MPDECI-

MAL, ARPREC, MPACK, XBLAS, GARPREC, CAMPARY, CUMP,

and MPRES-BLAS. The execution time of CPU and GPU imple-

mentations is measured at a fixed problem size and various

levels of numeric precision. The data in this article are re-

lated to the research article entitled “Design and implemen-

tation of multiple-precision BLAS Level 1 functions for graph-

ics processing units” [1].

© 2020 The Author(s). Published by Elsevier Inc.

This is an open access article under the CC BY license.

(http://creativecommons.org/licenses/by/4.0/)
E-mail address: ks_isupov@vyatsu.ru

https://doi.org/10.1016/j.dib.2020.105506

2352-3409/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license.

(http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.dib.2020.105506
http://www.ScienceDirect.com
http://www.elsevier.com/locate/dib
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dib.2020.105506&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ks_isupov@vyatsu.ru
https://doi.org/10.1016/j.dib.2020.105506
http://creativecommons.org/licenses/by/4.0/

2 K. Isupov / Data in Brief 30 (2020) 105506

S

V

1

A

t

e

a

T

c

d

f

i
pecifications table

Subject Computer Science

Specific subject area High-Precision Computations

Type of data Tables and CSV files

How data were

acquired

Execution of the compiled source code

Data format Raw and processed

Parameters for data

collection

Hardware system: Intel Core i5-4590 (3.30 GHz, 4 Cores/4 Threads), 16 GB DDR3 RAM,

NVIDIA Turing RTX 2060 GPU (1920 CUDA Cores, Compute Capability 7.5, 6 GB

GDDR6 memory).

Software environment: Ubuntu 19.10 (development branch), GCC compiler version

7.4.0, CUDA Toolkit 10.1.105, nvcc flags: -O3 -DNDEBUG -use_fast_math -std = c ++ 14

-Xcompiler = -O3,-fopenmp,-ffast-math.

The input data sets were composed of random numbers in the range of −1 to 1.

Measurements do not include the time spent transferring data between the CPU and

the GPU.

Description of data

collection

Performance data were collected at a fixed problem size and various arithmetic

precisions. The CPU-based codes were developed using OpenMP and executed on

multiple cores. Three runs were performed for each test case. At each test run, the

BLAS function under evaluation was repeated several times, and the total execution

time of all iterations was measured in milliseconds. Then the average execution time

for one iteration was calculated.

Data source location Vyatka State University, Kirov, Russian Federation

Data accessibility Processed data are with this article. Raw data are available at the Mendeley Data

repository (http://dx.doi.org/10.17632/yrdh6r3sgx.2). The source code for the tests is

available at GitHub (https://github.com/kisupov/mpres-blas).

Related research article K. Isupov, V. Knyazkov, A. Kuvaev, Design and Implementation of Multiple-Precision

BLAS Level 1 Functions for Graphics Processing Units, Journal of Parallel and

Distributed Computing. 140 (2020) 25–36. https://doi.org/10.1016/j.jpdc.2020.02.006 .

alue of the data

• The data obtained allows comparing the efficiency (in terms of execution time) of various

multiple-precision packages when performing BLAS Level 1 operations, which are the build-

ing blocks for many linear algebra algorithms.

• The data could be useful for developing GPU accelerated applications that require more pre-

cision than the standard double precision available in most existing BLAS libraries.

• They can benefit researchers dealing with scientific and engineering calculations that are sen-

sitive to rounding errors (e.g., ill-conditioned linear systems and eigenvalue problems).

• These data can also be used to understand the impact on performance of computations with

higher levels of precision performed on multicore processors and massively parallel graphics

processing units.

. Data description

The data presented in this paper are performance measurements of ASUM, DOT, SCAL and

XPY functions from Level 1 BLAS [2] implemented using multiple-precision software for cen-

ral processing units (CPUs) and CUDA-enabled graphics processing units (GPUs). The ASUM op-

ration computes the sum of magnitudes of the vector elements. The DOT operation computes

 vector-vector dot product. The SCAL operation computes the product of a vector by a scalar.

he AXPY operation computes a vector-scalar product and adds the result to a vector. All data

onsists of 60 CSV files (raw data) and two tables (processed data).

