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Automation of cell culture would facilitate stable cell expansion with consistent quality. In the present study, feasibility of an auto-
mated closed-cell culture system “P 4C S” for an embryoid body- (EB-) explant outgrowth culture was investigated as a model
case for explant culture. After placing the induced pluripotent stem cell- (iPSC-) derived EBs into the system, the EBs successfully
adhered to the culture surface and the cell outgrowth was clearly observed surrounding the adherent EBs. After confirming the
outgrowth, we carried out subculture manipulation, in which the detached cells were simply dispersed by shaking the culture flask,
leading to uniform cell distribution. This enabled continuous stable cell expansion, resulting in a cell yield of 3.1 x 107, There was
no evidence of bacterial contamination throughout the cell culture experiments. We herewith developed the automated cultivation

platform for EB-explant outgrowth cells.

1. Introduction

Cell culture is one of the most critical bioprocesses for sci-
entific and clinical purposes. Although cell culture has tradi-
tionally been performed manually, it presents several prob-
lems besides the risk of human error. For example, indi-
vidual operational differences result in phenotypic and yield
variability between different trials and institutions [1]. Fur-
thermore, especially in clinical cell processing for cell-based
therapy, manual procedures require a highly experienced staft
[2], leading to higher therapeutic costs and thus preventing
the widespread use of cell-based therapy [3]. Therefore,
technological developments to overcome these problems are
required. One possible solution is the use of an automated cell
culture system.

To date, several automated cell culture systems have been
reported [4-9]. Among them, the “P 4C S” (by Kaneka)
[9], developed based on a prototype system [5], is a unique
automated closed-culture system designed to perform all
the culture manipulations in a single culture flask inte-
grated within a single-use disposable tubing set. This system
employs a unique subculture strategy which serves to limit
the size of machinery and stable continual culture. However,
the feasibility of this system has been shown only for bone
marrow mesenchymal stromal cells and fibroblasts. For the
broad range application of this system, there is a requirement
to investigate the feasibility and performance of the system
using many types of human cells from various tissues [10-16].

Human induced pluripotent stem cells (iPSCs) have
been used for model cells of differentiation/development and
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diseased cells and establishment of drug screening system
[17-19]. In the present study, in order to show the further
applicability of “P 4C S,” we investigated the performance
of this system using iPSC-derived cells and genetically
immortalized keratinocytes as model cells with stable growth
properties. Furthermore, we examined the applicability of
this system to the EB-explant outgrowth culture as model case
for explant culture.

2. Materials and Methods

2.1. Instrumentation. Cells are cultivated in “P 4C S” (Kaneka,
Osaka, Japan) [9] as an enclosed system using a single-use
disposable tubing set consisting of a round-shaped culture
flask (surface area, 490 cm?), air filters, and solution bags
(cell loading bag, medium bag, saline solution bag, cell
detachment solution bag, cell collection bag, and waste
bag). For automated cell culture, suspension of starter cells,
medium, and protease (e.g., trypsin) were injected into the
cell loading bag, medium bag, and cell detachment solution
bag, respectively. Then, all the solution bags are connected
with tubing set to form a closed circuit. The assembled tubing
set is then mounted on the machinery so that the culture
flask and the medium and cell detachment solution bags are
separately maintained in the incubator (5% CO,, 37°C) and
the cooler units (5°C). After cell loading into the culture flask,
the system performs cell culture manipulations (medium
exchange, passage, and cell harvest), whose timing program
can be arbitrarily set by an operator. Here, this system
performs unique passage manipulation, in which the cells
are detached by trypsinization and the medium is supplied
to stop the protease activity, and then the detached cells
are simply dispersed uniformly by shaking flask. Following
the cell dispersion, the cells were kept for short time for
reattachment to the culture surface, followed by medium
exchange. During the culture, fresh air (5% CO,) is period-
ically supplied to the culture flask through the air filters. In
addition, images at multiple fixed positions within the culture
flask are automatically captured daily by complementary
metal-oxide-semiconductor camera. The detailed strategies
of these manipulations are as described previously [5].

2.2. Ethical Statement. Studies on human cells were per-
formed in full compliance with the Ethical Guidelines for
Clinical Studies (2008 notification number 415 of the Min-
istry of Health, Labour, and Welfare, Japan). The cells were
banked after approval of the Institutional Review Board at
the National Institute of Biomedical Innovation (May 9,
2006). Animal experiments were performed according to
protocols approved by the Institutional Animal Care and
Use Committee of the National Research Institute for Child
Health and Development.

