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Hyaluronan (HA) is a ubiquitous extracellular matrix glycosaminoglycan composed of repeated disaccharide units of alternating
D-glucuronic acid and D-N-acetylglucosamine residues linked via alternating 𝛽-1,4 and 𝛽-1,3 glycosidic bonds. HA is synthesized
in humans byHA synthase (HAS) enzymes 1, 2, and 3, which are encoded by the correspondingHAS genes. Previous in vitro studies
have shown characteristic changes in HAS expression and increased HA synthesis in response to wounding and proinflammatory
cytokines in human peritoneal mesothelial cells. In addition, in vivo models and human peritoneal biopsy samples have provided
evidence of changes in HA metabolism in the fibrosis that at present accompanies peritoneal dialysis treatment. This review
discusses these published observations and how they might contribute to improvement in peritoneal dialysis.

1. Hyaluronan: Multiple Functions and
Clinical Significance

Hyaluronan (HA) is a linear glycosaminoglycan associated
most commonly with the extracellular matrix (ECM). HA
was first isolated from the optic vitreous [1] and is com-
posed of tandem repeats of a D-glucuronic acid and D-
N-acetylglucosamine disaccharide motif linked via alternat-
ing 𝛽-1,4 and 𝛽-1,3 glycosidic bonds [2]. Unique amongst
glycosaminoglycans, HA is unsulfated and contains no
epimerised uronic acid residues. To export HA to the ECM,
the HA synthase (HAS) proteins traverse the plasma mem-
brane and act as glycosyltransferases, combining precur-
sor UDP-glucuronic acid and UDP-N-acetylglucosamine to
formHA.HApolymers are thus synthesised at theHAS active
site on the intracellular side of the membrane and exported
instantaneously as linear, unaltered polymers [3].

HA was thought initially to be an inert, space-filling
molecule [4].More recent analyses, however, have shown that
HA is a multifunctional molecule for which a number of

key roles have already been identified during and following
development.These inter- and intracellular functions include
roles in cellmigration, tumour invasion, and cellular response
to injury (e.g., [5–10]).

The importance of HA in the ECM is underlined by the
expanding range of pathological contexts in which modified
or aberrant HA metabolism appears to play a role. These
include autoimmune renal injury, fibrosis of the kidney
and other large organs, diabetic nephropathy, malignancy,
osteoarthritis, and pulmonary and vascular disorders, along
with other immune and inflammatory diseases (e.g., [6, 9–
30]). HA deposition is characteristic of peritoneal fibrosis
subsequent to dialysis treatment [31, 32]. HA has also been
implicated in regenerative processes such aswoundhealing in
the peritoneum and elsewhere [33–39] and as a key immune
mediator [20, 21]. Upregulation of HA synthesis has also
been reported in inflammation that occurs commonly as
a consequence of treatment of renal failure by peritoneal
dialysis (PD) [32, 33]. The focus of this review will be on the
regulation and function of HA in PD.
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2. Regulation of HA Synthase
(HAS) Expression

HA is synthesised by the enzymes HAS1-3.These proteins are
encoded by the corresponding HAS genes HAS1, HAS2, and
HAS3, with each human gene located at a discrete autosomal
locus [40].

The human peritoneal mesothelial cells (HPMCs) that
line the peritonealmembrane synthesiseHA as a normal con-
stituent of peritoneal effluent, and this synthesis is upregu-
lated during periods of peritonitis [41]. In an in vitro model
of peritoneal wound healing [42], mechanical disruption of
HPMC monolayers led to upregulated HAS2 transcription
together with an increase in HA synthesis [33].

However, despite the above array of pathological and
physiological functions already ascribed to HA, compara-
tively little is known about the regulation of human HAS
expression in peritoneal inflammation and fibrosis.

