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Analysis of chromosomal aberrations and
recombination by allelic bias in RNA-Seq
Uri Weissbein1, Maya Schachter1, Dieter Egli2,3,4 & Nissim Benvenisty1

Genomic instability has profound effects on cellular phenotypes. Studies have shown that

pluripotent cells with abnormal karyotypes may grow faster, differentiate less and become

more resistance to apoptosis. Previously, we showed that microarray gene expression profiles

can be utilized for the analysis of chromosomal aberrations by comparing gene expression

levels between normal and aneuploid samples. Here we adopted this method for RNA-Seq

data and present eSNP-Karyotyping for the detection of chromosomal aberrations, based on

measuring the ratio of expression between the two alleles. We demonstrate its ability to

detect chromosomal gains and losses in pluripotent cells and their derivatives, as well as

meiotic recombination patterns. This method is advantageous since it does not require

matched diploid samples for comparison, is less sensitive to global expression changes

caused by the aberration and utilizes already available gene expression profiles to determine

chromosomal aberrations.
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H
uman pluripotent stem cells (hPSC) acquire chromosomal
abnormalities during their derivation and their propaga-
tion in culture1. These aberrations might affect cellular

behaviours such as the cell cycle, apoptosis resistance,
tumorigenicity and differentiation capabilities due to changes in
expression levels of various genes1–5. Hence, cells carrying certain
aberrations take over the culture due to positive selective
pressures2,5,6. Notably, this selective process, which is not
unique to hPSC as it also occurs in other cell types in humans
and other mammals7–9, may affect genetic screens, basic research
studies and future regenerative medicine1.

Chromosomal aberrations are traditionally detected using
methods that require accessibility to the genetic material of the
cells. These methods include cytogenetic analysis of metaphase
chromosome spreads using Giemsa banding or spectral karyotyp-
ing (SKY), or analysis of the DNA content of the cells using
techniques such as array-comparative genomic hybridization
(aCGH), single-nucleotide polymorphism (SNP) arrays and
whole-genome sequencing (WGS)10. Each of these methods can
successfully detect chromosomal aberrations. Previously, we
presented a methodology, named e-Karyotyping, for studying
genomic instability by analysis of global gene expression using
microarray data sets6,7,10. This method is based on comparison of
gene expression levels along chromosomes by comparing the
sample of interest and a matched diploid sample, to look for
regional differences in gene expression. e-Karyotyping analysis
does not require accessibility to chromosomal or DNA material,
and can be performed on any gene expression microarray
analysis. A prerequisite of e-Karyotyping is the availability of the
gene expression profile of normal diploid samples of the exact cell
type for comparison10.

Here we initially adopted this methodology for global gene
expression analysis obtained from RNA-Seq data, and then
developed a new strategy to analyse genomic integrity based on
the expression of transcripts with allele bias. This method enables
a reliable and fast analysis of genomic integrity, without the need
for comparison to a matched diploid sample.

Results
Applying e-Karyotyping to RNA-Seq data. To adapt e-Kar-
yotyping for RNA-Seq data, we collected multiple RNA-Seq data
sets of human pluripotent or pluripotent-derived cells from the
Sequence Read Archive (SRA) database (http://www.ncbi.nlm.-
nih.gov/Traces/sra/)11 (Supplementary Table 1), aligned the reads
to the genome using TopHat2 (ref. 12), and retrieved the
normalized fragments per kilobase of transcript per million
mapped reads (FPKM) values for each gene using Cufflinks13.
Next, we generated a table of the merged expression values and
divided each gene expression level by the median expression
levels across all samples, as previously described for microarray
intensity values6,10. To reduce noise, we discarded transcripts that
were unexpressed (less than a FPKM value of 1) in more than
20% of the samples, from further analysis. In addition, we
discarded the 10% most variable transcripts (see Methods). Using
a piecewise constant fit algorithm14 with a set of defined
parameters (see Methods) we could detect regional biases in
gene expression. We identified samples with trisomy 12, and 16
together with 17, as well as a sample with trisomy 1q (Fig. 1a and
Supplementary Fig. 1), which are easily visualized using moving
average plots. These aberrations are well-known recurrent
changes in pluripotent cell cultures due to positive selection
(except trisomy 16)6.