2.3. Generation of iPSCs. Edom-iPS#523 cells were generated
through reprogramming by Sendai virus infection-mediated
expression of OCT4, SOX2, KLF4, and c-MYC as previously
described [20]. Elimination of Sendai virus was confirmed
by RT-PCR. Cells just after infection served as a positive
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control. Sequences of the primers set are forward primer,
5'-AGA CCC TAA GAG GAC GAA GA-3', and reverse
primer, 5'-ACT CCC ATG GCG TAA CTC CAT AGT G-
3'. In addition, Edom-iPS-2 cells were also established from
menstrual blood-derived cells by infection with retroviruses
produced from the retrovirus vector pMXs, which encodes
the cDNA for human OCT3/4, SOX2, c-MYC, and KLF4 [21-
24]. iPSCs were maintained on irradiated mouse embryonic
fibroblasts.

2.4. Cell Preparation and Culture. iPSCs (MRCiPS#25) [22]
were maintained on irradiated mouse embryonic fibroblasts
in iPSellon medium (Cardio Incorporated, Osaka, Japan)
supplemented with 1% penicillin/streptomycin solution (Life
Technologies) and 10 ng/mL of basic fibroblast growth fac-
tor (bFGF; Wako, Osaka, Japan). For EB formation, iPSC
colonies were mechanically cut using the STEMPRO EZPas-
sage Tool (Life Technologies) and transferred to the low cell-
adhesion 90 mm dish in iPSellon medium without bFGEF.
After confirming EB formation on day 3, the EBs were har-
vested and used for the subsequent experiment. The opera-
tion protocols were approved by the Laboratory Animal Care
and the Use Committee of the National Research Institute for
Child and Health Development, Tokyo.

Two types of genetically immortalized human dermal
keratinocytes were used in this study. One (HDKI1-K4T) was
transduced with hTERT and mutant CDK4 (CDK4R24: an
inhibitor resistant form of CDK4) and the other (HDKI-
K4DT) was additionally transduced with cyclin D1. These
genes were introduced using the recombinant lentivirus
vectors by a previously described method [25]. These ker-
atinocytes were maintained in keratinocyte-SFM supple-
mented epidermal growth factor, bovine pituitary extract,
and 1% penicillin/streptomycin solution (all from Life Tech-
nologies) according to the manufacturer’s recommendation.

2.5. Teratoma Formation. To address whether the Edom
iPSCs have competence to differentiate into specific tis-
sues, teratoma formation was performed by implantation of
Edom iPSCs at the subcutaneous tissue (1.0 x 107 cells/site)
of immunodeficient mice. Edom iPSCs induced teratomas
within 6-10 weeks after implantation. Histological analysis
of paraffin-embedded sections demonstrated that the three
primary germ layers were generated as shown by the presence
of ectodermal glia and neuroepithelium, mesodermal muscle
and cartilage, and endodermal ciliated epithelium morpho-
logically in the teratoma (Figure 1).

Two types of teratoma-derived cells were used for further
cultivation. One (TC1) was originally derived from the Edom-
iPS-2 line (SKIP accession number SKIP000406) [22] and the
other (TC2) was from Edom-iPS#S23 line (SKIP accession
number SKIP000410). For cultivation of teratoma-derived
cells, iPSCs were injected subcutaneously into the dorsal flank
of nude mice (CLEA Japan, Japan). Three to four weeks
after injection, teratomas were surgically dissected and the
cells were isolated by collagenase digestion. The teratoma-
dissociated cells were maintained in Dulbeccos Modified
Eagle’s Medium (DMEM; Life Technologies, Carlsbad, CA,
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FIGURE 1: Histology of teratoma generated by Edom-iPS#S23 cells. (a) Teratoma (low-power view). (b) Epidermis. (c) Immature neuroep-
ithelium. (d) Intestinal epithelium. (e) Intestinal epithelium with goblet and Paneth cells (high-power view of panel (d)). (f) Smooth muscle.

USA) supplemented with 10% fetal bovine serum (FBS) and
1% penicillin/streptomycin solution (Life Technologies). The
operation protocols were approved by the Laboratory Animal
Care and Use Committee of the National Research Institute
for Child and Health Development, Tokyo.