We began our studies on the regulation ofHAS expression
by defining genomic structures for each human HAS gene
[43]. As part of this study, we prepared luciferase reporter
constructs spanning approximately 0.5 kb of genomic DNA
upstream of each putative HAS transcription start site (TSS)
[43, 44]. Each sequence showed significant promoter ability
to drive transcription of the luciferase gene [43].

To locate the HAS2 promoter, we carried out HAS2-
specific 5-rapid amplification of cDNA ends (5RACE) on
polyadenylated RNA extracted from renal proximal tubular
epithelial cells and located the TSS 0.130 kb upstream of the
5 end of HAS2 reference mRNA sequence NM 005328 [45].
We then generated luciferase reporter vectors bearing nested
fragments spanning the first 0.8 kb upstream of this new
TSS [45, 46]. Luciferase analysis showed consistent promoter
activity mediated by a minimum-sized fragment of 0.121 kb,
within which we identified promoter sequences conserved in
selected mammals [45, 46]. Similar methods have recently
been used to identify the human HAS3 promoter [47].

Using electrophoretic mobility shift and supershift data,
we then demonstrated binding of transcription factors Sp1
and Sp3 to three sites immediately upstream of the HAS2 TSS
[48]. Luciferase analysis of mutated reporter constructs was
abrogated, while RT-qPCR analysis following siRNA knock-
down of either transcription factor significantly reduced the
level of HAS2 transcription [48]. Chromatin immunoprecip-
itation analysis of this locus has since been used to analyse
HAS2 transcriptional induction by retinoic acid and tumour
necrosis factor-𝛼 [49].

The tetraexonic, long noncoding RNA transcript HAS2-
AS1 is transcribed from the opposite genomic DNA strand
to HAS2 mRNA at 8q24.13 [50]. The second exon of HAS2-
AS1 shares partial sequence complimentary with HAS2 exon
1, and HAS2-AS1 can therefore be described as a “natural
antisense” to HAS2 [50]. In osteosarcoma cells, transcription
of HAS2 mRNA synthesis and subsequent HA production
are downregulated by HAS2-AS1 [50]. By contrast, in renal
proximal tubular epithelial cells, we showed that HAS2-
AS1 expression augments and/or stabilises HAS2 mRNA and
detected cytoplasmic HAS2:HAS2-AS1 RNA duplexes [51]. In
aortic smoothmuscle cells, HAS2-AS1 also upregulates HAS2

expression and mediates posttranscriptional modification of
HAS2 by O-GlcNAcylation [52].

We have also identified theHAS1 TSS, adding a further 26
nucleotides to reference sequence NM 001523, and analysed
the upstream HAS1 promoter region in renal proximal
tubular epithelial cells [46, 53], but a full characterisation
of factors regulating HAS expression in HPMCs has not
been carried out. In addition, little is known about HPMC
expression of long noncoding RNAs (including HAS2-AS1)
and of microRNAs, both of which are highly likely to regulate
HAS expression. Indeed, understanding the transcriptional
and posttranscriptional mechanisms regulating HPMC HAS
expression will provide useful information on the control
of HA synthesis during PD and has the potential to inform
future approaches to antifibrotic PD therapy.

3. Synthesis of HA by Peritoneal
Mesothelial Cells

HA is an important component of theHPMCECMand is also
produced by fibroblasts and macrophages in the peritoneal
cavity [54–56]. According to in vivo findings, HA levels
are increased in peritoneal dialysate during peritonitis [54].
It has also been shown in vitro that the synthesis of HA
in mesothelial cells is enhanced by various inflammatory
mediators including prostaglandin E2, PDGF, transforming
growth factor-beta1, tumour necrosis factor-alpha (TNF-𝛼),
and interleukin-6 (IL-6), with IL-1𝛽 producing the strongest
effect [41, 55, 57].

HA is found predominantly in connective tissue where
the polymer chain is bound to interacting molecules such
as cell surface receptor CD44, the receptor for HA-mediated
motility, and proteoglycans including aggrecan and versican
[58, 59].