Detection of chromosomal aberrations using eSNP-Karyotyping.
In addition to gene expression levels, RNA-Seq can provide

information about the underlying DNA sequence. Most genes are
expressed from both alleles at the same levels (except for cases of
monoallelic expression such as parental imprinting)15, especially
when RNA is extracted from a population of cells16. We reasoned
that in cases of chromosomal duplications, a deviation from the
expected 1:1 ratio between the alleles, localized to the duplicated
region, should be detected. Therefore, we developed a workflow
that first calls SNPs from the RNA-Seq data using the GATK
HaplotypeCaller programme17. This tool calls for probable
variants from next-generation sequencing data, and returns the
reads number for each variant. Next, we filtered out SNPs below a
threshold coverage of 20 reads, and SNPs with a frequency below
0.2 of the less-expressed allele, to eliminate biases of the library
preparation, sequencing errors or low reading depth. We then
ordered the remaining SNPs according to their chromosomal
location and calculated for each SNP the number of reads ratio
between the more-expressed allele (major allele) and the less-
expressed one (minor allele). We term this method expressed-
SNP-karyotyping (eSNP-Karyotyping) (Fig. 2). An R package of
the new methodology is available for download from GitHub
(https://github.com/BenvenLab/eSNPKaryotyping). To evaluate
our method, we first tested it on the samples analysed by
e-Karyotyping. While the diploid samples produced a constant
allelic ratio (around 1.4) along the entire genome, as was
previously shown15, in the aberrant samples the expected
change in the allelic ratio in the duplicated chromosome was
easily observed (Fig. 1b and Supplementary Fig. 2). Statistical
significance was calculated with a one tailed t-test comparing the
SNPs major/minor ratio values in each window with the total
SNP pool and false discovery rate (FDR) correcting for multiple
testing. Importantly, the observed change in the allelic ratio was
highly statistically significant (Fig. 1b and Supplementary Fig. 2).
This method was sensitive enough to detect the duplication of
chromosome 1q in a sample with relatively low sequencing depth
(B6� 106 mapped reads).

To further validate our method, we extracted RNA from five
different cell lines (CSES9, CSES7, CSES22, CSES21 and
HUES14), all samples were analysed by RNA-seq, followed by
eSNP-Karyotyping and by the gold standard G-banding karyo-
type. As shown in Fig. 3, two of the samples did not show any
detectable chromosomal aberration, while in other two samples
we could identify chromosomal aberrations in either chromo-
some 12 or 21, by both G-banding karyotype and eSNP-
Karyotyping. In HUES14 cell line, we could detect significant
signal in a small region of chromosome 20. This potential CNV
contains a region (q11.21), which is well known for providing
selective advantage to hPSC, due to the duplication of the anti-
apoptotic gene BCL-XL18–21. Importantly, difference in size
between the two copies of chromosome 20 was also visible by
G-banding. This analysis supports the validity of the eSNP-
Karyotyping methodology.

Since eSNP-Karyotyping, as opposed to e-Karyotyping, does
not require a corresponding diploid sample as a baseline, it
performs better with samples from differentiated cells where
differences in the extent of differentiation may cause differences
in gene expression between samples. For example, there are only
two studies with RNA-seq samples of differentiated pancreatic
progenitor cells22,23. Analysis of these data sets by e-Karyotyping
is extremely noisy due to differences in gene expression patterns
between the studies (Fig. 1c and Supplementary Fig. 3a).
However, using eSNP-Karyotyping, we could easily detect
trisomy 12 and 17 in embryonic stem cell (ESC)-derived
samples from one of the studies (Fig. 1d and Supplementary
Fig. 3b).

eSNP-Karyotyping can also perform successfully on mouse
samples as long as their origin is outbred mice. Reports on
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stimulus-triggered acquisition of pluripotency24 were re-
evaluated by multiple analyses, including analysis of the
genomic integrity of the samples using comparisons between
the published CHIP-Seq data25. Here we used the gene expression
data to analyse the chromosomal integrity by eSNP-Karyotyping.
We thus could validate the existence of trisomies 6 and 11 in the
trophoblast stem cell samples (Supplementary Fig. 4a). Adding to
the original analysis, we could also show that the epiblast stem
cell samples, which did not have a CHIP-Seq profile, had trisomy
13 and a probable mosaic trisomy 8 (Supplementary Fig. 4b). The
stimulus-triggered acquisition of pluripotency cells were diploid
as reported (Supplementary Fig. 4c).