The raw data of the experiments are available at the Mendeley Data repository [3] . The raw

ata are organized in two folders named “1. Precision from 120 to 2400 bits ” and “2. Precision

rom 106 to 424 bits ”. The first folder contains the performance data of implementations us-

ng the MPFR, ARPREC, MPDECIMAL, MPACK, GARPREC, CUMP, and MPRES-BLAS packages for

http://dx.doi.org/10.17632/yrdh6r3sgx.2
https://github.com/kisupov/mpres-blas
https://doi.org/10.1016/j.jpdc.2020.02.006

K. Isupov / Data in Brief 30 (2020) 105506 3

precisions of 120, 240, 480, 720, 960, 1200, 1440, 1680, 1920, 2160, and 2400 bits. The sec-

ond folder contains the performance data of implementations using the XBLAS, CAMPARY, and

MPRES-BLAS packages for precisions of 106, 212, 318, and 424 bits. Each raw file contains the

results of three test runs at a fixed operation size of 1,0 0 0,0 0 0. For each test run, the BLAS func-
Table 1

Average execution time of multiple-precision BLAS Level 1 operations based on MPFR, ARPREC, MPDECIMAL, MPACK,

GARPREC, CUMP, and MPRES-BLAS. Measurements are in milliseconds.

Precision, bits Intel Core i5 4590 NVIDIA Turing RTX 2060

MPFR ARPREC MPDECIMAL MPACK GARPREC CUMP MPRES-BLAS

Sum of absolute values (ASUM)

120 7.05 60.31 55.12 114.03 2.78 4.43 0.79

240 9.30 62.82 55.63 129.57 3.79 5.23 1.27

480 9.75 66.30 57.35 128.37 7.38 6.89 2.98

720 11.25 80.50 57.01 139.05 13.63 9.96 3.93

960 13.31 91.86 58.07 142.67 15.16 12.94 5.95

1200 14.20 91.54 58.39 153.44 18.30 16.60 6.46

1440 15.22 93.83 60.81 154.51 21.49 19.94 9.29

1680 17.05 98.35 60.76 164.56 26.85 23.47 8.96

1920 19.31 108.70 59.72 174.48 29.65 25.57 11.91

2160 22.70 109.41 59.04 197.77 32.23 29.41 11.20

2400 22.98 117.13 61.57 201.50 35.51 32.13 16.07

Dot product of two vectors (DOT)

120 14.16 100.03 56.93 29.51 9.70 3.84 1.93

240 16.34 112.55 62.62 42.08 13.01 5.01 2.93

480 19.11 170.23 58.53 59.93 31.95 8.08 5.84

720 24.82 246.81 62.19 78.84 50.01 12.86 8.43

960 27.69 353.26 71.95 99.19 85.07 16.88 10.48

1200 32.26 430.39 92.62 134.25 115.05 23.05 12.51

1440 36.18 565.67 104.22 66.61 156.96 29.87 16.05

1680 41.95 741.57 131.85 74.48 222.28 37.93 16.67

1920 47.10 938.14 157.48 89.72 278.08 44.36 20.82

2160 53.79 1096.66 204.60 101.37 328.02 53.30 21.49

2400 59.14 1338.25 221.97 109.38 402.19 62.67 25.60

Vector-scalar product (SCAL)