Under homeostasis, HA polymers are typically between
2,000 and 25,000 disaccharide units in length, and these
chains have been sized at 2–25 𝜇m [11]. Yung and Chan [32]
have ably summarised much previous work on the properties
and effects of low and highmolecular weightHA.Despite this
sizeable body of accumulated data, attribution of functions
dependent on the number of disaccharide repeat units in
the HA polymer remains controversial. Understanding the
potential functional differences is complicated by the fact that
HA can be digested by the hyaluronidase (HYAL) enzymes
encoded by the HYAL multigene family [60] and by HA
degradation at different sites. An early in vivo study in which
radiolabelled HA was injected into rabbit knee joints showed
degradation locally and in the liver [61].

The biological effects of adding exogenous HA prepa-
rations to cultured HPMCs have been studied in vitro in
numerous cell culture systems. Yung and colleagues [33]
showed that addition of HA accelerated in vitro healing of
wounded HPMC monolayers in a dose-dependent manner
between 50 and 3300 ng/mL. Mediation of these proliferative
HA effects by interaction with CD44 remains unproven [62].
The key role played by HA in the process of remesothelialisa-
tion was confirmed in a further in vitro model of HPMC cell
migration [63].
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When HPMCs were exposed to spent dialysates supple-
mented with 0.1 or 0.5mg/mL high molecular weight HA,
synthesis of chemokine monocyte chemoattractant protein
(MCP-1), adhesion molecule soluble intercellular adhesion
molecule (s-ICAM), vascular endothelial cell growth factor
(VEGF), and fibronectin was significantly reduced [64].
However, these differences were not observed in vivo when
the same inflammatory mediators were measured in drained
dialysate patient samples [64]. In accordance with the above
in vitro findings, high molecular weight HA also inhibits
the nuclear factor-kappa B- (NF-𝜅B-) dependent synthesis of
cytokines IL-1𝛼, IL-6, and TNF-𝛼 in mouse macrophage line
J774 [65].

Since HA alters the fibrinolytic properties of numerous
cell types [66], we investigated the effect of HA on the syn-
thesis of tissue plasminogen activator (tPA) and plasminogen
activator-1 (PAI-1) in HPMCs. Only very high concentrations
of HA (>50mg/dL) downregulated fibrinolytic HPMC activ-
ity by decreasing t-PA synthesis, but changes in t-PA and
PAI-1 expression were not observed at concentrations up to
30mg/dL [66]. A subsequent study has shown that mono-
cyte/macrophage system cells interfered with HA-associated
changes in the fibrinolytic capacity of HPMCs treated with
lipopolysaccharide [67].

HA fragments activate nitric-oxide synthase in murine
macrophages through an NF-𝜅B-dependent mechanism,
increasing expression of chemokines macrophage inflam-
matory protein-alpha (MIP-1𝛼), MIP-1𝛽, and MCP-1 [68,
69]. In renal cortical tubular cells the synthesis of adhesion
molecules ICAM-1 and vascular cell adhesion protein-1
(VCAM-1), and MCP-1, were upregulated following stimula-
tion with low molecular weight HA [70]. Similarly, we found
that HA fragments of approximate molecular mass 1–7 ×
105Da induced the synthesis of the chemokines MCP-1 and
IL-8 in HPMCs [71]. The upregulation of these chemokines
was preceded by an increase inNF-𝜅B and activating protein-
1 DNA binding activity in HPMCs [71].

Breborowicz and coworkers found changes in HPMC
synthetic activity following exposure to dialysis fluids, includ-
ing downregulated HA synthesis [72]. Glutathione precursor
L-2-oxothiazolidine-4-carboxylic acid prevented this effect,
suggesting that it may be driven by glucose-induced free
radicals during PD [72]. Chronic exposure of HPMCs to
glucose or N-acetylglucosamine showed the latter to be more
biocompatible, despite the fact that it upregulated HA syn-
thesis [73]. Treatment with peroxisome-proliferator activator
receptor-gamma agonist ciglitazone decreased endometrial
cell attachment to HPMC line LP9 and decreased LP9 attach-
ment to HA-treated tissue culture plate wells [74]. HPMC
senescence in vitro was accelerated by glucose but not N-
acetylglucosamine [75].