Detection of chromosomal aberrations in small chromosomes
can be more challenging. Analysis of expression data from
fibroblasts of Down’s syndrome patient could successfully detect
trisomy 21 (Supplementary Fig. 5). However, on reprogramming
of these sample into induced pluripotent stem cells, we could
detect an additional trisomy in chromosome 20 (Supplementary
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Figure 1 | Detection of chromosomal duplications using RNA-Seq data. (a) e-Karyotyping analysis of samples from RNA-Seq studies. Shown are moving

average plots of representative examples of chromosomal aneuploidies in pluripotent and pluripotent-derived cells. The grey background represents

statistically significant aneuploidy as recognized by the piecewise constant fit algorithm. (b) eSNP-Karyotyping of the aberrant samples shown in a. Colour

bars represent the FDR-corrected P value. Positions with a P value lower than 0.01 are marked by a black line. (c) Two representative samples from the

e-Karyotyping analysis for PSC-derived pancreatic progenitor cells. (d) eSNP-Karyotyping for the red sample analysed in c.
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Fig. 5). Importantly, e-Karyotyping did not detect this aberration
in a clear manner26.

eSNP-Karyotyping detection power depends on the population
diversity and the reading depth. In a mixed population of diploid

and aneuploid cells, the detection power is noticeably reduced. To
assess the necessary percentage of aneuploid cells in a population
for a reliable detection of a trisomy (that is, the degree of
mosaicism that could be detected), we mixed reads from two
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neural samples with either diploid or trisomy 12, both from the
same study27. When half of the sequencing reads originated from
the aberrant samples, the trisomy was still easily detected.
However, when only a third of the reads were from trisomy 12
samples, the trisomy was visible, though not statistically
significant (Fig. 4a). To determine the necessary read number,

we used the pancreatic progenitor sample, which has a high
reading number, and gradually reduced the number of
reads23. This assessment showed that 15–20� 106 mapped
reads allow for good detection power of chromosomal aberra-
tions, with B2,000 detected SNPs (Fig. 4b and Supplementary
Fig. 6).

Analysing loss of heterozygosity using eSNP-Karyotyping. To
identify loss of heterozygosity (LOH, deletions or uniparental
disomies), we took a complementary approach. We reasoned that
in these cases, all genes should show monoallelic expression since
they only exist in one copy or two duplicated copies. For this
analysis, we obtained a list of the common SNP positions in the
human genome from the dbSNP database28. First, we filtered all
common SNP positions below the sequencing coverage of
20 reads. Then, we intersected the list of SNPs detected in the
duplication analysis with the dbSNP list. In this manner, we
determined whether each expressed known SNP position was
heterozygote or homozygote. Finally, we examined the distri-
bution of the homozygous and heterozygous SNPs along the
genome (Fig. 2). For each chromosomal arm, the ratio of
homozygote to heterozygote SNPs was calculated and compared
with the ratios of the rest of the arms using t-test. Homozygous
arms are those with FDR-corrected P value bellow 0.001 and
homozygote to heterozygote ratio five times greater than this
proportion for all the autosomal chromosomes. The diploid
samples showed an equal distribution of homozygous and
heterozygous SNPs along the genome (Fig. 5a). However,
parthenogenetic ESCs (pESCs), which originated from an
activated oocyte and have a duplicated maternal genome,
showed a complete monoallelic expression, confirming the
validity of the method (Fig. 5b). The seminoma TCam-2 cell
line sample, which is a germ cell tumour, showed regions of
homozygosity in variable sizes up to an entire chromosome
(Fig. 5c), suggesting LOH events in this sample29.

To determine the necessary number of reads required for clear
observation of LOH, we sampled different numbers of reads-out
of the original data set (which contains B55� 106 mapped reads)
and performed our analysis on the read-depleted files. The
observed aberration was still easily detected even with 50% of the
reads (Supplementary Fig. 7). However, reducing the number of
reads to 25% abolished the effectiveness of the technique, since
the number of heterozygous known SNPs, with coverage
above 20 reads, was not sufficient for a definitive conclusion
(Supplementary Fig. 7). This analysis indicated that B20� 106

can give good detection power of LOH.