120 6.93 43.12 27.52 92.29 6.83 0.61 0.79

240 11.80 58.52 28.42 106.25 9.62 0.95 1.10

480 23.64 107.11 28.07 115.61 25.51 1.93 1.88

720 40.78 173.31 32.08 134.30 42.21 3.72 3.38

960 66.72 289.82 40.59 165.11 74.27 5.53 3.22

1200 92.92 386.84 48.62 197.50 102.64 8.35 5.10

1440 26.28 514.54 65.99 235.13 142.76 11.56 4.58

1680 30.39 732.00 90.03 284.39 203.65 14.99 6.57

1920 33.47 901.76 111.28 332.91 256.73 18.73 5.82

2160 38.86 1051.37 136.83 388.47 306.08 22.96 8.12

2400 44.04 1236.25 162.87 468.98 376.58 27.79 7.56

Constant times a vector plus a vector (AXPY)

120 11.56 76.79 59.40 30.53 9.11 1.30 2.23

240 15.13 92.98 61.76 37.14 12.33 2.34 2.99

480 18.05 166.53 63.64 42.82 26.92 4.74 4.63

720 24.91 253.53 69.85 57.69 46.24 7.98 7.27

960 28.22 382.67 79.03 61.34 79.77 10.95 7.52

1200 32.82 503.74 102.08 75.93 107.60 15.47 10.44

1440 37.57 661.71 116.52 93.61 150.13 20.12 10.50

1680 42.32 885.10 135.75 108.75 209.87 25.28 13.02

1920 49.09 1091.15 166.22 129.85 268.98 30.04 13.12

2160 52.97 1285.11 192.59 151.76 316.18 35.94 16.27

2400 62.06 1466.24 218.83 167.63 389.25 42.49 16.44

4 K. Isupov / Data in Brief 30 (2020) 105506

Table 2

Average execution time of extended-precision BLAS Level 1 operations based on XBLAS, CAMPARY, and MPRES-BLAS. A

value of “N/A” indicates that the corresponding operation or precision is not supported. Measurements are in millisec-

onds.

Operation Package Precision, bits

106 212 318 424

ASUM XBLAS (Intel Core i5, 1 thread) 6.13 N/A N/A N/A

CAMPARY (NVIDIA Turing RTX 2060) 0.29 1.75 3.33 5.27

MPRES-BLAS (NVIDIA Turing RTX 2060) 0.78 1.31 1.62 3.00

DOT XBLAS (Intel Core i5, 1 thread) 9.73 N/A N/A N/A

CAMPARY (NVIDIA Turing RTX 2060) 0.35 4.42 11.17 22.19

MPRES-BLAS (NVIDIA Turing RTX 2060) 1.95 2.94 4.01 5.89

SCAL XBLAS (Intel Core i5, 1 thread) N/A N/A N/A N/A

CAMPARY (NVIDIA Turing RTX 2060) 0.13 2.65 7.59 16.73

MPRES-BLAS (NVIDIA Turing RTX 2060) 0.78 1.10 1.89 1.86

AXPY XBLAS (Intel Core i5, 1 thread) 5.33 N/A N/A N/A

CAMPARY (NVIDIA Turing RTX 2060) 0.28 3.94 10.04 18.48

MPRES-BLAS (NVIDIA Turing RTX 2060) 2.24 2.98 4.31 4.62

t

(

t

w

P

e

2

w

g

t

t

d

F

r

t

f

w

o

P

T

4

w

R

w

ion was repeated ten times, and the raw file presents the total execution time of ten iterations

in milliseconds).

The processed data are reported in Tables 1 and 2 . Table 1 presents the average execution

ime of the MPFR, ARPREC, MPDECIMAL, MPACK, GARPREC, CUMP, and MPRES-BLAS packages

ith precisions from 120 to 2400 bits. Table 2 reports the average time of the XBLAS, CAM-

ARY, and MPRES-BLAS packages with precisions of 106, 212, 318, and 424 bits. The tables allow

valuating the benefits of using GPUs to perform computation with extended/multiple precision.

. Experimental design, materials, and methods

All the experiments were carried out at a fixed operation size of 1,0 0 0,0 0 0. The input vectors

ere composed of randomly generated floating-point numbers in the range [−1; 1]. In order to

enerate uniformly distributed random significands, we used the mpz_urandomb function from

he GNU MP Bignum Library (https://gmplib.org/). Measurements do not include the time spent

ransferring data between the CPU and the GPU. We have also excluded the time of converting

ata into internal multiple-precision representations.