In summary, the effects of in vitro HA application to
HPMCs are complex and dependent on HA molecular
weight. High molecular weight HA appears to have anti-
inflammatory and preservative effects, while low molecular
weight HA stimulates proinflammatory processes. However,
as several studies have failed to discriminate clearly between

the effects of HA of different sizes, an unambiguous inter-
pretation of these data is challenging, and new data will be
required to resolve this issue.

4. HA in Peritoneal and
Endothelial Glycocalyces

Emerging evidence suggests that HA at the mesothelial cell
surface contributes significantly to the peritoneal glycocalyx
[32, 76–78]. This structure performs a number of roles
including protection and lubrication, and denudation during
PD and/or injury is likely to accelerate HPMC and peritoneal
damage and thereby treatment failure [32, 77]. HA is also a
key component of the endothelial glycocalyx, contributing
significantly to its permeability [79, 80], and a recent study
has investigated the potential importance of the systemic
microvascular endothelial glycocalyx as a transport barrier
during PD [81].

5. Intraperitoneal In Vivo Administration of
HA to Prevent Surgery-Induced Adhesions

Postoperative adhesions are a frequent outcome of abdominal
surgery and may lead to bowel obstruction, chronic pelvic
pain, infertility, and technical difficulties in further surgical
procedures [82]. Both in humans and in animal models,
intraperitoneal (IP) administration of HA has been tested in
an attempt to prevent the formation of postsurgical adhesion.
Numerous HA preparations for IP application are com-
mercially available or in development. Interpretation of the
diverse outcomes following their use is not straightforward,
as is clear from the studies described below.

A number of prospective randomized trials have been
carried out to determine the efficacy of HA-based adhesion-
preventing agents. One such study analysed the antiadhesion
efficacy of a 0.5% ferric hyaluronate gel in severe peritoneal
trauma caused by bipolar coagulation in a laparoscopic rat
model. Adhesion scores were decreased significantly, but
none of the animals was free of adhesions, and the authors did
not show a significant difference between the HA gel treat-
ment and the use of the adhesion-preventing agents Ringer’s
lactate solution and 4% icodextrin solution [83]. In a prospec-
tive randomized study of peritoneal laparoscopic resection in
rabbits using 0.5% ferric hyaluronate gel, saline, or control, no
differences in adhesion scores and number of animals with
adhesions were reported [84]. By contrast, a prospective ran-
domizedmulticentre study in humans showed that a glycerol-
HA/carboxymethylcellulose membrane effectively reduced
intra-abdominal adhesions in patients who underwent proc-
tocolectomy and ileal-pouch-anal anastomosis [85]. How-
ever, the increase in infectious complications caused theman-
ufacturer not to market this product [85].

Considerable research efforts have been devoted to anal-
ysis of membranes composed of HA and carboxymethylcel-
lulose (HA/CMC; commercially available as Seprafilm) both
alone and in conjunction with additional agents, while other
treatments have also been tested. For instance, Nilsson and
colleagues [86] investigated the use of HAPXL01, a novel
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polypeptide derived from human lactoferrin, in the sidewall-
defect cecal abrasion model in the rat [86]. An HA-based for-
mulation of HAPXL01 inhibited scar formation, prohibiting
inflammation and promoting fibrinolysis and significantly
reducing adhesion formation without affecting wound heal-
ing [86].