Mapping meiotic recombination using eSNP-Karyotyping.
Finally, we decided to map meiotic recombination from RNA-Seq
data with this methodology. During oocyte development,
homologous chromosomes exchange segments by homologous
recombination. Then, homologous chromosomes are separated
during meiosis-I followed by separation of sister chromatids
during meiosis-II. Examination of zygosity patterns of oocytes or
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pESCs that failed in chromosome segregation during meiosis-I or
meiosis-II (p(MII)ES) can reveal sites where homologous
recombination occurred30. In humans, only one study has been
published, which analysed only one sample of p(MII)ES31. Here,
we analysed four samples of pESCs, four diploid ESCs and four
p(MII)ES cells, with approximately the same number of reads32,33

(Supplementary Fig. 6). The p(MII)ES (also called SWAP cells)
originates from activation of oocytes that failed to extrude the
polar body34. We performed an analysis that searched for
heterozygosity in blocks of 5 Mb along the genome. Blocks with
fewer than three heterozygous SNPs were defined as homozygous,
whereas blocks with three or more were defined as heterozygous.
We thus mapped the zygosity state of each sample (Supple-
mentary Fig. 8). Then we plotted a histogram along each
chromosome that determines the likelihood of each block to be
heterozygous in each group of samples. The pESCs showed
almost no regions of heterozygosity whereas the normal ESCs
showed heterozygosity along the entire chromosome length
(Fig. 5d,e). Interestingly, near the centromeres of the p(MII)ES
cells, we observed relative homozygosity, and the likelihood for
heterozygosity increased as the region got closer to the telomeres,
indicating a lack of recombination in this region (Fig. 5f).

Discussion
Chromosomal aberration analysis using gene expression data can
prove valuable for assuring a normal karyotype or to detect
major chromosomal aberrations. Unlike traditional DNA-based

methods, this method is mainly designated for studies where gene
expression analysis by RNA-Seq was performed for other
purposes, and the expression data are already available and can
be utilized for genomic integrity analysis as well.

The observed allelic ratio in the diploid chromosomes, which
was constantly around 1.4, is similar and even slightly lower than
the ratio found in a recent report15. A few factors contribute to
this ratio: (1) monoallelic or biased expression of certain genes,
due to different genetic and epigenetic status that can affect their
expression; (2) genes expressed at low levels may show some
allelic bias when analysed by RNA-Seq as a result of the low
number of reads; and (3) higher chances of a read that contains
the reference SNP to be mapped to the reference genome
then for read that contains the alternative SNP. This well-known
phenomenon may be partially overcome by different metho-
dologies35,36. Still, in a recent report that analysed the
transcriptome of embryonic stem cells the ratio was over 1.7
even with the use of a methodology to overcome the reference
genome bias15.

Each of the current genomic integrity analysis techniques has
its strengths and limitations regarding genomic aberration
detection10. In terms of sensitivity, cytogenetic methods are the
most sensitive as they are performed on single metaphase spreads.
However, SNP arrays, CGH arrays, e-Karyotyping and eSNP-
Karyotyping are comparable in terms of sensitivity since they are
performed on cell populations. When analysing cells in culture, if
the aberration provides a selective advantage to the cells it will
rapidly take over the culture; however, if they are neutral or
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harmful they are much less likely to fixate in the population5. In
terms of resolution, WGS has the highest performance followed
by the array-based methods10. e-Karyotyping was shown to have
a resolution similar to SKY and GIEMSA banding6,10; however, it
can vary as a function of multiple parameters such as the diploid
baseline for comparison and the platform used for gene
expression analysis10. eSNP-Karyotyping resolution is heavily
dependent on the sequencing depth and genome composition.
For this reason we limited our analysis to the entire chromosome
or chromosome arm. The cost and duration of WGS is much
higher than SNP and CGH arrays, which are comparable to
cytogenetic-based methods10. However, gene expression-based
techniques are performed on data obtained for other purposes
such as differential gene expression analysis, so the cost is not
devoted entirely to genomic integrity assay. Similar to SNP arrays,
CGH arrays and e-Karyotyping, eSNP-Karyotyping cannot
identify balanced translocations.