The function clock_gettime was used to measure the execution times of CPU implementations.

or GPU implementations, the execution times were measured using CUDA Events. In order to

educe the impact of noise, no other applications were launched during the test execution, and

he GUI was not used. Three runs were performed for each test case. At each test run, the BLAS

unction under evaluation was repeated ten times, and the total execution time of all iterations

as measured.

A summary of the experimental setup is given in Table 3 . Table 4 contains a brief description

f the considered multiple-precision software.

Using arithmetic operations from MPFR, ARPERC, MPDECIMAL, GARPREC, CUMP and CAM-

ARY, we have implemented multiple-precision ASUM, DOT, SCAL, and AXPY for CPU and GPU.

he CPU-based codes were developed using OpenMP and executed in parallel with 4 threads on

 physical cores.

For MPACK, we used the mpreal data type and the Rasum, Rdot, Rscal , and Raxpy routines,

hich are based on MPFR C ++ (http://www.holoborodko.com/pavel/mpfr/). Note that only the

dot and Raxpy routines support multi-threaded calculations, and these routines were performed

ith 4 OpenMP threads, whereas Rasum and Rscal were performed with a single thread.

https://gmplib.org/
http://www.holoborodko.com/pavel/mpfr/

K. Isupov / Data in Brief 30 (2020) 105506 5

Table 3

Experimental setup summary.

Host GPU

Intel Core i5 4590 NVIDIA Turing RTX 2060 (1.68 GHz)

4 Cores / 4 Threads 1920 CUDA Cores

16 GB DDR3 RAM Compute Capability 7.5

Ubuntu 19.10 (development branch) 6 GB GDDR6

GCC 7.4.0 CUDA Toolkit 10.1.105

Compile options: -O3,-fopenmp,-ffas t-math Compile options: -O3 -DNDEBUG -use_fast_math -std = c ++ 14

Table 4

Multiple-precision software.

Package Target

platform

Description URL How was compiled /

installed

MPFR [4] CPU A C library for

multiple-precision

floating-point

computations with

correct rounding

https://www.mpfr.org sudo apt-get install

libmpfr-dev

ARPREC [5] CPU An arbitrary precision

package for Fortran and

C ++

https://www.davidhbailey.com/

dhbsoftware

Compiled by GCC 7.4.0

using the provided

scripts

MPDECIMAL

(libmpdec) [6]

CPU A package for

correctly-rounded

arbitrary precision

decimal floating point

https://www.bytereef.org/

mpdecimal

Compiled by GCC 7.4.0

using the provided

scripts

MPACK [7] CPU Multiple-precision versions

of BLAS and LAPACK

http://mplapack.sourceforge.net Compiled by GCC 7.4.0

using the provided

scripts

XBLAS [8] CPU A reference implementation

of extended and mixed

precision BLAS routines

https://www.netlib.org/xblas Compiled by G ++ 7.4.0

using the provided

scripts

GARPREC [9] GPU A port of the ARPREC

package for

CUDA-enabled GPUs

https://code.google.com/

archive/p/gpuprec/downloads

Compiled by nvcc 10.1

as part of the test

executable

CAMPARY [10] CPU and

GPU

A multiple-precision library

that uses floating-point

expansions to represent

extended precision

numbers

http://homepages.laas.fr/

mmjoldes/campary

Compiled by nvcc 10.1

as part of the test

executable

CUMP [11] GPU A library for arbitrary

precision arithmetic on

CUDA based on the GNU

MP Bignum Library

https://github.com/skystar0227/

CUMP

Compiled by nvcc 10.1

using the provided

scripts

MPRES-BLAS [1] GPU Multiple-precision GPU

accelerated BLAS

functions based on

residue number system

https://github.com/kisupov/

mpres-blas

Compiled by nvcc 10.1

as part of the test

executable

For XBLAS, the double-double precision routines BL AS_dsum_x, BL AS_ddot_x , and

BLAS_dwaxpby_x were evaluated, which provide 106 bits of internal precision. Since XBLAS

does not support parallel computation, these routines were executed with a single thread. Note

that the BLAS_dsum_x routine computes the sum of the vector elements, not the sum of absolute

values of the vector elements. Furthermore, XBLAS does not implement the SCAL operation.