In the first of two studies by Lim and coworkers, HA/
CMC Seprafilm mediated effective reduction in adhesion
formation by peritoneal ischemic buttons created either side
of amidline incision that was limited to the site of application
[87]. Irrespective of the bioresorbable material at predicted
adhesion sites, peritoneal adhesions formed readily at unpro-
tected sites [87]. In a later study, coadministration of neu-
rokinin 1 receptor antagonist significantly augmented the
effect of the HA/CMC membrane on adhesion prevention
from experimentally induced peritoneal ischaemic buttons,
and combined use of these treatments reduced adhesion for-
mation both at the site of application and at distal sites [88].

In a rat laparotomy/cecal injury model, IP-administered
atorvastatin proved to be equally as effective as Seprafilm in
the prevention of postoperative adhesion, but there was no
additive effect when both treatments were combined [89].

Data on HA-based membranes has not always been pos-
itive, however. The study of Economidou and coworkers [90]
set out to evaluate the effects of administration of two (uni-
dentified) commercial membranes: a thicker membrane
composed of macromolecular polysaccharides and a thinner
HA-hydroacid methylcellulose-based membrane. The use
of the former resulted in elevated serum creatinine and
urea levels, tubular epithelial cell vacuolization, and mild
interstitial infiltration [90]. These lesions were milder when
the HA-based membrane was used, and serum creatinine did
not change [90].

Use of HA/CMC powder and film applied either directly
or contralaterally was compared in a rat peritoneal sidewall
defect model and a rabbit cecal abrasion/sidewall defect
model [91]. Both additives reduced adhesions to the same
degree on direct application, while powder alonewas effective
on remote application but did not inhibit wound healing [91].
In a severe adhesionmodel inwhich 1 cm2 of intra-abdominal
wall was excised and n-butyl-2-cyanoacrylate was applied,
Hwang and colleagues [92] compared HA/sodium CMC gel
(Guardix-sol), 4% icodextrin, and Seprafilm. Scoring for both
fibrosis and adhesion showed a significant reduction in both
when Seprafilm alone was used [92].

A comparison of IP-administered linezolid with Sepra-
film [93] found both to be significant in reducing formation
of rat peritoneal adhesions following sterile antimesenteric
(side) surface cecal abrasion, when compared to controls.
Similarly, both IP lovastatin and Seprafilmwere equally effec-
tive in preventing postoperative intra-abdominal adhesions
of cecal, ileal, and uteral abrasions [94]. Observations from a
rabbit model showed that the combined use of 3% trehalose
solution and Seprafilm had additive effects in the prevention
of adhesion formation [95]. A recent study using a biodegrad-
able HA-based hydrogel formed in situ showed a promising
and significant reduction in adhesion formation [96].

In summary, the use of a variety of HA and HA-derived
preparations used in past studies complicates the process of
data interpretation. However, a significant body of evidence
now supports the use of HA/CMC agents, and the utility of
intraperitoneally administered HA has potential for future
development.

6. Animal Studies on PD Examining In Vivo
HA Application

Where appropriate, selected data from the studies discussed
below are summarized in Table 1.The therapeutic application
of the addition of HA to PD fluid is based on the assumption
that HA is lost from the peritoneal cavity during PD [97]. In
PD patients, IP production of HA increases during episodes
of peritonitis [41, 98], and with the duration of PD therapy
the HA concentration rises in the effluent of PD patients
[99]. Consequently, the first animal studies were performed
to determine the role of HA in peritoneal function during
PD [97]. A number of studies using IP-soluble HA admin-
istration have been described, the majority being in animal
models.

6.1. Effects of HA-Containing Fluid on PD Transportation
Characteristics. Significantly lower transperitoneal protein
equilibration for albumin and for total protein in rats receiv-
ing a Dianeal solution containing 10mg/dL HA twice daily
for 4 weeks has been reported [97], and these data have been
supported by the results of other studies [100, 101]. Further-
more, the total drained volume after a 4-hour dwell was
significantly higher in the HA group, yielding a positive net
ultrafiltration (UF) in the HA group versus a negative net UF
in the control group [97].