2.6. Automated Cell Culture. For teratoma-derived cell and
keratinocyte cultures, 3.0 x 10° (teratoma-derived cells) and
1.5-1.8 x 107 cells (keratinocytes) were placed into the system
and cultured using the media described above. The medium
exchanges were performed twice a week.

For EB-explant outgrowth culture, iPSCs were disso-
ciated into single cells with accutase (Thermo Scientific,
MA, USA) after exposure to the rock inhibitor (Y-27632:
A11105-01, Wako, Japan) and then passaged into the 90 mm
dishes coated with 0.1% gelatin solution (Sigma-Aldrich,
St. Louis, MO, USA) at a density of 10,000 cells/dish in
the EB medium containing 76% Knockout DMEM, 20%
Knockout Serum Replacement (Life Technologies, CA, USA),
2mM GlutaMAX-I, 0.1 mM NEAA, Pen-Strep, and 50 pg/mL
L-ascorbic acid 2-phosphate (Sigma-Aldrich, St. Louis, MO,
USA). Thereafter, the EBs collected from two dishes were
placed into the system and cultured using DMEM/Nutrient
Mixture F-12 (Life Technologies) supplemented with 20%
FBS, 1% Pen-Strep solution, 1% NEAA (Life Technolo-
gies), 1% sodium pyruvate solution (Life Technologies), and
GlutaMAX supplement (Life Technologies). The medium
exchanges were performed twice a week. When sufficient cell
outgrowth from EBs was observed, the cells were passaged
(on day 7), and the cultivation was continued further.

2.7. Analysis after Automated Cell Culture. For cell harvest-
ing, the culture medium was automatically removed from
the flask. The cells were washed with saline twice to remove
cell debris and the remaining medium and were scraped by
adding trypsin-EDTA solution to the culture flask. The flask
was incubated in the incubator at 37°C for 3-10 min. The
flask was gently swung for cell removal from the surface.
The cell numbers and viabilities were measured using a Vi-
Cell XR cell viability analyzer (Beckman Coulter, Brea, CA,
USA). The cells after the propagation with the automated
cultivation system were also applied to gene chip analysis for
the postprocess validation.

3. Results and Discussion

First, we examined the performance of “P 4C S” using
teratoma-derived cells (TCl and TC2) and genetically
immortalized keratinocytes (HDKI1-K4T and HDKI1-K4DT)
as model cells. On day 1 in each culture, we confirmed that
all of the cells were distributed uniformly throughout the
culture flask by automatically obtained images at multiple
fixed positions, which is a key factor for stable cell growth.
The cell distribution is probably due to the P 4C S’s specialized
design where the starter cells are dispersed by shaking the
culture flask, based on the optimized particle dispersion sim-
ulation [5]. TCl and HDKI-K4DT cells were stably expanded
depending on the culture duration (Figures 2 and 3). iPSC-
teratoma-derived cells and keratinocytes were successfully
expanded to more than 4.5 x 107 cells (a 15-fold increase over 7
days) and 5.1 x 107 cells (3.4-fold increase for 6 days) with high
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iPSC Injection Teratoma P 4C S system

(b) (0) (d)

FIGURE 2: Time-course images of teratoma-derived cells in automated culture. (a) Scheme for automated culture of teratoma-derived cells.
((b), (¢), (d)) Phase-contrast photomicrography of day 1 (b), day 4 (c), and day 7 (d) after the start of the automated culture. The experiments
were repeated four independent times. The scale bars indicate 500 ym.

Keratinocyte P 4C S system

FIGURE 3: Time-course images of keratinocytes in automated culture. (a) Scheme for automated culture of keratinocytes. ((b), (c), (d)) Phase-
contrast photomicrography of day 1 (b), day 4 (c), and day 6 (d) after the start of the automated culture. The experiments were repeated three
independent times. The scale bars indicate 500 ym.
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iPSC EB formation

EB P 4C S system

(b) (c)

(d) (e)

FIGURE 4: Time-course images of iPSC-derived EB-explant outgrowth cells in automated culture. (a) Scheme for automated culture of EB-
explant outgrowth cells. ((b), (c), (d), (e)) Phase-contrast photomicrography of day 1 (b), day 4 (c), day 8 (d), and day 23 (e) after the start of
the automated culture. The EBs adhered to the culture surface (on day 1) and the cell outgrowth was clearly confirmed surrounding the EBs
(on day 4), after which we performed the subculture manipulation (on day 7). The uniform cell distribution after passage could be confirmed
by an image on day 8. The cells were cultured until reaching subconfluent state (on day 23). The experiments were repeated three independent

times. The scale bars indicate 500 ym.

viabilities, respectively (Tables 1 and 2). The antibiotics were
used for teratoma-derived cells since bacterial contamination
cannot be eliminated. The media fill test revealed that the
automated cell cultivation system used in this study is able
to produce cells without microbial contamination [26].