In the case of MPRES-BLAS, we used the routines mpasum, mpdot, mpscal , and mpaxpy . These

routines are implemented as host functions that invoke GPU kernels. Each routine has a set

of template parameters that specify the kernel execution configurations. These parameters are

described in Table 5 . Table 6 shows the kernel execution configurations used in the experiments.

https://www.mpfr.org
https://www.davidhbailey.com/dhbsoftware
https://www.bytereef.org/mpdecimal
http://mplapack.sourceforge.net
https://www.netlib.org/xblas
https://code.google.com/archive/p/gpuprec/downloads
http://homepages.laas.fr/mmjoldes/campary
https://github.com/skystar0227/CUMP
https://github.com/kisupov/mpres-blas

6 K. Isupov / Data in Brief 30 (2020) 105506

Table 5

Template parameters of the MPRES-BLAS routines; for details, see [1] .

Routine Parameter Description

mpasum gridDim1 The number of blocks for parallel summation

blockDim1 The number of threads per block for parallel summation

mpdot gridDim1 The number of blocks for computing the signs, exponents, RNS interval

evaluations, and for rounding the result in vector-vector multiplication

blockDim1 The number of threads per block for computing the signs, exponents, RNS

interval evaluations, and for rounding the result in vector-vector

multiplication

gridDim2 The number of blocks for computing the digits (residues) of multiple-precision

significands in vector-vector multiplication

gridDim3 The number of blocks for reducing the vector of products

blockDim3 The number of threads per block for reducing the vector of products

mpscal,

mpaxpy

gridDim1 The number of blocks for computing the signs, exponents, RNS interval

evaluations, and for rounding the result

blockDim1 The number of threads per block for computing the signs, exponents, RNS

interval evaluations, and also for rounding the result

gridDim2 The number of blocks for computing the digits (residues) of multiple-precision

significands

Table 6

MPRES-BLAS execution configurations used in the experiments.

Preci-

sion,

bits

mpasum mpdot mpscal, mpaxpy

gridDim1 blockDim1 gridDim1 blockDim1 gridDim2 gridDim3 blockDim3 gridDim1 blockDim1 gridDim2

120 256 128 512 128 8192 256 128 512 128 8192

240 256 128 512 128 8192 256 128 512 128 8192

480 256 128 512 128 8192 256 128 512 128 8192

720 256 64 512 128 8192 256 64 512 128 8192

960 256 64 512 128 8192 256 64 512 128 8192

1200 256 32 512 128 8192 256 32 512 128 8192

1440 512 64 512 128 8192 512 64 512 128 8192

1680 512 64 512 128 8192 512 64 512 128 8192

1920 512 32 512 128 8192 512 32 512 128 8192

2160 256 32 512 128 8192 256 32 512 128 8192

2400 512 32 512 128 8192 512 32 512 128 8192

106 256 128 512 128 8192 256 128 512 128 8192

212 256 128 512 128 8192 256 128 512 128 8192

318 256 128 512 128 8192 256 128 512 128 8192

424 256 128 512 128 8192 256 128 512 128 8192

A

o

A

D

s

mong the various configurations considered, these configurations provide better performance

n the machine employed in the experiments.

cknowledgments

This work was supported by the Russian Science Foundation , grant number 18 –71 –0 0 063 .

eclaration of Competing Interest

The author declares that he has no known competing financial interests or personal relation-

hips which have, or could be perceived to have, influenced the work reported in this article.

https://doi.org/10.13039/501100006769

K. Isupov / Data in Brief 30 (2020) 105506 7

References

[1] K. Isupov, V. Knyazkov, A. Kuvaev, Design and implementation of multiple-precision BLAS Level 1 functions for

graphics processing units, J. Parallel Distrib. Comput. 140 (2020) 25–36, doi: 10.1016/j.jpdc.2020.02.006 .