The above effect was based mainly on a decreased per-
itoneal fluid absorption rate, which was demonstrated inde-
pendently following 4-hour HA solution dwell, together with
increased urea clearance [102]. The same authors showed
that there was no difference in the transcapillary UF rate
(Qu) between different concentrations and variousmolecular
weights of HA in control groups or even a reduced Qu
in one HA group receiving 4MD molecular weight HA
[103]. They also reported that the effect of HA on peritoneal
fluid absorption and net UF appeared to be both size-
and concentration-dependent [104] and noted that this HA-
mediated effect was potentially useful to prevent a decrease
in net UF caused by increased peritoneal dialysate fill volume
[105].With respect to small solute clearance, it was shown that
HA administration resulted in a significantly increased urea
clearance [100, 105].

Rosengren et al. [106] provided evidence that both small
solute transfer and glucose-induced osmotic water transfer
(using a 3.86% glucose-based solution) was not influenced
by HA supplementation of dialysis fluid. HA did, however,
reduce backfiltration of fluid from peritoneum to plasma by
forming a “filter-cake” [106]. These researchers also found
that hyaluronidase incubation resulted in a 78% reduction of
HA in the superficial layer of the peritoneal membrane which
did not produce any significant changes in solute and fluid
transport across the peritoneal membrane [107].
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6.2. Effect of HA-Containing Fluids on Peritoneal Inflamma-
tion. The effect of HA on peritoneal inflammation has also
been analysed in animal studies. IP administration of HA
in rats reduced the percentage of neutrophils in PD effluent,
but the total cell number in the effluent did not change
[97]. This study also reported lower levels of TNF-𝛼 and
MCP-1 in rats treated with HA-containing PD solution in
comparison to rats treated with Dianeal [97]. In a model of
lipopolysaccharide-induced peritonitis in rats, 10mg/dL HA
administration reduced loss of UF and provided a greater
creatinine clearance [108]. Furthermore, the presence of HA
led to increased dialysate interferon-𝛾 levels, whereas elastase
levels decreased [108].

6.3. HAAbsorption andMetabolism after IP Application. Bre-
borowicz and coworkers have investigated the absorption and
metabolism of 10mg/dL HA in Dianeal after IP administra-
tion [100]. After 8 hours, one quarter of the HA had been
absorbed from the peritoneal cavity and peritoneal tissue,
and plasmaHAconcentrationswere significantly increased to
116% in peritoneal tissue and 435% in plasma [100]. HA levels
returned to normal within 24 hours after IP administration
in both healthy and uremic rats [100].

6.4. Histological Evaluation of the Peritoneal Membrane after
HA Application. Only one study has provided histological
evaluation of the peritoneal membrane following HA admin-
istration, showing a similar increase in the thickness of the
peritoneal interstitium in rats exposed to HA and in control
animals [97].

7. HA Supplementation in Human PD

Moberly et al. [109] examined 13 patients in a prospective
randomized crossover study. The PD solutions investigated
were Dianeal alone or supplemented with either 0.1 g/L HA
or 0.5 g/L HA. Each 6-hour dialysis exchange was separated
from the other exchanges by a 2-week washout period. The
authors did not report any adverse events related to HA
administration. HA application did not result in significant
changes in netUF or peritoneal volume profiles, butmean net
UF tended to be slightly higher during treatment with HA-
containing fluid. Peritoneal fluid reabsorption also tended to
be lower during the HA treatment, but the differences were
not significant. Solute clearances, dialysate/plasma ratios, and
mass transfer area coefficients for sodium, urea, creatinine,
albumin, and glucose were similar for the three treatment
solutions [109]. While these data failed to reach signifi-
cance, only 10 patients completed the study. In addition,
HA concentrations exceeding 0.5 g/L were not used due to
increased viscosity resulting in significantly increased filling
and drainage times [109]. It remains possible that a longer
application period than one test solution every 2 weeksmight
have been more effective.