Although the expression-level-based method, e-Karyotyping, is
already successfully used2,6–9, eSNP-Karyotyping may have a few
advantages: (1) as opposed to e-Karyotyping, eSNP-Karyotyping
does not require any additional normal samples other than the
sample for examination, which makes the analysis quicker and
easier. In cases where the gene expression profile of the diploid
matched sample is not available, genomic integrity analysis using
e-Karyotyping cannot be performed. (2) eSNP-Karyotyping
works well with small chromosomes, as shown with the trisomy
21 in the Down’s syndrome patient. (3) Since there is no need for
comparison to normal samples, it can be used to study
chromosomal aberrations in samples with multiple different
aberrations such as cancer cells, as long as the population is
homogenous. (4) Since eSNP-Karyotyping is based on the allelic
ratio and not on expression levels, aberrations that cause
profound changes in gene expression in the entire genome will
be detected by eSNP-Karyotyping.

Analysis of allelic expression from expressed alleles can be
utilized for studying epigenetic phenomena. Some of the potential
uses include studying monoallelic expression, following the
process of X inactivation in female cells by analysing hetero-
zygosity along the X chromosome or detecting aberrations in
imprinted genes. We believe that eSNP-Karyotyping can prove
helpful in the analysis of the genetic integrity of pluripotent stem
cells and their derivatives in addition to other fields of genetic
research.

Methods
e-Karyotyping analysis. The data were analysed as previously described for
microarray data sets2,6,7,10. Illumina Gene expression RNA-Sequencing profiles were
obtained from the SRA (http://www.ncbi.nlm.nih.gov/Traces/sra/) database11. The
SRA files were extracted using SRAtools11 and aligned to HG38 reference genome
using TopHat2 (ref. 12) allowing only one alignment per read. Cufflinks13 was used
to obtain normalized FPKM values for each sample. The following analysis was
performed in batches according to the cell type or study. In each analysis, the samples
were merged into a single table and the transcripts were organized by their
chromosomal location. Expression values of zero were set to 10� 7 to allow log 2
transformation of all the expression values. Next, samples with an expression value
below 1 FPKM were adjusted to 1 to enable statistical testing. We considered
transcripts with an expression level of 1 FPKM as unexpressed. Transcripts
unexpressed in more than 20% of the samples were removed to decrease expression
noise. In each analysis batch, the median expression of a transcript across the entire
batch was subtracted from the expression value of each transcript in each sample, to
obtain a comparative value. This median then served as the baseline for examining
expression bias. To reduce noise, the sum of squares of the relative expression values
was calculated for each transcript and the 10% most variable genes were removed
from further analysis. The data were processed and visualized using a CGH analysis
software programme, CGH-Explorer14 (http://heim.ifi.uio.no/bioinf/Projects/
CGHExplorer/). Gene expression regional bias was detected using the piecewise
constant fit algorithm, using a set of parameters as follows: least allowed
deviation¼ 0.25; least allowed aberration size¼ 50; Winsorize at quantile¼ 0.001;
penalty¼ 12; and threshold¼ 0.01. Moving-average plots were drawn using the
moving-average fit tool, with windows of 200 genes.

Detection of chromosomal duplications using eSNP-Karyotyping. BAM files
were edited using Picard tools and SNPs were called using the GATK Haploty-
peCaller. The SNPs were filtered according to the reading depth and allelic fre-
quency to reduce errors and noise. SNPs with low coverage (below 20 reads) or
with low minor allele frequency in the total allele poll (lower than 0.2) were
discarded. Next, for each SNP, the major to minor frequency ratio was calculated
and the table was sorted by the chromosomal position. For visualization, moving
medians of the major to minor ratios were plotted along the moving medians of the
chromosomal positions. Usually, a window of 100–150 SNPs was used. The P value
was calculated with a one tailed t-test comparing the SNPs major/minor values in
the window to the total SNP pool and correcting for multiple testing using
FDR correction. In specific cases, to reduce noise, the list of SNPs was further
filtered to contain only known SNPs. For the sensitivity assay, reads from diploid
(SRR1561108) and trisomy 12 (SRR1561105) samples, from the same study,
were mixed in different ratios using the SAMtools view and merge functions. To
determine the necessary read number, different percentages of reads, from 10 up to
100% were randomly selected and analysed using eSNP-Karyotyping. The sample
selected for this assay had trisomies 12 and 17 (SRR1693240), and covered with
more than 50M mapped reads. The entire workflow and visualization of the data
were performed using R statistical software (http://www.r-project.org/).