[2] BLAS (Basic Linear Algebra Subprograms). http://www.netlib.org/blas/ , 2017 (accessed 24 September 2019).
[3] K. Isupov, V. Knyazkov, A. Kuvaev, Execution time of high-precision BLAS Level 1 operations on Intel Core i5-4590

and NVIDIA Turing RTX 2060, Mendeley Data (2020) https://doi.org/10.17632/yrdh6r3sgx.2 .
[4] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, P. Zimmermann, MPFR: A multiple-precision binary floating-point library

with correct rounding, ACM Trans. Math. Softw. 33 (2) (2007) 13, doi: 10.1145/1236463.1236468 .
[5] D.H. Bailey, Y. Hida, X.S. Li, B. Thompson, ARPREC: An arbitrary Precision Computation Package, Lawrence Berkeley

National Lab, Berkeley, CA, USA, 2002, p. 8. Technical Report LBNL-53651, doi: 10.2172/817634 .

[6] S. Krah, mpdecimal. http://www.bytereef.org/mpdecimal/index.html , 2016 (accessed 20 September 2019).
[7] M. Nakata, Poster: MPACK 0.7.0: Multiple precision version of BLAS and LAPACK, in: Proc. 2012 SC Companion:

High Performance Computing, Networking Storage and Analysis, Salt Lake City, UT, USA, 2012, p. 1353, doi: 10.1109/
SC.Companion.2012.183 .

[8] X.S. Li, J.W. Demmel, D.H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S.Y. Kang, A. Kapur, M.C. Martin,
B.J. Thompson, T. Tung, D.J. Yoo, Design, implementation and testing of extended and mixed precision BLAS, ACM

Trans. Math. Softw. 28 (2) (2002) 152–205, doi: 10.1145/567806.567808 .
[9] M. Lu, B. He, Q. Luo, Supporting extended precision on graphics processors, in: Sixth International Workshop on

Data Management on New Hardware, DaMoN’10, Indianapolis, Indiana, USA, 2010, pp. 19–26, doi: 10.1145/1869389.

1869392 .
[10] M. Joldes, J.-M. Muller, V. Popescu, Implementation and performance evaluation of an extended precision floating-

point arithmetic library for high-accuracy semidefinite programming, in: Proc. 2017 IEEE 24th Symposium on Com-
puter Arithmetic, ARITH, London, UK, 2017, pp. 27–34, doi: 10.1109/ARITH.2017.18 .

[11] T. Nakayama, D. Takahashi, Implementation of multiple-precision floating-point arithmetic library for GPU comput-
ing, in: Proc. 23rd IASTED International Conference on Parallel and Distributed Computing and Systems, PDCS 2011,

Dallas, USA, 2011, pp. 343–349, doi: 10.2316/P.2011.757-041 .

https://doi.org/10.1016/j.jpdc.2020.02.006
http://www.netlib.org/blas/
http://dx.doi.org/10.17632/yrdh6r3sgx.2
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.2172/817634
http://www.bytereef.org/mpdecimal/index.html
https://doi.org/10.1109/SC.Companion.2012.183
https://doi.org/10.1145/567806.567808
https://doi.org/10.1145/1869389.1869392
https://doi.org/10.1109/ARITH.2017.18
https://doi.org/10.2316/P.2011.757-041

	Performance data of multiple-precision scalar and vector BLAS operations on CPU and GPU
	Value of the data
	1 Data description
	2 Experimental design, materials, and methods
	Acknowledgments
	Declaration of Competing Interest
	References