A recent review by Cho and colleagues of randomized
control trials and quasirandomised control trials in adults
and children compared the effects of biocompatible PD
solutions [110].These authors concluded, on the basis of what
they referred to as “generally suboptimal quality evidence,”

that the use of neutral pH, low glucose degradation product
(GDP) solutions led to greater UF and renal preservation
without statistically significant effects of peritonitis, tech-
nique failure, or patient survival [110].

7.1. HA as a Biomarker of Inflammation in PD. Inmore recent
work on rat models and in PD patients, HA has been used as
a biomarker to monitor PD progress.

Wieczorowska-Tobis and colleagues showed reduced HA
concentration in dialysate from neutral pH and low GDP PD
solutions when compared with conventional solutions in rats
[111], while a study on uremic rats reported increased HA and
MCP-1 in peritoneal lavage fluid [112]. A rise in the parietal
peritoneal concentrations of HA and collagen followed the
use of PD solutions containing N-acetylglucosamine or
glucose [113]. Increased peritoneal cell influx and HA synthe-
sis, together with increased neutrophil counts and decreased
mast cell/eosinophil numbers, were observed in rats follow-
ing PD, and these affects were not changed by the pres-
ence of unfractionated or lowmolecular weight heparin [114].
Reduced HA production was reported in a rat model
using bone morphogenetic protein-7 (BMP-7) over a 5-week
period, suggesting decreased fibrosis [115]. Use of icodextrin
in PD solutions resulted in increased patient dialysate HA
compared to glucose/lactate solution, suggesting increased
subclinical inflammation [116].

Breborowicz et al. [64] examined the effect of Dianeal
alone or Dianeal with HA supplementation of 0.1 or 0.5 g/L.
Exchanges at 6 hours were performed with each of the fluids
randomly at 2-week intervals. Patient dialysate nitrite con-
centration (as an index of NO production) was significantly
higher after dialysis exchange performedwithHA0.5 g/L, but
concentrations of MCP-1, s-ICAM 1, VEGF, and fibronectin
were similar after exchanges with the HA-supplemented dial-
ysate fluids and did not differ from Dianeal alone. When cul-
tured HPMCs were exposed for 24 hours to these dialysates,
the HA-containing fluids inhibited the synthesis of MCP-1, s-
ICAM, VEGF, and fibronectin, accelerating the growth rate
of proliferating cells [64].

Use of icodextrin or amino acid-based PD solutions
did not result in significant changes in HA production in
human dialysates [117], whereas upregulated HA synthesis
was reported in whole peritoneal samples from long-term PD
patients [118]. Recent reports have shown increased HA after
8 weeks of PD [119] and upregulated expression of endothe-
lial HA receptor-1 (LYVE-1) in human dialysate effluents,
peritoneal tissues, and HPMCs [120]. Most recently, Yung
and colleagues analysed data from a comprehensive panel
of fibrotic and inflammatory biomarkers, including HA, in a
randomised prospective study of 80 PD patients [121]. This
study compared a low-glucose treatment protocol of Phys-
ioneal, Extraneal, and Nutrineal with a control group treated
with Dianeal; the biomarker data suggested better preserva-
tion ofmembrane integrity in themultitreatment group [121].

8. Summary

The roles of HA in peritoneal biology, fibrosis, and dialysis
require further investigation. A more complete understand-
ing of the regulation of peritoneal HAS expression and HA



8 BioMed Research International

synthesis, and of peritoneal and mesothelial responses to
exogenous HA, has the potential to provide new tools with
which PD treatment and prevention of surgical adhesions
are improved. The manipulation of HAS expression and
HA metabolism via long noncoding RNAs such as HAS2-
AS1 and/or microRNAs, together with recent advances in
molecular analysis techniques, hold much promise in these
contexts [50–52, 122–128].
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