Detection of LOH using eSNP-Karyotyping. A list of common SNPs in the
human genome was obtained from the dbSNP database (http://www.ncbi.nlm.-
nih.gov/SNP/). For each common SNP we first determined whether it was
homozygote or heterozygote by checking whether it was detected as a valid SNP in
our SNP calling. Next, SNPs that were covered by fewer than 20 reads were
discarded. The reading depth for each SNP was determined by the SAMtools depth
function. For each chromosome we calculated the number of homozygote and
heterozygote SNPs in blocks of 1.5 Mb and plotted them along the chromosome.
The entire workflow and visualization of the data were performed using R. To
obtain P value, we determined the ratio of the number of homozygote to hetero-
zygote SNPs for each chromosome arm. Then, we determined for each arm if this
ratio is statistically different from the rest of the chromosome arms by t-test. The
P value list was corrected for multiple testing using FDR correction. True LOH
is considered as an arm with P value lower than 0.001 and a homozygote to
heterozygote SNPs ratio five times greater than the ratio of all the autosomal
chromosomes.

Mapping recombination using eSNP-Karyotyping. Four normal ESC samples,
four parthenogenetic ESC samples and four p(MII)ESC samples were used in the
analysis. All 12 samples had B20� 106 mapped reads. For each sample we
calculated the number of homozygote and the number of heterozygote SNPs in
blocks of 5 Mb. A block was considered informative if it contained at least three
homozygote SNPs. Informative blocks were considered homozygote if they
contained fewer than three heterozygote SNPs. These parameters were selected
because they allow for low positive calls in the parthenogenetic cells, identification
of putative homozygous regions in the SWAP samples, and a high percentage of
informative overlapping blocks between the samples. Next, for each group of four
samples, we plotted their likelihood of being heterozygote in each block. The entire
workflow and visualization of the data were performed using R.

Cell culture. Human ESCs (CSES37,38 and HUES14 (ref. 39)) were cultured on
mouse embryonic fibroblast treatment with mitomycin-C. Culture medium
contained KnockOut Dulbecco’s modified Eagle’s medium (Gibco-Invitrogen, CA)
supplemented with 15% KnockOut-SR (Gibco-Invitrogen, CA), 1 mM glutamine,
0.1 mM b-mercaptoethanol (Sigma-Aldrich, MO), 1% non-essential amino-acid
stock (Gibco-Invitrogen, CA), penicillin (50 U ml� 1), streptomycin (50 mg ml� 1),
and 8 ng ml� 1 fibroblast growth factor 2 (Gibco-Invitrogen, CA). Cells were
passaged using trypsin-EDTA (Biological Industries, Beit Haemek, Israel).

RNA extraction and sequencing. Total RNA was extracted using NucleoSpin
RNA Plus kit (Marcherey–Nagel). RNA integrity (RIN49) was validated using
Bioanalyzer (Agilent Technologies). mRNA was enriched by Poly-A selection,
and sequencing libraries were prepared using TruSeq RNA Library Prep Kit v2
(Illumina). Single-end 85 bp sequencing was performed using Illumina Next-
Seq500.

G-banding. Before cell harvesting, Colcemid (Invitrogen) was added directly to the
plate of cells, at a final concentration of 100 ng ml� 1 for 40 min. Then, cells were
trypsinized, treated with hypotonic solution for 20 min and fixed. Metaphases were
spread on microscope slides, and using standard G-banding staining chromosomes
were classified according to the International System for Human Cytogenetic
Nomenclature.

Code availability. eSNP-Karyotyping R package is available for download from
GitHub (https://github.com/BenvenLab/eSNPKaryotyping)
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Data availability. Sequencing data performed for this study were deposit in Gene
Expression Omnibus (GEO) under the accession number GSE81402.
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