EB formation from embryonic stem cells (ESCs) or iPSCs
and following EB-explant outgrowth culture is a common
strategy for generation of different cell lineages and expansion
of differentiated cells for further applications [27-31]. In this
study, we examined the feasibility of this system for the iPSC-
derived EB-explant outgrowth culture as a model case for
explant culture. iPSC-derived EBs successfully adhered to the
culture surface (on day 1) and the cell outgrowth was clearly
confirmed (on day 4), while the cells were only found sur-
rounding the adherent EBs (Figure 4). After confirming cell
outgrowth, we detached and dispersed the cells by shaking
the culture flask, leading to uniform cell distribution (on
day 8). After the subculture, the cells were stably expanded
evenly throughout the culture flask and reached subconfluent
state on day 23, resulting in cell yields of 3.1 x 107 cells
(Table 3). Also, we confirmed that this culture strategy was
applicable for human ESC-derived EBs and that the resultant
cell yield was similar to that obtained from iPSC-derived EBs.
Actually, creation of uniform cell distribution is essential for
continuous stable expansion culture [26]. Thus, this strategy
may be also useful for other explant cultures including
mesenchymal stem cells [32, 33], keratinocytes [34], and
fibroblasts [35], which have been widely used for regenerative
medicine purposes.

Conventionally, cell cultures have been performed using
open culture vessels which are vulnerable to bacterial con-
tamination. This is an important concern in both clinical
and scientific settings. For clinical cell processing in cell-
based therapy, to minimize the risk of contamination, a clean
facility is indispensable and its cleanliness is strictly main-
tained by several means such as air-conditioning, differential
pressure, and various sanitary controls [36, 37]. However,
the requirement of such facility drives the therapeutic cost
up, which has severely hampered the spread of cell-based
therapy. In contrast to the open culture vessels, theoretically,
the use of “P 4C S” that employs closed-culture vessel does
not require a clean environment. In fact, we performed
cell culture experiments with the machine located in a
conventional laboratory, resulting in no evidence of bacterial
contamination. Therefore, the installation of “P 4C S” into
clinical cell processing has huge advantages not only for cell
culture automation but also for reduced requirement of a
clean facility, which would facilitate the wide spread of cell-
based therapy.

4. Conclusions

We show here the applicability and performance of “P 4C S”
in teratoma-derived cells, keratinocytes, and EB outgrowth
cultures. It is noteworthy that the “P 4C S” specific subculture
manipulation enables creation of uniform cell distribution
which was useful for EB-explant outgrowth cultures for



TABLE 1: Automated culture of teratoma-derived cells.

Experiment 1 Experiment 2

Cell TC1 TC2
Culture period
Cell number

7 days 7 days

Seeded 0.3 x 107 cells 0.3 x 107 cells

Harvested 5.8 x 107 cells 4.5 x 107 cells
Fold increase 19-fold 15-fold
Cell viability 93% 93%

TABLE 2: Automated culture of keratinocytes.

Experiment 1 Experiment 2

Cell HDKI1-K4T
Culture period

HDKI1-K4DT
6 days 6 days

Cell number

Seeded 1.8 x 107 cells 1.5 x 107 cells

Harvested 5.4 x 107 cells 5.1 x 107 cells
Fold increase 3.0-fold 3.4-fold
Cell viability 95% 93%

TABLE 3: Automated EB-explant outgrowth culture.

iPSC-derived EBs
23 days

Culture period
Cell number

Seeded Not calculated
Harvested 3.1 x 107 cells
Cell viability 84%

continual stable expansion. In addition, all culture experi-
ments in this study could be performed without bacterial
contamination. These results suggest that the use of “P 4C §”
is a promising approach to overcome the problems in current
manual procedure for clinical and scientific purposes.
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